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Reduced-Dimension Linear Transform Coding of
Distributed Correlated Signals With Incomplete
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Abstract—We study the problem of optimal reduced-dimension
linear transform coding and reconstruction of a signal based on
distributed correlated observations of the signal. In the mean
square estimation context this involves finding the optimal signal
representation based on multiple incomplete or only partial obser-
vations that are correlated. In particular, this leads to the study of
finding the optimal Karhunen–Loève basis based on the censored
observations. The problem has been considered previously by
Gastpar, Dragotti, and Vetterli in the context of jointly Gaussian
random variables based on using conditional covariances. In
this paper, we derive the estimation results in the more general
setting of second-order random variables with arbitrary distri-
butions, using entirely different techniques based on the idea of
innovations. We explicitly solve the single transform coder case,
give a characterization of optimality in the multiple distributed
transform coders scenario and provide additional insights into the
structure of the problem.

Index Terms—Distributed signal processing, innovations,
Karhunen–Loève transform, optimal linear estimation.

I. INTRODUCTION

W ITH the advent of wide area sensor networks with a
large number of spatially distributed sensors, the issue

of transform coding, compression and reconstruction of cor-
related signals from incomplete observations is becoming in-
creasingly important. More concretely, consider the situation of
spatially distributed sensors that can only sense part of a given
signal. The sensors are autonomous and have a limited energy
supply. Furthermore, communication between sensors should
be minimized to reduce expenses, except to relay information to
some cluster node where the information is reconstructed from
all the sensor observations.
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In this paper, we consider the problem where several groups
of sensors are used to measure the correlated components of
a distributed signal, but in which the groups of sensors cannot
communicate with one another. Each group of sensors sends a
reduced-dimension representation of its measurement to a cen-
tral computer/reconstructor which then uses these distributed
representations of the measurements to estimate the true value
of the actual distributed signal. Our main concern is the issue of
how the signals should be represented at the sensors so that one
may produce an optimal linear estimate of the actual distributed
signal at the central computer/reconstructor.

The problem has been considered by Gastpar, Dragotti, and
Vetterli [1]–[4] in the context of compression and reconstruc-
tion of jointly Gaussian signals. It is well known that in the
mean square distortion context, the Karhunen–Loève transform
(KLT), which allows us to obtain the eigenvectors of the most
significant eigenvalues of the covariance, is optimal from the
point of view of compression (representing a signal in terms
of the energy constraint) [5]–[7]. To address the distributed
problem, Gastpar et al. initially introduced the concepts of
partial, conditional, and combined partial-conditional KLT for
the case of a single transform coder and reconstructor in [2].
Then they generalize their results to the multiple transform
coder/reconstructor case and present an algorithm which they
term the distributed Karhunen–Loève transform (DKLT).

The purpose of the present paper is to take a fresh look at
these ideas and put them in a new light by the introduction of an
appropriate Hilbert space framework (see [8], [9]). This has two
advantages. First, we show that the estimation results obtained
in [1], [2] for jointly Gaussian random variables are actually
valid in the more general and important setting of second-order
random variables with arbitrary distributions if we restrict our
attention to the case where both the transform coding of the
signal and its reconstruction are linear. Note that this is an im-
portant distinction from [1], [2] in which the Gaussian assump-
tion on the signal leads to a linear reduced-dimension transform
as the mean square optimal transformation over all possible re-
duced-dimension (linear and nonlinear) transforms, thus it is not
required to restrict the class of transforms to be linear and also
allows them to treat the rate-constrained distributed quantiza-
tion problem for the signal. As discussed in more detail below,
the motivation for restricting our attention to linear transform
coders and reconstructors is to formulate a tractable problem
under the minimal assumptions of the paper. Also, much of sta-
tistical signal theory in practice is based on linear estimators
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and, in the absence of Gaussianity, the linear estimators studied
in the paper are a particularly attractive option.

