Towards Runtime Discovery, Selection and Composition
of Semantic Services

Eduardo Gongalves da Silva, Luis Ferreira Pires, Marten van Sinderen

Centre for Telematics and Information Technology
University of Twente, The Netherlands
P.O. Box 217, 7500 AE Enschede

Abstract

Service-orientation is gaining momentum in distributed software appli-
cations, mainly because it facilitates interoperability and allows application
designers to abstract from underlying implementation technologies. Service
composition has been acknowledged as a promising approach to create com-
posite services that are capable of supporting service user needs, possibly by
personalising the service delivery through the use of context information or
user preferences. In this paper we discuss the challenges of automatic service
composition, and present DynamiCoS, which is a novel framework that aims
at supporting service composition on demand and at runtime for the benefit
of service end-users. We define the DynamiCoS framework based on a service
composition life-cycle. Framework mechanisms are introduced to tackle each
of the phases and requirements of this life-cycle. Semantic services are used
in our framework to enable reasoning on the service requests issued by end
users, making it possible to automate service discovery, selection and com-
position. We validate our framework with a prototype that we have built in
order to experiment with the mechanisms we have designed. The prototype
was evaluated in a testing environment using some use case scenarios. The
results of our evaluation give evidences of the feasibility of our approach to
support runtime service composition. We also show the benefits of semantic-
based frameworks for service composition, particularly for end-users who will
be able to have more control on the service composition process.

Email addresses: e.m.g.silva@ewi.utwente.nl (Eduardo Gongalves da Silva),
1l.ferreirapies@ewi.utwente.nl (Luis Ferreira Pires),
m.j.vansinderen®@ewi.utwente.nl (Marten van Sinderen)

Preprint submitted to Computer Communications March 26, 2010

Key words:
Service-Oriented Computing, User-centric Service Composition, Semantic
Services

1. Introduction

With the Internet becoming ubiquitous, the use of network-based appli-
cation services is being increasingly adopted and it is expected to grow in
the upcoming years [1]. This is being reflected in many technology develop-
ments and innovations, such as, for example, Software as a Service (SaaS)
2], Internet of Services [3] and Cloud Computing [4]. The proliferation of
service-oriented systems [5] is leading to the emergence of large sets of ser-
vices in different domains. At the same time, the use of mobile devices with
fast data connections is increasing quite rapidly. In [6] it is reported that by
2013 more than 38% of the European population will access the Internet on
their mobile device, which is an increase of 300% compared to the current
situation.

These developments are allowing and pushing new, more adaptive and
personalised application services where the users play an active role in the
process of service creation. This is one of the main motivations behind the
Internet of Services. However, users are not expected to create new services
from scratch but to aggregate existing services to fulfil a set of user require-
ments. Supporting end-users in this kind of runtime service creation process
is a complex undertaking. Different users have different preferences and re-
quest services in different context situations, which require different actions
to be taken. Furthermore, end-users expect a high-level of abstraction in
the service creation process, since they lack the technical knowledge to use
advanced technical tools. This implies that automation has to be provided to
support the end-user in the service creation process. We claim that this can
be achieved by using semantic-based service composition approaches. We as-
sume that if no single application service exists to provide a requested service
to a user, a new composite service can possibly be created on-demand from
existing services, considering the user preferences and context to personalise
the service creation process. If a user request cannot be fully matched in
the creation process, a partial fulfilment of the user request may be possible
or an alternative suggestion that the user is not aware of may be proposed.
We denote the creation of service compositions on-demand based on specific
requirements as dynamic service composition. To support this approach, we

developed a framework for dynamic service composition provisioning called
DynamiCoS.

The DynamiCoS (Dynamic Composition of Services) framework ad-
dresses all the phases and stakeholders of the dynamic service composition
life-cycle. To allow automation of the composition life-cycle, semantic in-
formation is used based on ontologies (domain conceptualisations) to which
the different framework stakeholders have to comply. The framework allows
service developers to publish their semantically annotated services in a for-
malism that is neutral with respect to description languages and technologies,
which consequently enables the use of different semantic service description
languages. The composition process is likewise language-neutral, so that ser-
vices described in different service description languages can be combined in
the same service composition. DynamiCoS supports end-users in the service
creation process, through automatic discovery, selection and composition of
services based on the user service request. We make use of the notion of
goal to describe and specify the activities (or operations) the services can
perform and to capture the requirements the user wants to fulfil when exe-
cuting a service. We argue that comprehensive frameworks, which address
not only composition but also the other supporting phases of the life-cycle,
are required to boost the use of automated mechanisms to support service
composition, especially at runtime.

This paper is further organised as follows: Section 2 presents our dynamic
service composition life-cycle; Section 3 presents our approach to address the
dynamic service composition life-cycle, and the details of the DynamiCoS
conceptual framework and prototype; Section 4 presents the testing environ-
ment and the methodology used to evaluate our approach; Section 5 presents
and analyses the evaluation results; Section 6 provides an overview of related
work; and Section 7 gives our conclusions and challenges for future work.

2. Dynamic service composition life-cycle

Figure 1 presents our dynamic service composition life-cycle, depicting
the phases and stakeholders associated with the service composition process
[7].

We consider two stakeholders in this life-cycle: Service developer, who
publishes new services in the framework, which can be used as basic com-
ponents on the composition process, or creates new service compositions at
design-time using the framework support; and End-user, who makes use of

Creation and publication of new services flow

publish :
Y
Service publication |(—|Service creation |<—

Service

: developer
% Service registry

Service devel
ervice v Service request Service discovery Service composition
q and composition selection

m
A

Executable
service generation

End-user Service deployment

A ic service ition flow

Figure 1: Dynamic service composition life-cycle

automatic service composition mechanisms at runtime. The life-cycle has two
main flows, namely creation and publication of new services and automatic
service composition.

The service creation phase is performed by a service developer, who cre-
ates new services by programming new applications and makes them avail-
able as services, or builds a new service composition from existing services
and makes the resulting composition available as a new service. The service
creation phase also encompasses the definition of the service description doc-
ument by the service developer. The service description document is then
used in the service publication phase to publish the service functional and
non-functional information in a service registry. The definition of a service
description document, and specifically a semantic service description, is com-
pulsory to enable automation in the service composition process. If services
are not semantically described, then automation cannot be achieved in the
service composition process.

