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Abstract

For advanced offshore engineering applications the prediction with available nau-

tical X-band radars of phase-resolved incoming waves is very much desired. At

present, such radars are already used to detect averaged characteristics of waves,

such as the peak period, significant wave height, wave directions and currents.

A deterministic prediction of individual waves in an area near the radar from

remotely sensed spatial sea states needs a complete simulation scenario such as

will be proposed here and illustrated for synthetic sea states and geometrically

shadowed images as synthetic radar images. The slightly adjusted shadowed

images are used in a dynamic averaging scenario as assimilation data for the

ongoing dynamic simulation that evolves the waves towards the near-radar area

where no information from the radar is available.

The dynamic averaging and evolution scenario is rather robust, very efficient

and produces qualitatively and quantitatively good results. For study cases of

wind waves and multi-modal wind-swell seas, with a radar height of 5 times the

significant wave height, the correlation between the simulated and the actual sea

is found to be at least 90%; future waves can be predicted up to the physically
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maximal time horizon with an averaged correlation of more than 80%.

Keywords: remote sensing, sea surface reconstruction, sea surface prediction,

multi-modal sea states, radar image, dynamic averaging.

1. Introduction1

Attempts to use remote sensing of the sea surface for prediction of the actual2

and future surface elevation in the vicinity of floating ships or offshore struc-3

tures is motivated by various offshore and maritime engineering applications.4

Positioning of vessels would benefit from knowledge of the near future incoming5

low and high waves. Helicopter landing and loading / off-loading operations6

with at least one floating structure involved are examples of operations of which7

the critical phase (touch down or lift off) is conducted preferably during a time8

window with low waves. These workable time windows may occur as well in rel-9

atively high seas making their prediction very valuable to increase operational10

time. Knowing the approach of a freak wave, which seems to occur much more11

frequently than previously thought, can help to control ships in a safer way12

(Clauss et al., 2014). An attractive option for the remote wave sensor is the13

nautical X-band radar. Much attention has been given since several decades to14

its application as a wave sensor. The vast majority of the efforts so far has been15

based on spectral 3D FFT methods dedicated to retrieve statistical wave param-16

eters such as mean wave period, wave direction, non-phase-resolved directional17

wave spectra and properties that could be derived from the surface elevation like18

water depth and surface current speed and direction. Young et al. (1985) used19

spectral analysis to detect currents, and Ziemer and Rosenthal (1987) proposed20

the use of a modulation transfer function to derive surface elevation from radar21

images of the sea surface. Borge et al. (1999) used the signal-to-noise (SNR)22

ratio in radar images to propose an approximate relation for the significant wave23

height with two parameters that have to be calibrated. The question how to24
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reveal the exact relation between radar images and wave elevation / significant25

wave height has been subject to many more publications, see e.g. Buckley and26

Aler (1998) and Gangeskar (2014). We will not address this topic here, but refer27

to a forthcoming publication of Wijaya and van Groesen (2015) that derives the28

significant wave height from the shadowed images without any calibration. In29

this paper it is assumed that the significant wave height is known, either from30

existing analysis techniques of radar images or by means of a reference observa-31

tion such as a wave buoy or recorded ship motions.32

Some of the rare attempts to retrieve the actual deterministic, i.e. phase re-33

solved, wave surface elevation from radar-like images are reported by Blondel34

and Naaijen (2012) and Naaijen and Blondel (2012), but the quality was shown35

to be not optimal. A very different method has been explored by Aragh and36

Nwogu (2008); they use a 4D Var assimilation method, assimilating (raw) radar37

data in an evolving simulation. Nevertheless, it seems that in literature no sta-38

tistically significant evidence has been reported for successful deterministic wave39

sensing (reconstruction), nor any method to propagate the waves to a blind area40

or to provide predictions.41

To overcome the ’blind’ zone around the radar where no elevation information is42

available, a propagation model is needed to evolve phase resolved reconstructed43

waves in the visible area into the blind zone and to make future predictions of44

the waves there, e.g. at the position of the ship carrying the radar antenna.45

The main aim of this paper is to present a scenario that integrates the inversion46

of the observed images with the propagation and prediction. This integration47

is achieved by a robust dynamic averaging-evolution procedure which will be48

shown to provide a prediction accuracy that is significantly higher than the ac-49

curacy of the observation of a single image itself.50

In the following we will restrict to the case that the radar position is fixed; im-51
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ages from a radar on a ship moving towards the waves will require some obvious52

adaptations, and will reduce the prediction horizon. The complete evolution sce-53

nario takes into account the specific geometry determined by the radar scanning54

characteristics. For the common nautical X-band radars one can distinguish the55

ring-shaped area where information from radar scans is available, and the near56

radar area where this information is missing. Through the outer boundary of57

the ring, some 2000 m away from the radar, waves enter and leave the area;58

part of the incoming waves evolve towards the near-radar area or interact with59

waves that determine the elevation there. Hence, updates to catch the incoming60

waves have to be used repeatedly. The inner boundary of the ring determines61

the disk, the near-antenna area with a radius of some 500 m; there no useful62

radar information is available because the backscatter is too high and/or suf-63

fers from interaction effects with the ship’s hull. A propagation model has to64

evolve the information from the ring area inwards to the radar position. This65

description defines the main ingredients of a process that has to be developed66

into a practical scenario that is sufficiently efficient and accurate, noting that67

the quality of the simulated elevation in the near-radar area depends on the68

quality of the simulation in the radar ring. Since radar images give only par-69

tial and distorted information about the actual sea surface, mainly because of70

the shadowing effect, a phase resolved reconstruction of the sea - the inversion71

problem - is important. As we will show, the use of a sequence of images in a72

spatially dynamic scenario will predict the present and future sea surface in a73