Let be the random vector signal to be estimated, the
part of that is sensed by sensors, the part of that are
not observed and an additional (random) side information that
is available for reconstruction, and let denote the transpose of
a matrix. Then our paper assumes almost nothing on the signals
to be transformed other than the following.

Assumptions 1: The signal and the side in-
formation have finite second-order moments, the joint covari-
ance matrix of and are known with the covariance matrix
of being positive definite, and the elements of are linearly
independent of the elements of .

Let denote the length of and suppose that
, with taking values in for

, and takes values in , and let
for . Then the most general type of distributed re-
duced-dimension transform coding and reconstruction problem
that one could consider in this setting is:

Problem 2: (Optimal Reduced-Dimension Transform
Coding and Reconstruction Problem) Under Assumptions 1,
find a pair of measurable functions

(the reduced-dimension
transform) and
(the reconstructor) that minimizes the cost given by

In the above, denotes the expectation. Note that in the for-
mulation of the above problem neither nor are restricted
to be linear. To the best of our knowledge there is no known
analytical or algorithmic solution to Problem 2. This remains
true even if the problem is slightly modified, for instance by re-
stricting to be a linear map. One of the factors that makes this
problem difficult is the minimality of Assumptions 1 with which
to work with. For instance, in this setting there is no general ex-
pression for , the conditional expectation of given
the sigma algebra generated by , which is of course
the unique best mean square estimate of in the space of all

-measurable square integrable random vectors. Therefore,
to obtain a tractable problem, in the paper we study a special-
ized problem in which and are both restricted to be linear.
Moreover, we emphasize that even under the much stronger as-
sumption that and are jointly Gaussian as considered in
[1], a general optimal solution to distributed reduced-dimension
transform coding and reconstruction is not known for (the
multiple transform coder case).

Since this paper assumes no knowledge of the probability
distribution of the signal, it focuses only on the problem of
distributed estimation of signals and does not consider the
problem of rate-constrained quantization of the signal. The
estimation results of the paper are derived independently of
the distribution by using an approach based on the idea of
innovations, as opposed to the conditional covariance approach
of [1], [2] that does depend on the joint Gaussianity of the
random variables of interest. Secondly, it allows us to pose the
distributed reduced-dimension transform coding and estimation
problem more precisely and exposes the underlying geometric

structure very clearly. In this general setting, we derive a uni-
fying theorem for the single transform coder scenario with and
without side information (Theorem 14), analyze the multiple
transform coder scenario and independently prove convergence
of the DKLT algorithm (Lemma 25).

The organization of this paper is as follows. In Section II,
we recall some basic facts from linear estimation that will be
used in the sequel, and define some operators of interest. In
Section III, we discuss the single transform coder-reconstructor
case to show the basic structure of the problem. In Section IV,
we consider the general multiple transform coders-reconstructor
problem, derive necessary conditions for construction of an op-
timal linear estimate at the reconstructor and study convergence
of the DKLT algorithm for signals with finite second moments.
In order to focus on the main ideas, proofs for results of the
paper are all collected in the Appendix. Finally, in Section V,
we offer some concluding remarks.

II. PRELIMINARIES AND BASIC THEORY

In the following, we denote the covariance matrix of a random
variable (which may be scalar or vector valued) as (i.e.,

) and the covariance ma-

trix between and (i.e., )
as . Note that by vector we mean a column vector. All vec-
tors and matrices considered in this paper will have real ele-
ments.

Let us now introduce a number of definitions that will be used
throughout this paper.

Definition 3: For any matrix and for any ,
is defined as the matrix consisting of the first rows

of .

Definition 4: Let be an symmetric nonnegative def-
inite matrix. An matrix is said to majorly diagonalize

if and
.

Definition 5: Let be an –dimensional random vector
having finite variance and let be the covariance matrix of

. Then a unitary matrix such that majorly
diagonalizes is called a transposed eigenmatrix of .

Definition 6: The set of all transposed eigenmatrices of a co-
variance matrix is denoted by .