In Figure 1, the automatic service composition low assumes that an end-
user or a service developer wants a new service to satisfy some specific re-
quirements. We assume that an end-user has no technical skills on service
composition and wishes a new service at runtime. A service developer is a
user with technical skills on service composition, but wants to create a new
service at design-time, in a faster (and more automated) way, given some
specific requirements for a new service. The first phase of the automatic
service composition process is the specification of a service request, where

the user specifies requirements and preferences for the desired service. Once
the service request is defined, the service discovery and composition phase
takes place. Candidate services are discovered through the service registry
interface according to some properties defined by the user. Services that
match these properties are discovered from the service registry. Given the
set of discovered services, an algorithm takes the user service request into ac-
count and builds candidate compositions. Interactions may take place with
the user to guide and refine the composition process in case the algorithm
cannot deliver compositions that fulfil the service request. Once more than
one service compositions are found that match the user service request, the
service composition selection phase takes place. In the case of an end-user, a
single service (composition) is expected to be returned, i.e., the system has
to select one service, possibly based on the user service request, preferences
and context. In the case of a service developer, a ranked list of services that
match the service request may be returned. The FEzxecutable service gener-
ation phase consists of the creation of an executable representation of the
generated service compositions. This is necessary because usually the core
composition process is performed using a formal representation of the ser-
vice compositions that is not executable. In the Service deployment phase
the selected composition is deployed to allow the execution and delivery of
the created service.

3. DynamiCoS framework

DynamiCoS ' (Dynamic Composition of Services) is a framework for
the provision of dynamic service composition that supports all the life-cycle
phases and stakeholders identified in Section 2. Figure 2 shows the Dy-
namiCoS framework architecture, and indicates (between parenthesis) the
technologies used in the implementation of the framework components of the
DynamiCoS prototype platform. The work presented in this article extends
our previous work discussed in [8; 7, 9].

3.1. Main characteristics

Automated support to the service composition process requires that the
necessary information is machine readable and understandable without hu-
man intervention. In DynamiCoS, service description, publication, discovery

Thttp://dynamicos.sourceforge.net

r-———— - - - — - = Service
developer A

Y ! [service creation

n L el (SPATEL-tools)
Service publication '
Uava + jubDpi API) [[Service creation %
(laomoronoomnenn)

- Service
W developer B

5 Service registry
s i [service composition |

Service

— Service discovery | -
developer Service request (Java + jUDDI API + CLM Construction ;
(XML + Java) OWL-API + Pellet) | (Java + OWL-API +Pellet)

|

. . l !

5 ly |
|

|

Executable Sevice composition 44— Graph-based service

Figure 2: DynamiCoS framework

and composition are performed using semantic service descriptions. Dynam-
iCoS applies ontologies that define the conceptualisations of the application
domains being supported. These ontologies are used by all the framework
components, and the service developers should have to comply with these on-
tologies when describing their services. These ontologies may be defined by
different stakeholders, for the different domains, aiming at describing (con-
ceptualising) the application domains supported by DynamiCoS.

Given the complexity of the dynamic service composition life-cycle and
its stakeholders’ heterogeneity, the core components of the framework had
been developed to be technology-independent, namely agnostic with respect
to specific service description and service composition languages. To achieve
language-neutrality, inside the framework a service and a service composition
are represented as a tuple and a graph, respectively. Such representations
allow us to create mappings between the specific languages for the representa-
tion of service and service compositions, and the internal representation in the
framework. Language-neutrality allows different technologies to be used in
the framework, as long as the necessary mappings are defined. To allow these
mappings, the languages to be supported in the framework require inter-
preters to collect the necessary information from the service description, and
publish it according the service representation formalism of the framework. A

service is represented as a seven-tuple s =< ID, 1,0, P,E,G, NF >, where
I D is the service identifier, I is the set of service inputs, O is the set of service
outputs, P is the set of service preconditions, E is the set of service effects, G
is the set of goals the service realises, N F' is the set of service non-functional
properties and constraint values. We assume in this work that services are
of type request-response, i.e., they consist of one atomic activity (operation).
A service composition is represented as a directed graph G = (N, E). Graph
nodes N represent services, i.e., each node n’ € N represents a discovered
service s*. A node can have multiple ingoing and outgoing edges. Each graph
edge in E represents the coupling between the i output /effect of a service
and j™ input/precondition of another service, i.e., e;; = niO/E — nJI‘/P,
where ¢ # 7, since we do not allow a service to be coupled with itself.

3.2. Running FExample

In order to explain the dynamics of the different components of the frame-
work we introduce below a running example from the e-health and assisted
living domain. This scenario is used only for the purpose of demonstration of
our framework, and we made some assumptions to simplify the example. We
define several services in the domain, namely FindHospital, which finds the
nearest hospital given a location, FindDoctor, which finds a doctor given a
hospital and a medical speciality, LocateUser, which locates a user given his
telephone location and MakeMedical Appointment, which makes an appoint-
ment between a patient and a doctor of a given hospital, among others. We
wrote semantic service descriptions for these services, using the ontologies
defined in the DynamiCoS framework. These semantic service descriptions
are published in the service registry of the framework. Based on the knowl-
edge on the domain we define a service request that leads to at least one
service composition, namely that fulfils the requirement: “Make a medical
appointment at the nearest hospital”. In Section 3.5 we give more details on
how such a service request can be created.

Throughout the presentation of the DynamiCoS modules, we use this
running example to illustrate how DynamiCoS deals with the different phases
of the service composition life-cycle.

3.3. Service creation

We assume that whenever a service developer creates a new service “from
scratch” this takes place outside the DynamiCoS framework in some par-
ticular service implementation environment. However, to comply with the

7

capabilities of the DynamiCoS framework the services have to be semanti-
cally described, in terms of inputs, outputs, preconditions, effects (IOPE),
goals (G) and non-functional properties (N F'), using the framework domain
ontologies’ semantic concepts.