reasonable degree of accuracy.74

We start to propose two simple reconstruction methods for single images, but75

fail to reduce the effects of shadowing noticeably; consecutive simulations with76

the raw and the the reconstructed images will provide an indication of the ro-77

bustness of the complete scenario. Indeed, the quality of the reconstruction will78
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be substantially enhanced by the dynamic averaging and evolution procedure,79

almost independent of the choice of these initial images. The procedure consists80

of the averaging of a few successive (reconstructed) images, together with the81

result of the dynamic simulation, to produce updates that are assimilated in the82

dynamic simulation. We will use the full ring shaped observation domain sur-83

rounding the target location; this makes it possible to reconstruct and predict84

uni-modal wind waves as well as multi-modal seas with wind waves and swell(s)85

coming from possibly substantially different directions. Specific attention will86

be paid to the question how to treat the evolution of multi-modal seas in the87

proposed scenario.88

In this paper we use synthetic data and make some simplifications for ease of89

presentation, but the scenario to be described can also be applied for more real-90

istic cases. The use of synthetic data makes it possible to quantify the quality of91

the results which will be difficult to achieve in field situations for which reliable92

data of the surface elevation both in the ring-shaped observation area and the93

near-radar area simultaneously are very difficult to obtain. The wind and wind-94

swell seas that we synthesize are chosen to be linear to simplify the evolution,95

but linearity is not essential. From the synthetic seas, we construct synthetic96

radar images by only taking the geometric effect of shadowing into account as97

an illustration that the scenario can resolve imperfections of that kind.98

The paper is arranged according to the successive steps in the proposed sce-99

nario. Section 2 will describe the design of (multi-modal) synthetic seas and100

of synthetic radar images by applying the shadowing effects. In Section 3 the101

complete dynamic averaging-evolution scenario (DAES) will be described to de-102

termine from the shadowed images the wave elevation inside the observable area103

and inside the blind area near the radar. Section 4 describes the results for two104

case studies, one case of wind waves, and the other one for wind-swell seas;105
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apart from reconstruction results, the quality of predictions are investigated up106

to the maximal prediction time. In section 5 the results of the study case are107

discussed and conclusive remarks will be given in section 6.108

2. Synthetic data109

After a motivation to restrict the investigations to shadowed seas in the first110

subsection, we describe the construction of the synthetic surface elevation maps.111

These will be used in subsection 2.3 to generate the synthetic geometric images112

that take into account the shadowing effect, and later to quantify the quality of113

the reconstructed and evolved surface elevations.114

2.1. Simplifications115

When the sea will be scanned by the radar, parts of it will be hidden for the116

electromagnetic radar waves since they are partly blocked by waves closer to117

the radar, the geometric shadowing. It should be remarked that investigations118

of radar data by Plant and Farquharson (2012a) do not support the hypothesis119

that geometric shadowing plays a significant role at low-grazing-angle; indica-120

tions are found that shadowing rather occurs as so-called partial shadowing.121

Besides shadowing, tilt (slope of the sea surface relative to the look-direction of122

the radar) is considered to be an important modulation mechanism for wave ob-123

servations by radar, see Borge et al. (2004) and Dankert and Rosenthal (2004).124

In all these references the so-called hydrodynamic modulation as described by125

e.g. Alpers et al. (1981) has been ignored. Possible other effects perturbing126

the observation that are introduced by specific hardware related properties of127

a radar system should in general be invertible when the exact properties are128

known, which is why we do not consider that aspect here.129

In this paper we will consider as example of imperfections of the observed sea130

the effect of geometric shadowing. For this relevant effect it will be shown how131
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well the proposed averaging-evolution scenario can cope with imperfections with132

a length scale of the order of one wavelength, virtually independent of the pre-133

cise cause of the imperfections. Since this geometrical approach is mainly valid134

as a first order approach of the backscattering mechanism for grazing incidence135

conditions at far range for marine radar (Borge et al., 2004), electromagnetic136

diffraction (Plant and Farquharson, 2012b) is not taken into account in this pa-137

per. It must be noted that perturbations over larger areas as caused by severe138

wind bursts may not be recovered accurately by the present methods.139

2.2. Synthetic surface elevations140

To synthesize a sea, we use a linear superposition of N regular wave com-141

ponents each having a distinct frequency and propagation direction. The wave142

spectrum Sη(ω) is defined on an equally spaced discrete set of frequencies ωn143

covering the significant energy contributions. In order to assure that the sea is144

ergodic (Jefferys, 1987), it is required that only a single direction corresponds145

to each frequency. A propagation direction is assigned to each wave component146

by randomly drawing from the directional spreading function which is used as147

a probability density function, as proposed by Goda (2010). The directional148

spreading function with exponent s around the main direction θmain is given by149

D(θ) =


β cos2s(θ − θmain), for|θ − θmain| < π/2,

0, else

(1)

with normalization β such that
∫
D(θ)dθ = 1.150

With kn the length of the wave vectors corresponding to the frequencies151

ωn, and with φn phases that are randomly chosen with uniform distribution in152
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[−π, π], the sea is then given by153

η (x, t) =
∑
n

√
2Sη (ωn) dω cos (kn (x cos (θn) + y sin (θn))− ωnt+ φn) (2)