Let denote the set of second-order scalar random variables
(r.vs), i.e., all r.vs. satisfying , and let denote
the set of elements of of zero mean. It is well known that
is a Hilbert space [9], [10], [8] and that given a collection of
linearly independent r.vs. then the best
linear mean square estimate of given is

where . The r.v. is simply the
unique orthogonal projection of onto the subspace spanned
by . It follows that the mean square error (MSE)
is given by
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is an infinite-dimensional Hilbert space. However, any fi-
nite collection of linearly independent elements of forms
a finite-dimensional subspace that can be visualized (up to di-
mension ), or thought of, as vectors on a corresponding Eu-
clidean space (for a more detailed discussion see, e.g., [9, Sec.
3.3]). For example, if are linearly indepen-
dent elements of then they span (by forming linear com-
binations of ) an -dimensional vector space

that is isomorphic to an -dimen-
sional Euclidean space. Each element can be represented as
a vector in with an inner product between two el-
ements and given by ; the inner
product can then be extended to any element of by linearity.
Any element of is represented as a vector in formed by a
linear combination of the respective Euclidean representations
of and the length of the Euclidean representa-
tion is the square root of the variance of the particular element
of .

A finite-length vector r.v. with elements belonging to , is
called a second-order vector r.v. or second-order random vector.
For any second-order random vector , we denote

(here, denotes
the trace of a matrix). If , are two second-order random
vectors and (a zero matrix of the corresponding size)
then we say that and are uncorrelated or orthogonal and
denote this as .

For any two zero mean second-order random vectors
and with ,

the best linear mean square estimate of given is [9],
[10], [8]

where the zero mean second-order random vector has
elements that are the projections of the corresponding elements
of onto the linear subspace spanned by the elements of .
Furthermore, the mean square estimation error is given by the
formula

Note that if then , meaning
that every component of is orthogonal to every compo-
nent of . If but is nonzero and singular then
projections can still be defined as follows. Since is sin-
gular and nonzero, some elements of , say
( and ), are linearly dependent on
other elements of . Denote the remaining (linearly inde-
pendent) elements of as with

and . Then the projection
is defined as , which will depend
only on the elements of . In this case we thus have that

and this can always be written as
with having zero columns corresponding to

elements of which are not in and its remaining columns
being given by the corresponding columns of .

Definition 7: Let . Then is denoted as
.

Remark 8: If and are jointly Gaussian then
coincides with the conditional expectation of given ,
where is the -field generated by . As is well known, the
conditional expectation is the minimum mean square estimate
(MMSE) while the projection in general corresponds to the
minimum linear mean square estimate.

A useful concept associated with the theory of zero
mean second-order random vectors is that of the so-called
Karhunen–Loève transform (KLT) [5]–[7], also known as
principal component analysis (PCA) [11]. Given a zero mean
second-order random vector of length , and a positive in-
teger , a zero mean second-order random
vector of length is said to be a (standard) -dimensional
KLT of if it can be written as for some

. The elements of are mutually orthogonal and
they span an -dimensional subspace of . By this we mean
that is an -dimensional
subspace of . We have already mentioned an optimality
property of the KLT in the introduction, but this property can
be interpreted in a way which will be particularly useful for our
purpose. This interpretation is as follows. Given any -dimen-
sional subspace of , one has the orthogonal projection of

onto that subspace. The subspace spanned by the elements
of an -dimensional KLT of has the special property that
when is projected onto that subspace then the mean square
difference between and the projection is minimum among
all projections of to all possible -dimensional subspaces
of (see, e.g., [5]). Then we say that the elements of an

-dimensional KLT span an optimal -dimensional subspace
of . This is an important fact and will be used in the proofs of
some of our results.

Definition 9: For ,
s.t. . Any element

of is called an –dimensional Karhunen–Loève
transform (KLT) matrix of .

Definition 10: For , is a
zero mean second-order random vector:
s.t. . Any element of is said to be an

–dimensional KLT of .