Prototype: In our prototype we have used a language called Spatel [10]
to describe services. Spatel is a language developed in the context of the
European IST-SPICE project [11], where the development of the Dynam-
iCoS framework was started. Spatel allows one to semantically annotate
service operation inputs, outputs, preconditions and effects, to define service
goals, and to define non-functional properties of a service. The ontologies
used in the framework are described in OWL [12]. We used four ontologies:
Goals.owl, which contains the services’ supported goals and also goals that
the user can specify in a service request; NonFunctional.owl, which defines
non-functional properties to be used in a service description and a service
request; Core.owl and IOTypes.owl, which are used to describe services
and service request /O PFE parameters. These ontologies were defined in the
context of the IST-SPICE project, but the framework is general enough to
support the use of other ontologies, according to the domains to be supported.

3.4. Service publication

The DynamiCoS framework has a two-step service publication mecha-
nism, to allow the support of different service description languages. First,
there should be an interpreter for each supported service description lan-
guage. The interpreter reads the service description document and extracts
the necessary information for publication (I,0, P, E,G, NF). This makes
the service representation in the framework language-neutral. Second, the
extracted service information is published in the service registry using the
DynamiCoS generic service publication mechanism. The service registry al-
lows one to publish, store and discover semantic services.

Prototype: Since in our prototype we use Spatel for service creation
and description, we implemented a Spatel interpreter in order to import
Spatel service description documents to our framework. This interpreter was
created by using a Java API generated from the Spatel Ecore model with
the Eclipse Modelling Framework (EMF). The service is then published in a
UDDI-based service registry that has been extended to support the publica-
tion of semantic services. We use jUDDI [13] as service registry implemen-
tation, which is a Java-based implementation of the UDDI specification [14]

for Web services. jUDDI offers an API for publication and discovery of ser-
vices. We have extended the basic jJUDDI implementation with a set of UDDI
models (tModels) to store the set of semantic annotations (1,0, P, E,G, NF)
that describe a service in our framework.

3.5. Service request

A service request consists of a set of semantic annotations (ID, I, O,
P, E, G, NF) that describe declaratively the desired service properties.
These semantic annotations are also used for service representation within
the framework, and refer to concepts defined in the framework ontologies.
However, to simplify the task of defining the service request, we filter the
concepts available in the ontologies, presenting to the user only the concepts
used to annotate services that are already published in the registry. This
simplifies the definition of a service request. The interface provided to the
user for service request specification may vary according to the target users,
as long as the service request provides the information required by the frame-
work to perform automated discovery and composition. For example, in the
IST-SPICE project [11] we have investigated the possibility of using Natural
Language service requests [15], which gives users without technical knowledge
the possibility of requesting services in a simple way.

Prototype: We have implemented two interfaces for the specification of
service requests: a simple Java-based graphical interface (Figure 3) and a
web-based interface (Figure 4). The aim has been to facilitate the access to
the prototype for experimentation and testing. The interface can be accessed
from the project webpage (http://dynamicos.sourceforge.net). The informa-
tion introduced by the user in either interfaces is then transformed to an
XML-based document that represents the desired service.

Running Example: Considering the running example introduced in
Section 3.2, a service request can be created using the interfaces for service
request specification. The definition of the service request is performed by
the End-user or the Service developer, and to create the service request these
users have to know the requirements of their services, i.e., they want a service
that given a Medical Speciality, finds a hospital nearby the location of the
user, finds a doctor in the hospital, and makes an appointment. This service
request can be represented in the following way:

<ServiceRequest>
<input>I0Types.owl#MedicalSpeciality</input>
<output>IO0Types.owl#MedicalAppointment</output>

<goal>Goals

.owl#FindLocation</goals>
<goal>Goals.
<goal>Goals.
<goal>Goals.

owl#FindHospital</goals>
owl#FindDoctor</goals>
owl#MedicalAppointment</goals>

</ServiceRequest>

Service Request:

DynamiCoS ~ -~ =

Input ‘lOTWES.le#MEdi[alSpEEialilV ‘ | Add ‘
Output |IOT\»pes.le#MedicalAppoimmem | | Add |
Goal ‘Goals.DWI#MedlcalAppolntment | | Add ‘

NF-property |N0nFunctiunaI.owI#Cost

MF-property Yalue |10 EUR

<SendceRequest=
<inputs >
<|0Types owl#Medicalspecialityy =
< finputs>
<outputs -
<|0Types owl#MedicalAppaintment /=
< foutputs >
<goals>
< Goals. owl#FindLocationf »
< Goals. owl#FindHospitalf =
<Coals. owl#FindDoctor) >
<Goals. owl#M edicalAppointment >

[»

DynamiCoS

L W]

Figure 3: Service Request GUI

3.6. Service discovery

DynamiCoS performs the discovery of candidate component services be-
fore starting the actual service composition process. We argue that most
of the services required for the service composition process can be discov-
ered beforehand based on the service request information. This assumption
follows that the user defines declaratively which activities he wants the ser-
vice to fulfil in the service request. The service discovery process consists
of querying the service registry for all the services that semantically match
the service request inputs, outputs, preconditions, effects (IOPFE) and goals
(G). Other approaches for service discovery can also be supported, such as
a pure goal-based service discovery, i.e., to discover only the services that

10

DynamiCoS Service Composition Framework

Service Request Specification

Parameter Semantic Concept

Inputs Coordinates w Addd
Outputs Coordinates - | Add-0
Precenditions Coordinates ¥ Add-P
Effects Coordinates ~ | AddE
Goals FindHospital - | add-G
Non-functional Properties cost v | Add-NF

To submit to DynamiCoS: bynamiCos

(You can see your service request bellow)

Service Request

| Semantic Concept | Parameter Type
| http: ffewi887.ewl.ubwente. nlfontologiesfGoals. owl# FindHospital | G - Bemove
|http:ffewis8?.ewi.utwente.nl,r‘ontologiesflOTypes.owl#Coordinates | < - Remove

Figure 4: Web Service Request Interface

realise the goals that the user has defined for the service. Since Dynami-
CoS uses a semantic-based service discovery and composition, it discovers
exact matches with the service request IOPE and GG semantic concepts, but
also partial semantic matches are possible, namely with the concepts that
are semantically subsumed by the service request parameter concepts, i.e.,
RequestedConcept 1 DiscoveredConcept. This is one of the benefits of us-
ing semantic information and ontologies, i.e., they make it possible to reason
on the descriptions, so that even when two concepts are not equal, they may
be related to each other, and thus relation can then be deduced.
Prototype: The service request XML document is analysed, and the
IOPFE and G annotations are extracted from this document. The service
registry is queried using these annotation through the jUDDI API Inquiry
function for services with IOPFE and G that are semantically related to the
service request IOPFE and G. To define the semantically related concepts

we use the OWL-API [16] and Pellet [17].