Snapshots of the surface elevation at multiples of the radar rotation time dt are154

given by η(x, n · dt).155

2.3. Geometric images156

With ’Geometric Images’ we refer to the synthesized radar observation of157

the surface elevation for which, as stated above, we will only take the geometric158

shadowing into account. Shadowing along rays has been described by Borge et159

al. (2004) and is briefly summarized as follows.160

After interpolating the image on a polar grid, with the radar at the origin161

x = (0, 0), we take a ray in a specific direction, starting at the radar position162

towards the outer boundary, using r to indicate the distance from the radar.163

We write s (r) for the elevation along the ray, and hR for the height of the164

radar. The straight line to the radar from a point (r, s (r)) at the sea surface165

at position r is given for ρ < r by z = ` (ρ, r) = s (r) + a (r − ρ) with a =166

(Hr − s (r)) /r. The point (r, s (r)) at the sea surface is visible if ` (ρ, r) > s (ρ)167

for all ρ < r, i.e. if minρ (` (ρ, r)− s (ρ)) > 0. At the boundary of such intervals168

the value is zero, and so the visible and invisible intervals are characterized169

by sign [minρ (` (ρ, r)− s (ρ))] = 0 and = −1 respectively. This leads to the170

definition of the characteristic visibility function as171

χ (r) = 1 + sign

[
min
ρ
{Θ (r − ρ) Θ (ρ) (` (ρ, r)− s (ρ))}

]
(3)

where Θ is the Heaviside function, equal to one for positive arguments and zero172

for negative arguments. The visibility function equals 0 and 1 in invisible and173

visible intervals respectively. The shadowed wave ray, as seen by the radar, is174
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then given by175

sshad (r) = s (r) .χ (r) (4)

which defines the spatial shadow operator along the chosen ray. Repeating this176

process on rays through the radar for each direction, leads to the shadowed sea,177

Sshad (x) .178

The geometric image is obtained by removing information in a circular area179

around the radar position with a radius of r0. Then the geometric image is180

described by181

I (x) = Sshad (x) .Θ (|x| − r0) (5)

3. Dynamic averaging-evolution scenario182

This section presents the dynamic averaging-evolution scenario (DAES) that183

will provide a reconstruction and prediction of the surface elevation at the radar184

position using the geometrically shadowed waves in the ring-shaped observation185

area of the sea. The main ideas can be described as follows.186

The exact (non-shadowed) sea is supposed to evolve according to a linear (dis-187

persive) evolution operator. Except from entrance effects of waves through the188

boundary, one snapshot of the sea would be enough to determine exactly the189

whole future evolution. The effects of shadowing give a space and time depen-190

dent perturbation for all images: the amount of shadowing (visibility) depends191

on the distance from the radar, and the position in time of the waves deter-192

mines the actual area of shadowing, shifting and changing somewhat with the193

progression of the wave. Hence, one snapshot of the observed (shadowed) sea,194

will produce a different evolution result than that of the exact sea because the195

zero-level of the shadowed area will be evolved. In order to control, and actually196

reduce, the error, we use updates to be assimilated in the dispersive evolution.197

After three radar rotation times 3dt we update the ongoing simulation by assim-198
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ilation with the averaged 3 preceding images, where the averaging itself already199

reduces the effect of shadowing somewhat. Since we do this globally, so also in200

areas closer to the radar where the shadowing is less severe, the result with the201

dynamic averaging-evolution scenario shows that this is sufficiently successful202

to give an acceptable correlation in the radar area.203

The first subsection deals with two simple methods that aim to improve the204

quality of each individual geometric image by attempting to fill in the gaps205

caused by the shadowing. Then the evolution of a single image is discussed in206

some detail, after which the dynamic averaging of several images is described207

to construct updates that will be used in subsection four as assimilation data208

in an evolution of the full sea.209

3.1. Spatial reconstruction of geometric images210

In the following, two methods will be presented for a first attempt to recon-211

struct the geometric images in regions where the observation is shadowed.212

In the first method the geometric image is shifted vertically such that the spatial213

average (over the observation area) vanishes. With a scaling factor α to obtain214

the correct significant wave height, this will produce the reconstructions R1
n as215

R1
n (x) = α (In (x)−mean(In)) (6)

As mentioned in the introduction, it is assumed that the true variance of the216

waves (or significant wave height) is known from either additional analysis217

and/or a reference measurement so that α is determined.218

The second proposed method is described as219

R2
n (x) = α (In (x)− E (In,−T/2)) (7)
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Here E (In,−T/2) evolves the sea backwards in time over half of the peak period,220

for which in multi-modal seas we will take the peak period of the wind waves.221

The evolution indicated here with the operator E will be explained in detail in222

the next subsection. Note that for harmonic long crested waves with period T of223

which negative elevations have been put to zero elevation (to roughly resemble224

the effect of shadowing) leads to the correct harmonic wave by the reconstruction225

R2.226

3.2. Evolution of a single image227

Let the reconstructed geometric image, denoted by R, obtained by either228

reconstruction method described in the previous subsection, be given by its 2D229

Fourier description as:230

R (x) =
∑
k

a (k) eik·x (8)

Here k is the 2D wave vector, and the coefficients a can be obtained by applying231

a 2D FFT on R.232

The image itself is not enough to define the evolution uniquely since the in-233

formation in which direction the components progress with increasing time is234

missing. For given direction vector e, define the forward evolution as235

Ee (R, t) =
∑
k

a (k) exp i [k · x− sign (k · e) Ω (k) t] (9)

where k = |k| and Ω (k) =
√
gk tanh (kD) is the exact dispersion above depth236

D. Waves propagating in a direction ẽ that makes a positive angle with e, so237

ẽ · e > 0, will then propagate in the correct direction for increasing time, which238

justifies to call the evolution forward propagating with respect to e. Changing239

the minus-sign into a plus-sign in the phase factor, the backward propagating240

evolution in the direction −e is obtained.241

For uni-modal sea states, such as wind waves or swell, there will be a main242
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propagation direction eprop, which is the direction of propagation of the most243

energetic waves. Other waves in such wave fields will usually propagate in nearby244