III. SINGLE TRANSFORM CODER SCENARIOS

Let be the random vector
being sensed where has a known covariance matrix .
A transform coder senses a portion of which we de-
note as with . The
section of not being sensed, called the hidden part, is
denoted as . Note that

and obviously

More generally, besides the observable part of , the trans-
form coder may also have access to side information :

Definition 11: The side information is a second-order
random vector possibly correlated with (i.e., )
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and whose elements are linearly independent of the elements
of .

The transform coder’s function is to transform the data
vector (of length ) into a smaller vector (of length

). The information from the transform coder (i.e.,
) as well as the side information are both sent to a re-

constructor which uses them to construct a random vector
as an estimate of .

Remark 12: Throughout this section we assume that
and . However, the results here also apply to the case

where by applying them to the zero mean random
vector instead of . Similarly, if (i.e.,
there is side information available) we assume that .

This section focuses on the problem of how to choose as
a reduced-dimension linear transform of and how to con-
struct optimally as a linear function of , in the mean square
sense. By reduced-dimension linear transform of , we mean
that is of the form for some matrix .
Introduce the shorthand notation for the
projection of onto the subspace spanned by the elements of

. Before stating the main result of this section on
single transform coders, let us first establish the following con-
ventions for random vectors :

1) if ;
2) if .

Definition 13: The innovation of is
.

is the part of that is uncorrelated with , therefore
it cannot be linearly estimated using ; this is the reason it is
referred to as the “innovation” of . The innovation plays
a key role in determining an optimal reduced-dimension linear
transform of , in the sense of the following theorem:

Theorem 14: For a random vector , let the MSE be

(1)

Let , with ,
and where is a transposed eigenmatrix of (i.e.,

). Then

That is, minimizes the MSE (1) over all random vectors
of the form with .

Remark 15: We shall refer to the matrix defined in The-
orem 14 as an optimal transformation matrix for the single trans-
form coder.

For a proof of the theorem, see Appendix A. The main idea
of the construction of is the following. First, note that the
pair contains the same information about as the pair

since they span the same subspace. However, since is
already available at the reconstructor, the optimal linear strategy
would be to send a random vector to the reconstructor that
makes it possible to construct a mean square optimal linear es-
timate of , which is a linear transform of and thus

uncorrelated with , at the reconstructor; it turns out that the
vector satisfies this requirement. Note that since
is a transposed eigenmatrix of and ,
by definition majorly diagonalizes and by inspection
is an -dimensional KLT of . Letting

, we see that can be reconstructed at the recon-
structor once is received. However, since is an -dimen-
sional KLT of , we see that can be optimally
estimated in the mean square by an appropriate linear function
of and this is is exactly what is needed to achieve an optimal
linear strategy. The optimal linear estimate of corresponding

is then given by the following corollary.

Corollary 16: The corresponding optimal linear estimate
of as a function of and is given

by:

and the approximation error incurred is

where , , while ,
are the smallest eigenvalues of after

zero eigenvalues have been discarded.

For a proof of the corollary, see Appendix B. Note that the
term in the corollary is the additional error due
to the reduced-dimension transformation of into while

is the estimation error when is also known perfectly
(besides ).

Continuing the discussion preceding the corollary, we have
seen that using the reconstructor can furnish a mean square
optimal linear estimate of as a linear transform
of , as given in the corollary. Combining this with the informa-
tion provided by (exploiting the property that )
the reconstructor can construct a mean square optimal linear es-
timate of as

. A visual representation of this geometric construction
(cf. Section II) is depicted in Fig. 1 for the simplest case where

, , and , where
, and are correlated second-order random vari-

ables, and there is side information available that is corre-
lated with and linearly independent of the elements of .
In order to visualize this simplest case, a four-dimensional Eu-
clidean space is required (since and are lin-
early independent) with as its axes.