Running Example: Considering the XML representation of the service
request, if a goal-based service discovery is performed, the following services
that semantically match the goals are retrieved:

11

<goal>Goals.owl#FindLocation</goals>
<goal>Goals.owl#FindHospital</goals>
<goal>Goals.owl#FindDoctor</goals>
<goal>Goals.owl#MedicalAppointment</goals>

Table 1 shows the services that have been retrieved in our running exam-

ple.
Service Input Output
locateU ser I0Types.owl#CellNumber I0Types.owl#Coordinates
findHospital IO0Types.owl#Coordinates Core.owl#Hospital

findDoctor IOTypes.owl#MedSpeciality | Core.owl#Physician

Core.owl#MedicalPlaces
makeMedAppointment | Core.owl#Physician I0Types.owl#MedAppoint

Core.owl#Patient

Table 1: Discovered Services

3.7. Service composition

To perform service composition, DynamiCoS first organises the descrip-
tions of the discovered services in a so called Causal Link Matriz (CLM) [18]
[8]. The CLM stores all possible semantic connections, or causal links, be-
tween the discovered services input and output concepts. CLM rows (Equa-
tion 1) represent the discovered services input concepts (DiscServsy). CLM
columns (Equation 2) represent service inputs concepts plus requested service
outputs (ServReqo).

OLM'rows
CLMCOZ

(1)

DiscServs; U ServReqo \ (DiscServsy N ServReqo) (2)

DiscServsy

We place a service s in the row ¢ and column j position if the service has
an input semantically related with the input ¢ of the CLM and an output
semantically related with the column j semantic concept. We store the Se-
mantic Stmilarity for these values in the matrix for each service. Four types
of semantic matching are possible:

e Exact (=) if the output parameter Out_s, of s, and the input parame-
ter In_s, of s, are equivalent concepts; formally, T = Out_s, = In_s,.

e Plugln (C) if Out_s, is sub-concept of In_s,; formally, 7 = Out_s, C
In_s,.

12

e Subsume (J) if Out_s, is super-concept of In_s,; formally, T =
In_s, C Out_s,.

e Disjoint (L) if Out_s, and In_s, are incompatible; formally, 7 =
Out_s, M In_s, C 1.

The use of the CLM allows us to optimise different aspects of the discovery
and composition phases. It reduces the number of interactions with the
service registry for discovery, since it is not necessary to inquire the registry
while performing the composition algorithm. It allows us to verify whether
all the parameters of the service request are offered by the discovered services
before starting the composition process. If this is not true we can request
the users for refinements on the service request. The composition process is
also simplified, since it consists only of the inspection of the CLM for services
that match a given input/output.

The composition algorithm tries to find a composition of services that
fulfil the service request by using the CLM. Algorithm 1 shows our graph-
based composition algorithm in a simplified pseudo code formalism.

The process starts by analysing the CLM matrix to check if it contains the
service request concepts (IOPE/G). The CLM is then inspected for services
that provide the service request outputs. If there are services that provide the
service request outputs, the algorithm starts by creating the initial matching
nodes, otherwise it stops. If the service request outputs can be provided
by the discovered services, the algorithm proceeds with a backwards com-
position strategy towards the service requested inputs. An open (or not yet
composed) input of the graph is resolved at each algorithm iteration. The al-
gorithm matches the open inputs of the services in the graph with the output
concepts of services from the CLM matrix, or column concepts. If multiple
services exist that match a given graph service input, a new composition
graph is created, representing an alternative service composition behaviour.
During each iteration in the algorithm, the aggregated non-functional prop-
erties in the composition graph are checked, to verify whether they match
the requested non-functional properties. If a composition graph does not
match the requested non-functional properties, it is discarded from the set
of valid service compositions. The algorithm finishes when all requested in-
puts, preconditions and goals from all the alternative service compositions
are resolved.

Prototype: The CLM matrix is constructed by using the OWL-API
[16], which allows one to handle and perform semantic inference in OWL

13

Algorithm 1: Graph Composition Algorithm

Input: CLM, ServReq
Result: ValidComps

// Variables

activeG; // Graph that is active in the algorithm iteration
activeN; // Node that is active in the algorithm iteration
open(; // Set of open graphs

validG; // Set of completed and valid graphs

// Initialisation

if CLM,owsucotu 2 ServReqr o then

// Create new graph

activeG <« createNewGraph();

createInitial Nodes();

openG <+ activeG;

<) B wWN =

© N o

else
// Discovered services cannot fulfil the service request
10 | Stop;

// Graph construction cycle
11 while |openG| > 0 do
// Close graph if it matches ServReqr.c

12 if activeG g O ServReqr g then
13 validG <+ activeG,
14 openG <+ openG \ activeG,
15 activeG + openGY;
16 activeN < activeG ., N0;
17 break; // Goes to next openG
// Checks CLM for services that match open inputs
18 foreach semCon € activeN; do
19 if CLM_ 1, O semCon then
20 ‘ activeN < CLMmatchingN ode;
21 else
22 openG <+ openG \ activeG;
23 activeG < openGY;
24 activeN < activeG e, NO;
25 break; // No possible composition, goes to next open graph

// Check if graph NF props comply with requested NF props

26 if activeG np N ServReqnp = () then
27 openG <+ openG\activeG;
28 break; // If Not, composition is not possible

// prepare next cycle
29 openN <« openN \ activeN;

ontologies through a semantic reasoner, in our case Pellet [17], which is a
reasoner for Description Logics (DL). The service composition algorithm is
implemented in Java. We use jGraphT 2 to print out the resulting service

Zhttp://jgrapht.sourceforge.net/

14

compositions (graphs).
Running Example: For the set of discovered services of our running
example, the CLM matrix in Table 2 has been constructed.

cellNumber Coordinates MedSpeciality MedPlaces Patient Physician MedAppoint
CellNumber 0 S1,= 0 0 0 0 0
Coordinates 0 0 0 S2,C 0 0 0
MedSpeciality 0 0 0 0 0 S3, = 0
MedPlaces 0 0 0 0 0 S3, = 0
Patient 0 0 0 0 0 0 S4,=
Physician 0 0 0 0 0 0 S4,=
Service ID Service Name
S1 locateUser
S2 findHospital
S3 findDoctor
S4 makeMedAppointment

Table 2: Causal Link Matrix

Figure 5 shows the service composition generated by our composition
algorithm based on the CLM in Table 2.