directions, under an angle less than π/2 different from the main direction. In245

such cases we can take eprop as the direction to define the evolution. Actually,246

any direction from the dual cone of wave vectors can be chosen, i.e. any vector247

that has positive inner product with all wave directions.248

In multi-modal sea states, in most practical cases a combination of wind waves249

and swell, the situation is different since the waves may have a wider spreading250

than the π/2 difference from the main direction that was assumed for the uni-251

modal sea states. When the wave directions are spread out over more than a252

half space, one evolution direction so that all waves are propagated correctly253

cannot be found anymore. If only low-energy waves are outside a half space,254

one may still use a forward propagating evolution operator. Then an optimal255

choice is the main evolution direction for which the maximum portion of the256

total wave energy is evolved correctly. A way to identify this optimal direction257

is discussed now.258

Practically, we use a second (or more) ’control’ image, and look for which vector259

e the evolution of the first image corresponds with the control image as good as260

possible in least-square norm; this then determines the main evolution direction261

(MED). Explicitly, given two successive images of the wave field, say R1 and R2262

a small time (the radar rotation time) dt apart, we compare R2 with the forward263

evolution of R1 over time dt in the direction e, to be denoted by Ee (R1), and264

minimize the difference over all directions e, defining the MED as the optimal265

value266

eMED ∈ min
e
|Ee (R1)−R2| . (10)

Instead of minimizing a norm of the difference, one can also take the maximum267

of the correlation. For fields with limited directional spreading there will be a268
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broad interval of optimal directions, in which case the average of the optimal269

directions can be chosen. For cases of multi-modal sea states where the main270

propagation direction of the different modes deviate very much there is likely271

to be one distinct optimal MED. It is possible that with this method using the272

MED, a significant amount of wave energy is evolved in the wrong direction,273

depending on how much the main directions of the different modes differ.274

In the following we will use a simplified notation when evolving over one time275

step dt, namely276

E (R) = EeMED
(R, dt) (11)

Evolving over several time steps, say m.dt, is then written as a power (succession277

of evolution) Em.278

3.3. Updates from dynamic averaging279

The reconstruction process described in subsection 3.1 gives approximate sea280

states Rn. The study cases will show that these reconstructions are still rather281

poor when compared to the exact synthetic surface elevation maps; the corre-282

lation with the exact surface is only slightly better than that for the shadowed283

geometric images. In order to reduce the effect of this reconstruction error and284

thereby to improve the accuracy of the elevation prediction near the radar, we285

propose an averaging procedure in physical space. This procedure will involve286

three successive reconstructed images and the simulated wave field at the in-287

stant of the last image.288

To set notation, the simulated sea (the simulation process will be detailed289

below) at time t will be denoted as ζ (x, t); at discrete times m.dt we write290

ζm (x) = ζ (x,m.dt).291

The simulation is initialized by taking for the first three time steps the three292
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successive reconstructed images293

ζm (x) = Rm (x) for m = 1, 2, 3

For the continuation, updates will be used to assimilate the evolution. We294

describe the update process at a certain time t0, which is a multiple of 3dt.295

Available at that time are the simulated wave field at t0, to be denoted by296

ζ0 (x) = ζ (x, t0), the reconstructed image at time t0, and 2 previous images at297

times t−1 = t0−dt, t−2 = t0−2dt; these reconstructed images will be denoted by298

R0,−1,−2 respectively. Since the images Rk have substantial inaccuracies despite299

the reconstruction, it can be expected that an averaging procedure improves300

the quality. This averaging has to be done in a dynamic way to compensate for301

the fact that the images are available at different instants in time. Therefore302

the images R−1 and R−2 have to be evolved over one, respectively two, time303

steps dt. This produces E(R−1) and E2(R−2), each representing, just as R0,304

an approximation of the sea state at time t0. But the information will be305

different, partly complementary, because the information at different time steps306

shows somewhat different parts of the wave because of the shadowing effect.307

Therefore an arithmetic mean will contain more information, and may also308

reduce incidental errors and noise. The ongoing simulation ζ0 also gives an309

approximation of the sea at t0, and, most important, will also contain elevation310

information in the near-radar area where the Rk are vanishing. Choosing some311

weight factors, we therefore take as update at time t0 the following combination312

U0 (x) =

(
1

6
(R0 + E(R−1) + E2(R−2)) +

1

2
ζ0

)
(1− χrad) + ζ0χrad (12)

Here χrad (x) is the characteristic function (or a smoothed version) of the near-313

radar area: χrad = 1 in the near radar zone where no waves can be observed314
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and χrad = 0 in the remaining area. The number of reconstructed images to315

be taken in the update can be more or less than 3, and each could be given a316

different weight. Our experience with various test cases led to the weight factors317

as taken above.318

3.4. Evolution and prediction319

The updates defined above will be used as assimilation data to continue the320

simulation. In detail, after the construction of an update, say U3m, the simula-321

tion continues with this sea state as initial elevation field for three consecutive322

time steps:323

ζ3m+j = Ej(U3m) for j = 1, 2, 3. (13)

This defines the full evolution in time steps dt, which is repeatedly fed with new324

information from the reconstructed images through the updates. This scenario325

can run in real time in pace with incoming real radar images.326

A prediction can be defined, starting at any time t0 = m.dt for a certain time327

interval ahead, without using any information of geometric images later than328

t0. The prediction, say for a future time of τ ∈ [0,Π], where Π is the prediction329

horizon, is then defined as330

P (t0, τ) = E (ζ (t0) , τ) for τ ∈ [0,Π] . (14)