Theorem 14 unifies the various single transform coder sce-
narios that were first analyzed in [2], [3], and later as special
cases in [1], under the stronger assumption that all signals are
jointly Gaussian, namely the scenarios referred to as partial KLT
(when only part of is available to the transform coder and no
side information is available, ), conditional KLT (when
all of is available to the transform coder and there is side in-
formation) and partial-conditional KLT (when only part of
is available to the transform coder, but there is also side infor-
mation). Our theorem holds under the weaker assumption that
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Fig. 1. Geometric visualization of an optimal reduced-dimension transform � for � � �, � � � and � � �, � � �� �� �� � and side in-
formation � . � �� �� � � are the axes of the four-dimensional space on which the elements of the random vectors can be represented. In this instance,
	 � 	 ,� � ��	
�	 �	 � and �	��	 � 
 �	��	 �, hence 
� � ����� ��, � � � and the optimal linear estimate of � is ���� � � ����� � � � �
�� ���� �� �� ��� �� �� as shown in the right hand most figure.

all signals have finite second-order moments, which contains
jointly Gaussian signals as a special case, and is obtained by
new proofs based on the idea of exploiting the innovation as
residual information.

Finally, notice that if the random vector is a linear trans-
form of that minimizes the MSE (1) then so does any other
linear transform of the form for some full rank

matrix . This follows from the fact that the subspace
spanned by and coincides with the subspace spanned by

and . In fact, all reduced-dimension linear transforms of
that minimize the MSE is of this form, as stated in the fol-

lowing corollary:

Corollary 17: Any random vector that minimizes (1) in
the sense of Theorem 14 is of the form for some full
rank matrix , where is as defined in the theorem.

For a proof of the corollary, see Appendix C. We conclude this
section on single transform coders by looking at some numerical
examples.

Example 18: We use [2, Ex. 3]. Let
with

and . and has the
positive eigenvalues

The sensed part of is and the side information is just
, i.e., . We would like to produce a one-dimen-

sional approximation of . Using Theorem 14 we get the fol-
lowing optimal transformation matrices:

which is the same as the matrices reported in [2] except for the
difference in sign, however as stated in Corollary 17 this differ-
ence is inconsequential. The optimal MSE that is computed is

, that agrees with the value reported in [2].

Example 19: Let with

and . and
has the positive eigenvalues

The sensed part of is and the side information is

with . We would like to produce a

two–dimensional approximation of . Again using Theorem 14
we get the following optimal matrices:

The optimal MSE that is computed is .

IV. MULTIPLE TRANSFORM CODER SCENARIOS

In this section we formulate the general distributed approx-
imation problem with -transform coders and con-
nect it with previous work that has been done on this problem
in [1]. To this end, let be transform coders
that sense the vectors , respectively. Let

. Then . Let
the hidden part be and the side information be defined
as before and let the output of be denoted by

, respectively, with .
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As elaborated in the introduction, for mathematical tractability,
we assume that is linearly related to and focus on the
issue of finding an optimal linear solution (what is meant by op-
timal will be made clear in the formulation of Problem 21).

Remark 20: Following Section III, we assume that .

In the spirit of the problem solved in Theorem 14 for the
single transform coder case, we formulate the following mul-
tiple transform coders estimation problem.

Problem 21: Let . For any , let
denote the space of ( ) full row rank

matrices. For any
define:

Find
that minimizes the estimation error defined by

A solution to the above problem will be called an optimal
linear solution to the -transform coders distributed approxima-
tion problem.

Remark 22: In the formulation of Problem 21, we have
explicitly assumed that there is side information available,
we shall keep this assumption in our treatment of the problem.
However, the case of no side information can be treated in an
analogous manner simply by dropping the term wherever it
is found.