Service Composition Alternative: 01 of 1 ~ ~ &

InQOTypes.owl#MedicalSpeciality) Extraln(OTypes.owk#CeliNumben Extraln¢Core.owl#Patient)

locateUser

findHospital

findDoctor

makeMedicalAppointment

OutdOTypes.owl#Medical Appointment

Figure 5: Generated service composition

4. Evaluation

We evaluated our framework through a prototype implementation. In
the sequel we present the environment where we conducted the evaluation

15

experiments, and the strategy, scenarios and metrics used in the evaluation
process. We aimed at evaluating whether dynamic service composition is
feasible with our approach and how our approach scales when the number of
available services increases.

4.1. FEvaluation environment

Figure 6 shows our evaluation environment, which consists of three ma-
chines: the DynamiCoS Client (Intel Core 2 Duo 1.66GHz, 2GB memory),
which supports the client’s user interface; the DynamiCoS Server (Intel Pen-
tium D 3.4GHz, 2GHz), which performs all the service discovery, composition
and delivery actions and the DynamiCoS Registry (Intel Pentium 4 2.4GHz,
512MB), which stores the services published by service developers.

DynamiCoS
Registry

DynamiCoS

Client DynamiCo$S

Server

Figure 6: Evaluation environment

We have programmed the different components of the framework in Java.
This allowed us to reuse many existing tools, such as: jUDDI, OWL-API
and Pellet. The evaluation was performed in our department, i.e., all the
machines used (DynamiCoS client, server and registry) in the evaluation
were in the same network.

4.2. FEvaluation strategy

The evaluation of semantic-based service composition approaches is a
topic not yet extensively addressed in the literature. The most relevant
efforts somehow related to this kind of evaluation are the Semantic Web
Services Challenge (SWS-Challenge)® [19] and Service Semantic Service Se-

3http://sws-challenge.org

16

lection (S3)* Contest. They provide sets of semantic services, which may
be considered as a starting point to define collections to evaluate semantic-
based service composition approaches. However, their focus is not originally
on the evaluation of semantic-based service composition approaches, since the
SWS-Challenge focuses on the evaluation of the mediation problem, while the
S3-Contest mainly focuses on the problem of service discovery and match-
making. The S3-Contest is the approach that provides the largest set of
services (around one thousand semantic services). Both initiatives use ser-
vice collections based on existing services or new services developed from
scratch that execute some functionality. An alternative way to deal with the
creation of service collections for the evaluation of semantic services collec-
tions is to generate services automatically, based on some user specifications
and a set of ontologies, which can be used to semantically annotate the
service parameters. To evaluate a service composition approach in a given
services collection, service requests are also required to specify which service
compositions are requested to the service composition approach. These ser-
vice requests have to lead to some service composition, so that we can verify
whether a composition approach is able to find suitable compositions or not.

4.83. FEvaluation Scenarios

Based on the discussion above we have defined the following evaluation
scenarios:

o FEvaluation Scenario 1 - Manually defined services: services in the reg-
istry are all created and semantically annotated by humans (service
developers). We assume in this scenario that all the services are mean-
ingful. We have defined a set of 15 services in this scenario;

e Fualuation Scenario 2 - Automatically generated services: services in
the registry are automatically generated by a tool we have implemented
(RandServGen). This tool generates a given number of services, spec-
ified by the tool user, annotated with random semantic concepts from
the framework ontologies. The generated services have also a random
number of IOPFE, according to limits specified by the tool user. This
tool is implemented in Java, and creates SPATEL semantic service
descriptions, which can then be published in the framework registry.

4http:/ /www-ags.dfki.uni-sb.de/ klusch/s3/

17

The selection of semantic concepts for the service interface parameters
(IOPEs) and service goals (G) is random, i.e., we collect the ontologies
concepts and select randomly concepts from this collection. The IOPEs
parameters are collected from the ontologies that describe these param-
eter types (IOTypes.owl and Core.owl), while the goals are collected
from the goal ontology (Goals.owl) defined in the framework.

For both scenarios, the services we generated are from the e-health and
assisted living domain. Some of the services from the evaluation scenario 1
are mentioned in Section 3.2. The service request used in the evaluation is
the same as the one defined in Section 3.2.

4.4. FEvaluation Metrics

The following metrics were used in the evaluation process:

e Number of discovered services (#discServs): number of services discov-
ered and used in the composition process;

e Number of relevant services (#releDiscServs): number of discovered ser-
vices (#discServs) used in the generated service compositions (servComps);

e Number of IOPE (#IOPE): total number of inputs, outputs, precondi-
tions and effects operation parameters of the discovered services. These
are all the semantic concepts that can be composed in the service com-
position process;

e Dynamic service composition time (dynaServCompT): sum of the time
required to process a user service request (servReqProcT), to perform the
discovery of services (servDiscT') and to perform composition (servCompT),
as defined in Equation 3.

dynaServCompT = servReqProcl + servDiscl + servCompT (3)

5. Results and analysis

To evaluate the performance of our framework on different situations we
used the service request defined in Section 4.3 and varied the number of
available services in the service registry. This allowed us to reason on the
scalability of the composition process and to characterise the phases of the

18

dynamic service composition process in terms of required processing time. In
the first experiment we considered only the services defined manually, then
we increased the number of available services in the registry by 50 in each
experiment iteration. All the experiments have been repeated 20 times. The
results presented in this section are the average values of the measured values
of the evaluation metrics on the performed experiments.