An upper bound for the prediction horizon depends on the speed of the waves331

and the distance of the outer boundary to the radar. As shown by Wu (2004)332

and Naaijen et al. (2014) the prediction horizon is mainly governed by the333

group velocity of the waves and the size of the observation domain. In case of334

a nautical radar, the spatial observation domain will be the ring-shaped area,335

previously indicated by χrad = 0. The group velocity will be different and in336

different directions for short-crested, in particular multi-modal, seas and depend337
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on wave characteristics (roughly the peak period) and the depth. These factors338

will influence the prediction horizon in which we can expect a reliable prediction.339

Besides that, the prediction horizon Π clearly also depends on the accuracy that340

is desired for the prediction.341

4. Case studies342

In this section we present the results for two study cases: one for wind343

waves and one with combined wind waves and swell. Comparisons are presented344

between the predicted wave elevation, obtained by processing the synthesized345

images with the proposed DAES method and the exact wave elevation as it346

was synthesized. We start to specify the sea data and other physically and347

numerically relevant parameters of the simulations, followed by the simulation348

results.349

4.1. Parameters of the study cases350

4.1.1. Geometry and spatial grid parameters351

The seas that we consider evolve above a depth h = 50 m. The height of352

the radar is an important quantity because the severity of the shadowing effect353

is governed by the ratio of radar height and wave height. We will report on a354

value of the radar height hR of 15 m above the still water level. The radar is355

assumed to be at a fixed position above the still water level, with a constant356

radar rotation speed dt = 2 s. The sea is constructed in an area [−2050, 2050]2357

with a number of nodes in x and y-direction equal to Nx = Ny = 512, so358

spatial step size dx = dy = 7.9 m. Modeling the outer boundary of the radar359

observation area, the elevation of each snapshot of the sea is made to vanish for360

distances from the radar larger than rmax = 1800 m. The shadowing procedure361

is applied after transforming each sea state to polar coordinates (r, φ) on a grid362

with dr = 7.5 m and dφ = 0.3o. The geometric image is then obtained by363
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transforming back to Cartesian coordinates and make the elevation vanish in364

the circular near radar area of radius rmin = 500 m.365

4.1.2. Sea states366

We provide the properties of the wind waves and the swell separately; since367

we consider linear waves, the characteristics of the multi-modal sea state, which368

is a combination of the wind waves and swell, can be derived in a straightforward369

way. The properties of the waves, with related wave characteristics above depth370

h = 50 m, are summarized in Table 1.

Table 1: Characteristic of sea and swell waves

Sea Hs Tp γ θmain s ωp kp λp Cp Vg
Wind 3 9 3 −π/2 10 0.7 0.05 125 13.9 7.4
Swell 1 16 9 3π/4 50 0.4 0.02 308 19.2 14.8

371

The wind waves have main propagation direction from North to South, θW =372

−π/2; the wave spreading is given by the spreading function (1) with exponent373

s = 10.374

The frequency spectrum of the wind waves is a Jonswap spectrum with γ = 3,375

peak period Tp = 9 s, and significant wave height HW
s = 3 m. Note that376

the significant wave height is an important factor that affects the amount of377

shadowing; the ratio of radar height and significant wave height is as low as 5378

in this study case, leading to substantial shadowing.379

The multi-modal sea consists of the above wind waves to which is added the380

swell waves. The swell consists of waves from the South-Eastern direction,381

θS = 3π/4, peak enhancement factor γ = 9, wave spreading with s = 50, peak382

period Tp = 16 s, and significant wave height HS
s = 1 m. The significant wave383

height of this combined sea state will be HWS
s =

√
10 ≈ 3.15 m, so that the384

ratio of radar height and significant wave height is slightly less than 5.385

The study cases of wind waves without swell and combined wind waves-swell will386
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be denoted by W15 and WS15 respectively. The number of discrete components387

N used to synthesize the waves as in equation (2), has been taken N = 1500388

for the wind waves and N = 700 for the swell in study case WS15.389

4.1.3. Main evolution direction390

As described in subsection 3.2, the main evolution direction MED will be391

determined as the direction for which the error of the difference between a one-392

step evolved image and the successive image is as small as possible. For the393

study cases Figure 1 shows the averaged relative error obtained by comparing394

10 pairs of successive reconstruction images for case W15 and WS15. Here, the395

angle is measured from the positive x−axis in counter clockwise direction. For396

study case W15 the relative error is rather constant in the interval [−150o,−30o],397

with −90o in the middle of the interval. Hence this is chosen as MED, which398

coincides with the design value of the main wind direction of the synthesized399

wave field. For case WS15 the situation is very different. There is now only a400

small interval of angles identifying evolution directions for which most energy401

is propagated correctly. Hence, for case WS15 the angle of minimal error is402

chosen as MED, i.e. −148o. For the study cases using the shadowed images403

to determine MED we observed a few degrees difference with the MED’s found404

when using the synthetic non-shadowed seas; in the following we take the values405

obtained from the shadowed seas.406

4.2. Simulation Results407

In this paragraph results of the simulations will be described. After some408

graphical presentations, more quantitative information is presented for the re-409

construction sea states and the future prediction.410
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Figure 1: The relative error in the procedure to determine the main evolution direction MED
averaged over 10 realizations, for case W15 (dash-dotted red) and WS15 (solid blue).