An intuitive approach to solve Problem 21 is to set
arbitrarily, then proceeding to minimize

one matrix at a time starting from and then and
starting over from until becomes relatively constant
(i.e., the iteration has almost converged). This is the idea pro-
posed in [1], by an algorithm called the DKLT (for distributed
Karhunen-Loève transform) algorithm for jointly Gaussian
signals. The algorithm was first introduced in [2], [3] without
an explicit formulation of the associated optimization problem
as we have done here and in the earlier works [1], [12]. The
explicit problem formulation is particularly useful since it
allows us to better understand the multiple transform coders
scenario. Before stating the main results of the section, let us
first describe the DKLT algorithm:

Algorithm 23 (DKLT):
1) Choose arbitrarily from

and let for
.

2) Set .
3) Let and regard the collection of vec-

tors and as side information for
the transform coder . If is already an optimal trans-
formation matrix for with the given side information

(cf. Corollary 17) keep it fixed, otherwise choose an op-
timal transformation matrix for according to The-
orem 14 (or Corollary 17) and set

Then set

and

4) Repeat the procedure of step 3 sequentially for
, until the iterated transformation ma-

trices remain constant after some iteration (the subscript
denotes iteration number) or if the transformation matrices
are judged as no longer changing significantly.

The main contribution of this section is to show that based
on the development of Section III, results on the DKLT algo-
rithm obtained in [1] for jointly Gaussian signals can also be
extended to distributed linear transform coding and reconstruc-
tion of signals with unknown probability distributions, but with
finite second-order moments. Returning to Problem 21, we have
the following characterization of optimal linear solutions:

Theorem 24 (Necessity): If is a solu-
tion to Problem 21, then necessarily each transform
coder , must be linearly optimal as
a single transform coder system with side information

.

For a proof of the theorem, see Appendix D. The theorem is
not analogous to [1, Corollary 8], but may be viewed as either
a consequence of Theorem 14, or [1, Theorem 2] for the jointly
Gaussian case. The key point here is the connection made in
Theorem 24 between Problem 14 and the DKLT algorithm. The
theorem explicitly states that if is any solution to
Problem 21 then necessarily is an optimal transformation
matrix for , respectively. On the other hand, [1, Corollary 8]
is a restatement of [1, Theorem 2] for the multiple transform
coders scenario, stating how can be chosen optimally given
that all other transformation matrices , ,
are fixed; it serves as a precursor for the DKLT algorithm [1,
Algorithm 1] in which round-robin optimizations of the ’s
are performed.

Theorem 24 is quite intuitive because if there is a single
transform coder that is not linearly optimal then one can change
its transformation matrix, while keeping the transformation
matrices of all remaining transform coders fixed, to lower the
overall mean square error. It makes it clear that the DKLT
algorithm is an obvious approach for obtaining transformation
matrices satisfying the conditions of Theorem 24. However,
the DKLT algorithm merely provides us with one set of
transformation matrices that satisfy the necessary conditions
for optimality. In general, the conditions of Theorem 24 are
not sufficient for optimality. Establishing sufficiency is not
easy since it is a nonlinear optimization problem in operator
space with no readily usable convexity property. Despite this,
in light of Theorem 14, we may however give an analogous
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proof of the local convergence of the DKLT algorithm that
generalizes [1, Theorem 12] to second-order random vectors
and furthermore shows that convergence must be to a point
satisfying the conditions of Theorem 24. Toward the end of this
section, we will state the convergence lemma and present some
numerical examples, but first we briefly digress with some
remarks regarding the content of Theorem 24 in the context of
rate-constrained quantization.

Although we do not treat the problem of distributed rate-con-
strained quantization, we point out that if the probability dis-
tributions of the signals are known (which we do not assume
here) then the conclusion of Theorem 24 for distributed linear
approximation does not hold in general when one considers the
optimal distributed rate-constrained quantizer problem. That is,
each optimal distributed rate-constrained quantizer will not in
general be a singly optimal side information quantizer. How-
ever, there can be special cases where the principle of simulta-
neous singly optimal side information quantizers may lead to
suboptimal yet simple and useful rate-constrained quantizers,
such as in the case of jointly Gaussian signals as shown in [1].