80 [#IOPEs ——— &
#discServs o
70 releDiscServs —l— | NS e
60 g
50 s
j%,
* 40
30
20
/‘xil/‘
10 (74/
E B B B B EBE EBE EBE B B BN
0 L L L L L
0 100 200 300 400 500

#Services in registry

Figure 7: IOPE and discovered services

In Figure 7 shows that the number of discovered services (#discServs)
and the total number of #I/0OPFE parameters of these services increase with
the number of available services. This almost linear increase is in our opinion
not completely realistic, since just a very few number of discovered services
is relevant for the created service compositions (#releDiscServs). This hap-
pens because the automatically generated services combine randomly all the
concepts of the used ontologies. The result of this process is a random set
of services that are not meaningful for the service composition process, i.e.,
these services are not used in the generated service compositions. This ex-
poses the main drawback of using automatic (random) generation of semantic
service collections. In a more realistic situation, services with common goals
would be annotated with concepts that are semantically close to each other,
so that the number of JOPFE semantic concepts to handle and the dynamic
service composition time would decrease.

19

dynaServCompT —C—

30 | servReqProcT
servDiscT —l—

servCompT —4&A—

25

20

15

10 2 /

Time (sec)

L L L L L
0 100 200 300 400 500
#Services in registry

Figure 8: Composition time

However, the automatically generated service collection allows us to eval-
uate how much processing is required in the different phases of the automatic
service composition process. Figure 8 shows the three different phases of the
automatic service composition process, represented as the processing time
taken in each of these phases: service request (servReqProcT’); service dis-
covery (servDiscT); and service composition (servCompT'). These times
represent the average measured values and their standard deviation, which
was very small. The servReqProcl’ remains constant, given that the same
service request is used in all the performed experiments. The service dis-
covery time (servDiscT’) has a small increase as the number of services in
the registry increases, since more services are handled and retrieved. How-
ever, the biggest increase on the processing time is observed in the compo-
sition time (servCompT'). This increase can be justified in Figure 7, which
shows the number of discovered services (#discServs) and number of ser-
vices’ IOPE (#IOPE) considered in the composition process. Figure 7
shows that as the number of services’ IOPE (#IOPFE) increases, more pro-
cessing is necessary to create the C'LM and to perform the composition
algorithm, since more concepts are handled in the composition process, i.e.,
more semantic reasoning is performed. We can conclude from these results
that the required semantic reasoning introduces the biggest overhead in the

20

framework automatic service composition process. Given this, we expect
that enhancements in the parts that rely on semantic reasoning may improve
the overall performance of the system.

Nevertheless, if we consider the case of only meaningful services (the most
realist situation), compositions that match the user services request can be
found in reasonable time. This proves the feasibility of our approach.

6. Related work

Dynamic service composition has received a lot of attention lately. Most
of the existing approaches focus on a subset of the life-cycle phases pre-
sented in Section 2, mainly on the discovery and composition phases, while
a few of them cover most of these phases. Furthermore, most approaches as-
sume that the users of the composition environment have technical knowledge
about the system, i.e., details of its interface and the composition process.
In the following we present some important related work. However, many
other approaches exist that may be related with DynamiCoS. We refer to
20, 21, 22, 23] for a comprehensive overview on existing approaches on ser-
vice composition, specially dynamic and automatic based service composition
approaches.

METEOR-S [24] is one of the most comprehensive frameworks for semantic-
based service composition. The approach provides mechanisms for semantic
annotation of existing services, service discovery, and service composition.
However, METEOR-S focuses mainly on design-time creation of service com-
positions. It supports a template-based composition of processes based on
the semantic service descriptions. At runtime, dynamic binding can be per-
formed, depending on user preferences or QoS parameters. Our approach,
as many others, has been inspired by some facilities of METEOR-S, but
we target on demand runtime service composition creation, aiming at sup-
porting end-users on the creation of service compositions at runtime. The
creation process is then performed from scratch at runtime, based on a spe-
cific end-user requirements, as opposed to METEOR-S, which allows its users
to develop service composition templates at design-time.

Fujii and Suda [25] propose a dynamic service composition approach that
uses semantic information. They introduce a model (CoSMoS) to semanti-
cally represent services at different levels, namely at the data, semantic and
logic levels. CoSMoS descriptions can be used as metadata to represent a
service, or can be embedded in other languages, such as, e.g., WSDL [26].

21

The authors assume that a developer has to deliver a CoSMoS-based service
description. In DynamiCoS, a service developer does not have to be aware of
the framework’s internal service representation. Our only requirements are
that (i) the semantic service description language must follow the framework
ontologies to semantically describe the services; and (ii) this language must
have a DynamiCoS interpreter, so that it can be parsed and published in
the framework. We consider that this separation of concerns is essential, and
provides a more flexible and extensible framework, facilitating the support
of additional languages.

Kona et al. [27] propose an approach to the automatic composition of
semantic web services. Similarly to DynamiCoS, they propose a graph-based
service composition algorithm. The composition process is performed using
a multi-step narrowing algorithm. The user specifies a service request, or a
query service, specifying the IOPFE for the desired service. The composition
problem is then addressed as a discovery problem, starting by discovering
the request inputs and preconditions, and iteratively resolving the open out-
puts and post-conditions (or effects) until the requested outputs and post-
conditions are resolved. They assume that a service registry is available, and
services are represented in USDL [28]. Since all the service discovery and
composition processes are performed in Prolog with Constraint Logic pro-
gramming, services are pre-processed from USDL and transformed to Prolog
terms. Pre-processing tends to be time consuming, mainly for the case of
runtime service composition. Another difference is that DynamiCoS allows
to describe services in terms of goals. The same conceptualisations are used
to specify the user intentions for the services. This facilitates the discovery
of matching services for the user request.

In [29] and [30], the authors explore the use of semantic services as basic
constructs in pervasive environments. The different devices and functional-
ity in the environment are exposed as services, and then these services are
composed as they are required, to match the user needs. This approach dif-
fers from the approaches discussed before in the sense that they are limited
to service delivery in pervasive environments. This allows the approach to
identify the types of users of the environment and shape the supporting envi-
ronment accordingly. They define a conversation-based approach to support
the users in achieving theirs objectives, possibly as composition of services
available in their environment, whenever they need them. We follow a similar
philosophy in DynamiCoS, and we specially focus on the type/properties of
the user being supported in the design process. User-centricity is required

22

to deliver the user with appropriated support, so that end-users can achieve
their objectives. End-users are starting to play an increasingly active role on
the definition of their services.