4.2.1. Graphical presentation411

We start with some results that illustrate the DAES method. After the first412

three synthesized geometric images, the dynamic averaging - evolution scenario413

is initiated using updates at every time that is a multiple of 3dt. For a certain414

t = t0, shortly after starting the simulation, various images are presented in415

Figure 2. Figure 2a shows the true wave elevation as synthesized at t = t0. Fig-416

ure 2b shows the shadowed image of the wave elevation depicted in Figure 2a417

with vanishing elevation in the blind area r < 500 around the antenna. Figure418

2c, shows the reconstruction U0(t0) (also denoted by P (t0; τ = 0)). As can be419

seen, the wind waves propagating in the main direction from North to South in420

the negative y-direction, and more so the swell from SE to NW, have evolved421

already some small distance into the near-antenna zone. Figure 2d shows the422

reconstruction P (t1; τ = 0) for a larger value t1 at which the waves have evolved423

so much that they occupy the entire blind area near the antenna r < 500.424

Figure 3 shows the cross section in the y direction at x = 0 of the shadowed425

waves in Figure 2b. Different from Figure 2b, the waves are shown here for426

r < rmin as well. As can be observed for this particular wave condition and427

quotient of radar altitude and significant wave height of 15/3, the shadowing428
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(a) (b)

(c) (d)

Figure 2: Images of the combined sea WS15 with wind waves from the North and swell from
SE. Image (a) shows the real sea, and (b) the shadowed sea at the same instant. Image (c)
shows the elevation shortly after the start of the simulation when the waves do not yet fully
occupy the blind near radar area; at a later time, image (d) shows that the blind area has
been filled with waves through the dynamic averaged evolution scenario.
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Figure 3: A cross section coinciding with the y−axis shows the shadowed waves (wind waves
from right to left); observe the severe shadowing outside the blind area (-500,500).
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Figure 4: Cross section along y−axis showing the true elevation (blue,solid) and the recon-
structed elevation R1 (red, dashed).

is rather severe: beyond r = 500 hardly any wave troughs are visible. Despite429

this poor quality of the observation, the DAES procedure produces a recon-430

struction of the wave elevation as shown in Figure 4. This figure shows plots431

of the synthesized elevation, referred to as ”true wave”, and the reconstruction432

P (t1; τ = 0) obtained by DAES at a time t1 such that the simulation has al-433

ready run sufficiently long for the reconstructed waves to fill the entire blind434

zone. Observe that the reconstruction is better near the radar, near y = 0,435

than for larger distances from the radar where the dynamic averaging cannot436
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yet sufficiently improve the poor quality of the observation data near the edge437

of the domain.438

Figure 5 shows time traces of the R1-reconstructed elevation and the true ele-439

vation at the radar position for WS15. The entrance effect at early times when440

the wind-waves and swell have not yet completely arrived at the radar position441

is clearly visible. This figure indicates that the entrance effect is visible until442

approximately 80 s, which is close to the time that is needed for the most en-443

ergetic wind waves to travel with group speed 7.4 m/s from the inner ring of444

radius 500 m to the radar.
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Figure 5: Time traces of elevation at the radar position for case WS15. In blue (solid) the
true elevation, in red (dashed) the reconstruction R1 that started at time 0. The enlarged
lower plot from 0 to 300 s shows the entrance effect that only after some 80 s the faster and
slower waves reached the radar position to obtain sufficient accuracy.

445
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4.2.2. Correlation as measure for accuracy446

The accuracy of the reconstruction and prediction is quantified by the cor-447

relation coefficient Corr, which correlates the wave elevation at one instant ob-448

tained from the simulation (’simul’) with the synthetic wave elevation (’data’)449

at the same instant according to450

Corr (data, simul) =
< data, simul >

|data| |simul|
(15)

Here < , > denotes the inner product over space x. Note that Corr defined in451

this way is related to the normalized point square error according to452

|data− simul|2

|data|.|simul|
=
|data|
|simul|

+
|simul|
|data|

− 2Corr(data, simul) (16)

In particular when ’data’ and ’simul’ have the same norm, it holds453

|data− simul|2

|data|2
= 2(1− Corr(data, simul)) (17)

The correlation will also be used to quantify the quality of future predictions.454

Using the notation P (t0, τ) introduced in equation (14) for the predicted wave455

elevation starting with the reconstruction at time t0 a time τ ahead, and de-456

noting by η(t0 + τ) the synthetic wave elevation from equation (2), their spatial457

correlation will be denoted by458

c(t0, τ) = Corr(P (t0, τ), η(t0 + τ)). (18)
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Then in order to obtain a statistically more reliable average correlation coeffi-459

cient corr, the average is taken over an interval of t0 values:460

corr(τ) =
1

J

J∑
j=1

c(t0j , τ) (19)

To avoid entrance effects, the computation of corr(τ) is restricted to times t0461

such that all waves have evolved to fill completely the blind zone. For the462

presented simulations, this distance (of 1000 m) is covered by the wind waves463

with group speed at peak frequency in approximately 136 s, i.e. 68dt; for the464

swell waves with double group speed, this time is 68 s. The number of simulation465

steps J used for calculation of corr(τ) has been at least 200 for all presented466

results.467

4.2.3. Accuracy of reconstruction468

The correlation has been computed for both sea states W15 and WS15, for469

various sizes of the spatial domain: corr is determined for r < 50, r < 500470

and r > 500. Results are presented in Tables 2 and 3 for the ’reconstruction’,471

i.e. τ = 0; prediction results for which τ > 0 will be presented in the next472

paragraph.473

The first column in Tables 2 and 3 indicates the type of input data used in the474

DAES procedure. ’Sea’ refers to the perfect (not shadowed) synthetic waves475

as input images, but with vanishing elevation in the near radar area r < 500.476

In this column R0 refers to simulations with shadowed waves without applying477

any reconstruction of the individual images, while R1 and R2 refer to the two478

reconstruction methods as defined in subsection 3.1.479

The columns with ’Raw’ and ’Rec’ show the correlation of the geometric im-480

ages and the individually reconstructed images with the true wave elevation481

respectively; the area over which the correlation is taken is the outer ring area482
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500 < r < 1800.

Table 2: Correlation for W15 averaged over time for various reconstruction methods.