Lemma 25: (Convergence of the DKLT algorithm for
second-order random vectors) At consecutive iterations of
Algorithm 23, the estimation error cannot increase, i.e.

for all . Furthermore, the algorithm has converged at iter-
ation (i.e.,

)

if and only if satisfy the conditions of The-
orem 24. In particular, if convergence has not been achieved at
iteration then a decrease in the estimation error always fol-
lows in the next iterations, ensuring the convergence of
the DKLT algorithm.

A proof of the lemma is given in Appendix E. As discussed
above, based on Problem 21 it is clear that in general the nec-
essary conditions need not be sufficient for optimality. The fol-
lowing example affirms this fact.

Example 26: Let be as given in Example 19. Transform
coder 1 senses while transform coder 2 senses . We
would like to produce an optimal linear approximation of
under the constraint that each transform coder may only send a
two–dimensional vector.

Let us first apply the DKLT algorithm by setting

(2)

At convergence the transformation matrices obtained are the
following:

and the approximation error that is computed based on The-
orem 14 (after 30 iterations) is

Now, let us apply the DKLT once again but this time with a
different initial condition. Thus, let

(3)

At convergence the transformation matrices obtained are the fol-
lowing:

and the approximation error that is computed is

Thus with the DKLT algorithm, with different initial condi-
tions, one can arrive at different points satisfying the necessary
conditions of Theorem 24, but which result in different estima-
tion errors. In this example, starting at (3) results in a lower es-
timation error than starting at (2).

The significance of the formulation of Problem 21 is that it
gives us insight into what the DKLT algorithm accomplishes
and that it does not in general guarantee global optimality. This
observation was explicitly pointed out in [12] and subsequently
in [1]. The explicit formulation of the objective function opens
the possibility for finding or developing other optimization al-
gorithms, besides the DKLT algorithm.

V. CONCLUDING REMARKS

In this paper we have shown in an explicit manner the
geometric structure associated with the multiple transform
coders-reconstructor problem in the estimation of correlated
second-order random variables based on incomplete observa-
tions by the different transform coders and the reconstructor.
In particular, our work extends the results of Gastpar, Dragotti
and Vetterli [1]–[4] to the more general and important case of
second-order random vectors. In the linear context this leads to
a nice geometric interpretation in terms of the innovations and
results in a nice decoupling property for transform coder-recon-
structor pairs. However, the conditions are only necessary and
the derivation of sufficient conditions is extremely difficult. Our
geometric formulation of the distributed estimation problems
suggests that it may be possible to develop other algorithms,
besides the DKLT, for solving the problem. This could be the
basis for some future investigations.

An important problem that has not been addressed in the lit-
erature is the fact of the assumption of the knowledge of the
covariance structure of the observed correlated observations. In
practice, one can expect that observations that are not far spa-
tially are correlated but the covariance structure might be un-
known. In that case one would need to estimate the covariance
structure and then perform the KLT on the reduced structure for
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which the procedure of the DKLT is not needed. These and other
issues will be pursued elsewhere.

APPENDIX

PROOFS OF THEOREMS, LEMMATA, AND COROLLARIES

A. Proof of Theorem 14

We begin by writing

for some matrices and and a r.v. that is orthogonal to
the space spanned by and . Then we may write:

where and .
The key observation is that since and is known, all
that remains is to find a reduced-dimension linear transform of

optimally in the mean square sense. To see this, suppose
that is an -dimensional zero mean second-order random
vector with and (thus does not repeat
“linear estimation information” already carried by ). Then the
best linear estimate of given and is clearly

since and

and to minimize the quantity

must be chosen to be an -dimensional KLT of (see
the discussion in Section II). Furthermore, with this choice of

it automatically follows that due to
being a linear transformation of . To this end, let
then majorly diagonalizes . Let us also define ,
obviously majorly diagonalizes . However, we have the
following.

Lemma 27: Let be a nonnegative symmetric ma-
trix. If is an matrix which majorly diagonal-
izes then the smallest eigenvalues of are zero.