Several approaches are emerging to support end-users in the service com-
position process based on mashups [31, 32, 33, 34, 35]. These approaches
offer intuitive graphical service representations that allow end-users to cre-
ate their own services as compositions, normally in a web browser. We argue
that these approaches are applicable in some composition scenarios for some
types of end-users, but mainly knowledgeable users. If the end-user of the
composition environment has some technical knowledge on the composition
environment, has a clear idea of the service he wants and knows the ap-
plication domain, these environments may be appropriate. However, if the
end-user does not have a clear idea of the service he wants, but only knows
the goals that the desired service has to fulfil, an approach similar to Dy-
namiCoS may be more appropriate.

7. Final Remarks

In this paper we present our work on the support to runtime service deliv-
ery through automated service composition. Some approaches are emerging
in which end-users are placed in the centre of the service creation, on de-
mand at runtime. We present DynamiCoS, which is a framework for the
dynamic and automated composition of services. Many frameworks that tar-
get the support of dynamic service composition have been proposed [20] [22],
however most of these approaches mainly focus on the discovery and com-
position phases, targeting design-time service composition. DynamiCoS is
a modular, extensible and service description language-neutral framework,
which provides support to the whole dynamic service composition process.
To develop DynamiCoS we have identified the different stakeholders and the
required phases in the dynamic service composition life-cycle. We devel-
oped a conceptual framework to address these phases. DynamiCoS supports
service creation and publication by service developers at design-time, the
automatic service composition by end-users at runtime, and by service de-
velopers at design-time. Based on our conceptual framework, we developed a
prototype implementation. We performed several tests on our prototype im-
plementation to evaluate its performance and to validate the framework. We
demonstrated that DynamiCoS is capable of providing real-time service deliv-
ery in case set of human-defined meaningful services are available to be used

23

as component services in the service compositions. We conclude that auto-
matic service composition using semantic-based techniques can be achieved
in controlled environments. However, semantic reasoning is an expensive
task in terms of processing time. We claim that semantic reasoning and the
definition of ontologies are still the major obstacles to the usage of semantic-
based service composition approaches. However, with this work we show that
such semantic-based mechanisms facilitate the creation of automatic service
composition at runtime, providing mechanisms to allow end-users to play a
central role in the creation process of their services.

In the future we will investigate further the use of non-functional prop-
erties and the user context and preferences in the composition and compo-
sition selection processes. This information is expected to enable further
optimisation and personalisation to the composition process. To collect this
information, an infrastructure must be developed that gathers the user con-
text transparently for the user. Furthermore, since our aim is to support
end-users in the process of runtime service composition, we will investigate
mechanisms to guide the user on the specification of the behaviour of the
desired service, instead of asking the user for all the information in a single
interaction. This is important, since the end-user normally is not capable of
fully specifying the desired service, without having some feedback of avail-
able services and functionality. To tackle this, the process will require several
interactions and a negotiation to match the user interests and the available
services that may fulfil these interests. The generated service compositions
need to be translated to an executable formalism, enabling a full runtime
environment to be built. We will address the translation of our graph repre-
sentation to an executable language, such as, e.g., WS-BPEL [36]. We plan
to support other service description languages, such as, e.g., SAWSDL [37]
and OWL-S [38], to implement more elaborate service composition scenarios
and test the framework performance under these conditions. By extending
the set of the supported languages we expect to obtain more realistic and
meaningful testing services, by reusing existing services described in these
languages. Furthermore, we also intend to extend the evaluation strategy
proposed in this paper, aiming at the development of a generic evaluation
framework for semantic-based service composition approaches. Our initial
ideas towards this evaluation framework have been presented in [39]. This
evaluation framework will allow us to evaluate and compare different ap-
proaches in an objective way. This should foster the identification of service
composition issues and the help consolidating of this research area.

24

References

1]

2]

[10]

[11]

Gartner, Gartner Highlights Key Predictions for I'T Organisations and
Users in 2008 and Beyond, 2008.

M. Turner, D. Budgen, P. Brereton, Turning Software into a Service,
Computer 36 (10) (2003) 38-44.

M. Papazoglou, K. Pohl, Longer Term Research Challenges in Software
and Services, Tech. Rep., European Commission, 2008.

B. Hayes, Cloud computing, Commun. ACM 51 (7) (2008) 9-11.

T. Erl, Service-Oriented Architecture: Concepts, Technology, and De-
sign, Prentice Hall, 2005.

Forrester, European Mobile Forecast: 2008 To 2013, 2008.

E. Gongcalves da Silva, J. M. Lépez, L. Ferreira Pires, M. J. van Sinderen,
Defining and Prototyping a Life-cycle for Dynamic Service Composition,
in: International Workshop on Architectures, Concepts and Technolo-
gies for Service Oriented Computing, Portugal, 79-90, 2008.

F. Lécué, E. Gongalves da Silva, L. Ferreira Pires, A Framework for
Dynamic Web Services Composition, in: Workshop on Emerging Web
Services Technology, Germany, 2007.

E. Goncalves da Silva, L. Ferreira Pires, M. J. van Sinderen, Supporting
Dynamic Service Composition at Runtime based on End-user Require-
ments, in: Proceedings of the International Workshop on User-generated
Services, UGS 2009, part of ICSOC 2009, Stockholm, ISSN 1613-0073,
2009.

J. P. Almeida, A. Baravaglio, M. Belaunde, P. Falcarin, E. Kovacs,
Service Creation in the SPICE Service Platform, in: Wireless World
Research Forum meeting on ”Serving and Managing users in a hetero-
geneous environment”; 2006.

C. Cordier, F. Carrez, H. van Kranenburg, C. Licciardi, J. van der Meer,
A. Spedalieri, J.-P. L. Rouzic, Addressing the Challenges of Beyond 3G
Service Delivery: the SPICE Platform, in: International Workshop on
Applications and Services in Wireless Networks, 2006.

25

[12] M. K. Smith, D. McGuiness, R. Volz, C. Welty, Web On-
tology Language (OWL) guide, version 1.0, W3C, URL
http://www.w3.org/TR/2002/WD-owl-guide-20021104/, 2002.

[13] Apache, Apache jUDDI, http://ws.apache.org/juddi/, URL
http://ws.apache.org/juddi/, 2008.

[14] L. Clement, A. H. von Riegen, T. Rogers, Universal De-
scription Discovery and Integration (UDDI) Version 3.0,
http://uddi.org/pubs/uddi_v3.htm, 2004.