Raw Rec r < 50 r < 500 r > 500
Sea 1.00 1.00 0.99 0.99 1.00
R0 0.71 0.71 0.82 0.87 0.83
R1 0.71 0.75 0.95 0.95 0.89
R2 0.71 0.75 0.89 0.91 0.84

483

Table 3: Same as 2 now for bi-modal sea state WS15.

Raw Rec r < 50 r < 500 r > 500
Sea 1.00 1.00 0.99 0.99 1.00
R0 0.70 0.70 0.85 0.88 0.83
R1 0.70 0.74 0.95 0.95 0.89
R2 0.70 0.73 0.89 0.90 0.83

As illustration, for a typical case, the correlation between the true sea and484

the R1-reconstruction in the radar area (r < 50 m and r < 200 m) is given in485

Figure 6 as function of increasing time during the DAES process. The entrance486

effect is clearly visible just as in Figure 5; the waves need approximately 160 s487

to fill up the near-radar area of radius 200 m.488
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Figure 6: Correlation between true sea and the R1-reconstruction for case WS15 in the radar
area with radius 200 m (blue) and radius 50 m (red) at times after the start of the reconstruc-
tion. Observe that after some 160 s the reconstruction has filled these regions and becomes
more accurate.
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4.2.4. Accuracy of prediction489

The eventual aim of the simulation scenario is to predict in future time490

the elevation in the near-radar area. At each time t0 during the simulation,491

the obtained reconstruction at that time P (t0, τ = 0) can be taken as initial492

state for a prediction according to equation (14), without new updates. In493

Figure 7 is shown a prediction at the radar position for the sea state WS15 with494

reconstruction method R1. For an initial time t0 > 160 larger than the filling495

time of the near-radar area, the predicted wave elevation and the true wave496

elevation at the radar position are shown as function of prediction time τ .
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Figure 7: For WS15, the figure shows the prediction (red,dashed) of the elevation compared
to the true elevation at the radar position; observe that after 120 s the prediction becomes
less accurate.

497

Figures 8 and 9 show results for prediction based on DAES applied to the true498

sea (perfect non-shadowed waves) and the R1-reconstruction for case W15 and499

WS15 respectively. As expected, for increasing prediction time the correlation500

decreases. Prediction of the wind waves W15 can be done for a time horizon501

of 2.9 minutes with correlation above 0.9, and for 3.6 minutes with correlation502

above 0.8; for the combined wind-swell waves WS15 these times are 2 minutes503

and 3.3 minutes respectively. Observe the steeper decrease in the graphs of504

WS15 after 120 s, which is approximately the travel time of swell waves at505
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peak group velocity; hence after that time, swell waves are not present in the506

prediction anymore.507
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Figure 8: Correlation between predicted and true elevations in a radar area of radius 200 m
using as input in the prediction method the true sea (blue, solid) and the shadowed sea of
W15 (red, dashed).
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Figure 9: Same as Figure 8 now for WS15.

5. Discussion of results508

5.1. Reconstruction method509

The high correlations in Tables 2 and 3 for the case of a perfect ’Sea’ (the non-510

shadowed synthetic waves) as input, show that the dynamic averaging procedure511
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and the evolution to fill the near-radar area r < 500 proceeds almost perfectly.512

The tables also show that the reconstruction of each single image only slightly513

improves the correlation, at most 4% for R1 and R2. For all three individual514

reconstructions, the DAES improves the reconstruction substantially, with best515

results for the vertical shifting method R1, for which the correlation increases516

from 0.75 in the outer ring to 0.95 in the near-radar area.517

The comparison of the R1-reconstructed and true elevation in Figure 6 shows518

that variations of the correlation over the larger disc of radius 200 m are much519

smaller than over the 50 m disc; this may be due to a poor reconstruction of520

relatively small areas in the outer ring 500 < r < 1800.521

5.2. Predictability522

The results in Figures 8 and 9 show the capabilities and limitations of the523

prediction. The physically maximal prediction time can be roughly estimated524

as the travel time from the outer region towards the radar (1800 m) for the most525

energetic waves at peak frequency. Using the value of the group velocity of the526

wind waves of 7.4 m/s, this leads to a maximal prediction horizon of 240 s for527

study case W15; this seems to be a too high estimation since Figure 8 shows a528

rather low correlation of 0.7 at that time for the best possible prediction with529

the true sea.530

On the other hand, for the combined wind-swell sea, a similar reasoning based531

on the speed of swell waves is too pessimistic for the study case WS15: the532

correlation of prediction with the true sea is around 0.9 at that time. This can be533

explained by the fact that in the study case the swell waves have approximately534

10% of the energy of the wind waves, which causes that the wind waves dominate535

the correlation, which is only slightly less than for W15 until 250 s, despite the536

fact that the effects of swell are actually absent after 120 s. The swell effect can537

also be observed by comparing the predicted elevation with the true elevation538
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at the radar position as depicted in Figure 7; the amplitude prediction becomes539

less accurate after around 120 s although the phase is still captured quite well540

for longer times.541

5.3. Scaling542

The observation from Figure 7 that the variance of the predicted wave el-543

evation decreases with increasing τ is also due to the fact that for values of τ544

further into the future, the waves arriving at the radar location originate from545

further distances where the shadowing is more severe and the variance of the546

observation is lower; after sufficiently long time no wave information will be547

available at all anymore. Using one scaling factor α based on the variance of548

the entire observed image and the true variance of the waves as was proposed in549

equation (6), does not take into account this decreased visibility at large ranges550

from the radar and in fact does not even guarantee a correct variance at the551

radar for τ = 0. An alternative which is supposed to be practical and feasible for552

real life applications is proposed by Naaijen and Wijaya (2014): a time history553

of the wave elevation at the radar position (e.g. by an auxiliary wave buoy or554

via recorded ship motions) and a time history of the predicted wave elevation555

can be recorded and used to calculate the variance of the true waves and the556

prediction. By taking the ratio of these variances, a scaling factor dedicated557

for the radar location can be obtained. Such a scaling factor can also be com-558

puted as a function of τ , thus removing the aforementioned effect of decreasing559

variance of the prediction with increasing τ .560

5.4. MED and bimodal sea state561

In subsection 3.2 it was explained how the wave components obtained from562

a 2D FFT are propagated in the main evolution direction (MED). In case of563

multi-modal sea states, it depends on the difference between the propagation564
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directions of the various modes how much of the total wave energy represented565

by the obtained components is propagated in the correct direction. The sea state566