Proof: The result follows from the fact that
.

Corollary 28: Let be the covariance matrix of an
–dimensional zero mean random vector and let be an

arbitrary matrix. If is an matrix which
majorly diagonalizes and then

and majorly diagonalizes .

Proof: By the previous lemma
is diagonal with zeros on the lower di-

agonal. This implies that the lower elements of are
merely deterministic constants. Furthermore since
these constants are actually zero. Thus we may write

From the above it is clear that majorly diagonalizes
.

Thus we may write

where and it is obvious that
. If then

and it is a linear transformation on . Now recall that
, hence . Since the

second term on the right of the equality can be computed at the
reconstructor (because is known), the transform coder only
needs to send the remaining –dimensional vector
so that can be reconstructed exactly.

B. Proof of Corollary 16

For this proof we continue the arguments from Appendix A.
Once the reconstructor receives , can be constructed
approximately as , which is defined as

It then follows that the mean square optimal linear estimate of
is

since and therefore . The approximation error
incurred is

where , are the smallest eigenvalues of
after zero eigenvalues have been discarded.

Now, since and , it is clear that .
Next we show an important relation between and . First
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observe that and
that is diagonal with positive entries (since
has non-zero mutually orthogonal elements). Therefore

where . It follows that

Let . Since
we have

Thus

and we immediate have that . Hence

It is clear that there is a bijective linear relation between
and (i.e., can be retrieved from

and vice-versa) and that they both span the same
subspace of . Hence we have the desired result

C. Proof of Corollary 17

Continuing the arguments from Appendices A and B, we ob-
serve that for any invertible matrix also
minimizes the MSE (1) since
and in this case one simply constructs the random vector as

We have now exhausted all possible linear solutions since at the
key step of optimal reduced-dimension linear transformation
of the only choices are precisely
or for any invertible matrix . These
choices correspond precisely to all zero mean second-order
random vectors whose elements span the same subspace of
as the elements of .

D. Proof of Theorem 24

Since is a solution to Problem 21, it
is clear that

implying that

(4)

Let us note that since is orthog-
onal to , it is also orthogonal to both

and

On a similar note

is orthogonal to both and

Consequently, first we have that

(5)

Second, we have

(6)

Therefore, from (5) and (6), we conclude that
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(7)

Now, noting that the first term on the right-hand side of (7)
is independent of , it follows from Theorem 14 and(4) that

must be a linearly optimal single trans-
form coder having and as side infor-
mation.

E. Proof of Lemma 25

Let us consider some iteration step and let
. Let us also regard the collection of random vectors

along with as side information for the
transform coder . Since by Theorem 14 (with

corresponding to in the theorem
with the substitutions and

) we have

Next let . Since , we analo-
gously have

By (7) and Theorem 14, changing the transformation matrix of
from to at iteration while keeping all other

matrices fixed (in particular, ) cannot result in a
higher estimation error since is an optimal transforma-
tion matrix (cf. Remark 15) with being the associated trans-
form coder. In other words

However, since by definition

and

we conclude that

Suppose that satisfy the conditions of
Theorem 24 then each transform coder
is optimal as a single transform coder system with

as side information. This implies
that no further sequential change of the transformation matrices
can yield a lower estimation error (since any transformation
matrices that are already optimal are kept fixed). Hence we may

set for and , and we have
that .
Conversely, if do not satisfy the condi-
tions of Theorem 24 then at least one transform coder,
excluding the transform coder that had just been opti-
mized at step , is not optimal. Thus we may reduce the
estimation error by optimizing the first of those sub-op-
timal transform coders to be encountered in iterations

, i.e., such
that .
Therefore the algorithm has not converged at step and a
decrease in the estimation error always follows in
iterations after . Finally, since is bounded from below
by 0, it is clear that the decreasing property of whenever
convergence has not been achieved guarantees that the DKLT
algorithm always converges.
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