[15] M. Shiaa, P. Falcarin, A. Pastor, F. Lécué, E. Goncalves da Silva, L. Fer-
reira Pires, Towards the automation of the service composition process:
case study and prototype implementations, in: ICT-MobileSummit 2008
Conference Proceedings, Stockholm, Sweden, IIMC International Infor-
mation Management Corporation, 1-8, 2008.

[16] S. Bechhofer, R. Volz, P. Lord, Cooking the Semantic Web with the
OWL API, in: International Semantic Web Conference, 659-675, 2003.

[17] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, Y. Katz, Pellet: A prac-
tical OWL-DL reasoner, Web Semantics: Science, Services and Agents
on the World Wide Web 5 (2) (2007) 51-53.

[18] F. Lécué, A. Léger, A formal model for semantic Web service compo-
sition, in: International Semantic Web Conference, LNCS, vol. 4273,
385-398, 2006.

[19] C. J. Petrie, H. Lausen, M. Zaremba, SWS Challenge - First Year
Overview, in: International Conference on Enterprise Information Sys-
tems, 407-412, 2007.

[20] A. Alamri, M. Eid, A. E. Saddik, Classification of the state-of-the-art
in dynamic web services composition techniques, Int. J. Web Grid Serv.
2 (2) (2006) 148-166.

[21] S. Dustdar, W. Schreiner, A survey on web services composition, Int. J.
Web Grid Serv. 1 (1) (2005) 1-30.

[22] J. Rao, X. Su, A Survey of Automated Web Service Composition Meth-
ods, in: International Workshop on Semantic Web Services and Web
Process Composition, 43-54, 2005.

26

(23] R. M. Pessoa, E. Goncalves da Silva, M. J. van Sinderen, D. A. C.
Quartel, L. Ferreira Pires, Enterprise Interoperability with SOA: a Sur-
vey of Service Composition Approaches, in: International Workshop on
Enterprise Interoperability, 32-45, 2008.

[24] K. Verma, K. Gomadam, A. P. Sheth, J. A. Miller, Z. Wu, The
METEOR-S Approach for Configuring and Executing Dynamic
Web Processes, Tech. Rep., University of Georgia, Athens, URL
http://lsdis.cs.uga.edu/projects/meteor-s/techRep6-24-05.pdf,
2005.

[25] K. Fujii, T. Suda, Dynamic service composition using semantic informa-
tion, in: International Conference on Service Oriented Computing, New
York, NY, USA, 3948, 2004.

[26] R. Chinnici, J.-J. Moreau, A. Ryman, S. Weerawarana,
Web Services Description Language (WSDL) Version 2.0,
http://www.w3.org/TR/wsdl20/, 2007.

[27] S. Kona, A. Bansal, G. Gupta, Automatic Composition of SemanticWeb
Services, in: International Conference on Web Services, 150-158, 2007.

(28] A. Bansal, S. Kona, L. Simon, T. D. Hite, A Universal Service-Semantics
Description Language, in: European Conference on Web Services, Wash-
ington, DC, USA, 214, 2005.

[29] S. Ben Mokhtar, A. Kaul, N. Georgantas, V. Issarny, Efficient semantic
service discovery in pervasive computing environments, in: Middleware
'06: Proceedings of the ACM/IFIP/USENIX 2006 International Con-
ference on Middleware, Springer-Verlag New York, Inc., New York, NY,
USA, 240-259, 2006.

[30] S. Ben Mokhtar, A. Kaul, N. Georgantas, V. Issarny, COCOA : Con-
versationBased Service Composition for Pervasive Computing Environ-
ments, International Conference on Pervasive Services 0 (2006) 29-38.

[31] X. Liu, G. Huang, H. Mei, A User-Oriented Approach to Automated
Service Composition, in: Web Services, 2008. ICWS ’08. IEEE Interna-
tional Conference on, 773776, 2008.

27

32]

[33]

[34]

[39]

J. Han, Y. Han, Y. Jin, J. Wang, J. Yu, Personalized Active Service
Spaces for End-User Service Composition, in: Services Computing, 2006.
SCC ’06. IEEE International Conference on, 198-205, 2006.

J. C. Yelmo, R. Trapero, J. M. Alamo, J. Sienel, M. Drewniok, I. Ordas,
K. Mccallum, User-Driven Service Lifecycle Management — Adopt-
ing Internet Paradigms in Telecom Services, in: ICSOC ’07: Proceed-
ings of the Hth international conference on Service-Oriented Computing,
Springer-Verlag, Berlin, Heidelberg, 342-352, 2007.

A. Ro, L. S.-Y. Xia, H.-Y. Paik, C. H. Chon, Bill Organiser Portal: A
Case Study on End-User Composition, in: WISE ’08: Proceedings of the
2008 international workshops on Web Information Systems Engineering,
Springer-Verlag, Berlin, Heidelberg, 152-161, 2008.

T. Nestler, Towards a mashup-driven end-user programming of SOA-
based applications, in: iiWAS '08: Proceedings of the 10th International
Conference on Information Integration and Web-based Applications &
Services, ACM, New York, NY, USA, 551-554, 2008.

T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, S. Weerawarana,
Business Process Execution Language for Web Services, version 1.1,
2003.

J. Kopecky, T. Vitvar, C. Bournez, J. Farrell, SAWSDL: Semantic An-
notations for WSDL and XML Schema, in: IEEE Internet Computing,
vol. 11, 6067, 2007.

D. Martin, M. Burstein, E. Hobbs, O. Lassila, D. Mcdermott,
S. Mecilraith, S. Narayanan, B. Parsia, T. Payne, E. Sirin,
N. Srinivasan, K. Sycara, OWL-S: Semantic Markup for
Web Services, http://www.w3.org/Submission/OWL-S, URL
http://www.w3.org/Submission/0OWL-S/, 2004.

E. Goncalves da Silva, L. Ferreira Pires, M. J. van Sinderen, A Frame-
work for the Evaluation of Semantics-based Service Composition Ap-
proaches, in: Proceeding of IEEE European Conference on Web Ser-
vices, ECOWS 2009, Eindhoven, IEEE Computer Society Press, Los
Alamitos, 66-74, 2009.

28