WS15 was designed in such a way that the amount of energy represented by567

wave components propagating in opposite directions relative to the total wave568

energy is very limited which may explain the small differences in the obtained569

accuracy between W15 and the multi-modal case WS15. Multi-modal seas with570

substantial counter propagating waves require an evolution method that takes571

into account a splitting of waves in two opposite directions. Information from572

the directional spectrum can be used for this splitting, see Atanassov et al.573

(1985).574

5.5. Parameter dependence and robustness575

It has been remarked already that the dimensionless quantity in the vertical576

direction that determines the effects of shadowing is the ratio of radar height577

and significant wave height: the larger this ratio, the less effect of shadowing578

at a fixed position. This has been confirmed for other study cases that will579

not be reported here. The dimensionless quantity in the horizontal direction is580

the ratio of distance to the radar and the peak wave length, and has the same581

consequence. The length of the maximal prediction interval in case of multi-582

modal sea states will depend in a somewhat complicated way on the relative583

energy contents and the difference of group speed of the wind waves and swell.584

For the study case described above (with 3 times larger significant wave height585

for the wind and with 2 times faster speed of the swell) the correlation as586

measure of quality seems to be too crude to identify the full effect of the swell;587

yet in observations of the spatial plots (or on cross sections) the difference can588

be noticed somewhat.589

As is already indicated in Tables 2 and 3, almost irrespective the reconstruction590

of the shadowed seas, the DAES process produces substantially improved results591
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in the near-radar area, with correlations between 0.88 and 0.95 depending on the592

reconstruction method. This robustness of the dynamic averaging and evolution593

scenario was also observed in other simulations. As an example, one other study594

case considered much wider spreading in the wind waves and swell. Although595

given by the same parameters as reported here, the argument θ − θmain in596

the spreading function was divided by 2 (which is sometimes also used). As597

a consequence, there is more overlap between the two sea states, and hence598

more counter propagating waves that will be evolved in the wrong direction.599

Nevertheless, correlations above 0.9 were obtained in the near radar area. A600

possible explanation for this seemingly inconsistent observation is that the much601

shorter waves cause less shadowing which may be a compensation in the measure602

given by the correlation.603

6. Conclusions and remarks604

In this paper we introduced a relatively simple and efficient simulation sce-605

nario to transform sequences of synthetic X-band radar images of multi-modal606

sea states into future sea states. The scenario turned out to be rather robust607

and produces reconstruction of the surface elevation in the blind area with cor-608

relation above 0.90 for the case of wind and wind-swell seas, for a ratio of radar609

height and significant wave height of 5. Additional simulations show that the610

correlation improves somewhat for higher values of this ratio because the effect611

of shadowing becomes less. No substantial differences are obtained for seas con-612

sisting of uni-modal wind waves or for multi-modal wind-swell seas.613

The actual computation time for the simulation with the assimilation can run614

in real time; the required Fourier transforms for the averaging and evolution615

are executed within fractions of real time. For nonlinear simulations this may616

be somewhat longer but will not jeopardize the possibility to run the dynamic617
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averaging-evolution scenario in real time.618

The dynamic averaging-evolution scenario providing updates for a running evo-619

lution can be used in other cases also when a dynamic system experiences pertur-620

bations. We close with mentioning some topics worth of further investigations621

and possible improvements.622

The simplification to consider linear seas above constant depth in this paper623

is mainly for ease of presentation and execution of the scenario; nonlinear seas624

above topography could be dealt with straightforwardly. Apart from this, our625

understanding of waves in real seas still seems to be quite rudimentary. Even626

for linear waves, concepts as the main evolution direction introduced here have627

not yet been related to energy propagation direction; the MED for WS15 is628

remarkably different from the direction of the main energy carrying wind waves629

that determines the direction of the change of the wave profiles during evolu-630

tion. Besides that, detailed studies of nonlinear seas may show phenomena that631

are not captured by linear seas, such as the occurrence and physical processes632

that lead to freak-like waves. If coherent interference is the main process for633

the appearance of long crested freak waves with relatively low Benjamin-Feir634

index, as indicated by Slunyaev et al. (2005), Gemmrich and Garrett (2008) and635

Latifah and van Groesen (2012), the same process may also lead to freak waves636

in short crested waves, enhanced by nonlinear interaction processes.637

In the reconstruction process in this paper, we assumed the significant wave638

height of the sea to be given. Recent investigations showed that this informa-639

tion can actually also be extracted from the geometric images, see Wijaya and640

van Groesen (2015).641

Practical applicability requires the application of the full simulation scenario642

to real radar images and to test the results against accurate measurements.643

Another item to be clarified is if the accuracy of the predicted sea in the inner-644
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radar area as achieved here, is sufficiently high to obtain accurately the forces645

on the ship carrying the radar, a topic of direct relevance for various practical646

applications. Finally, perturbations from heavy wind bursts may influence the647

results; it would be interesting and relevant to investigate the effects.648
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