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Abstract—The spectral minutiae representation is a method to
represent a minutiae set as a fixed-length feature vector, which is
invariant to translation, and in which rotation and scaling become
translations, so that they can be easily compensated for. These
characteristics enable the combination of fingerprint recognition
systems with template protection schemes that require as an input
a fixed-length feature vector. Based on the spectral minutiae
features, this paper introduces two feature reduction algorithms:
the Column Principal Component Analysis and the Line Discrete
Fourier Transform feature reductions, which can efficiently com-
press the template size with a reduction rate of 94 %. With reduced
features, we can also achieve a fast minutiae-based matching
algorithm. This paper presents the performance of the spectral
minutiae fingerprint recognition system and shows a matching
speed with 125000 comparisons per second on a PC with Intel
Pentium D processor 2.80 GHz and 1 GB of RAM. This fast oper-
ation renders our system suitable as a preselector for a large-scale
fingerprint identification system, thus significantly reducing the
time to perform matching, especially in systems operating at
geographical level (e.g., police patrolling) or in complex critical
environments (e.g., airports).

Index Terms—Biometrics, fast minutiae matching, feature re-
duction, fingerprint identification, template protection.

1. INTRODUCTION

INGERPRINT recognition systems have the advantages
F of both ease of use and low cost. The Unisys Security
Index released in December 2008 reveals that fingerprint is
the most acceptable biometric technology [1]. Most fingerprint
recognition systems are based on the use of a minutiae set.
Minutiae are the endpoints and bifurcations of fingerprint
ridges. They are known to remain unchanged over an indi-
vidual’s lifetime and allow a very discriminative classification
of fingerprints [2].
The spectral minutiae representation presented in [3] is a
method to represent a minutiae set as a fixed-length feature
vector, which is invariant to translation, and in which rotation
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and scaling become translations, so that they can be easily
compensated for. These characteristics enable the combination
of fingerprint recognition systems with recently developed
template protection schemes based on fuzzy commitment and
helper data schemes, such as [4] and [5], that require as an
input a fixed-length feature vector representation of a biometric
modality.!

The spectral minutiae algorithm in [3] received promising
results. The spectral minutiae feature is a 32 768-dimensional
real-valued feature vector. The large dimensionality of the spec-
tral minutiae feature can cause three problems. First, the storage
requirement for a spectral minutiae fingerprint system is very
high. Second, the high dimensionality leads to a computational
burden and the matching speed will be limited, which is not
desired for fingerprint identification systems with very large
databases. Third, the high dimensionality can lead to a small
sample size problem [7].

In this paper, we will introduce two feature reduction methods
in order to solve the above problems of the original spectral
minutiae algorithm: the Column Principal Component Analysis
(Column-PCA) and the Line Discrete Fourier Transform (Line-
DFT) feature reduction algorithms. By applying Column-PCA
and Line-DFT methods to the original spectral minutiae fea-
tures, we can effectively compress the spectral minutiae tem-
plates and increase the matching speed as well.

For a large Automated Fingerprint Identification System
(AFIS), the recognition accuracy, matching speed and its ro-
bustness to poor image quality are normally regarded as the
most critical elements of system performance. Due to the fact
that minutiae sets are unordered, the correspondence between
individual minutia in two minutiae sets is unknown before
matching. This makes it difficult to find the geometric transfor-
mation that optimally registers (or aligns) two minutiae sets.
For fingerprint identification systems with very large databases
[8], in which a fast comparison algorithm is necessary, most
minutiae-based matching algorithms will fail to meet the high
speed requirement. Compared with other AFIS vendors, our
spectral minutiae fingerprint recognition system has the speed
advantage: the experiment shows that our matching speed is
more than 15 times higher than that of another commercial
minutiae-based fingerprint matching algorithm (we will present
the details later). To satisfy the high speed requirement, some
AFIS vendors first use the global fingerprint characteristics
(image-based features) as the first stage matching, and then
use the minutiae matcher as the second stage matching [2].
However, this requires the original fingerprint images and such

10ther template protection systems exist [6] that do not pose this fixed-length
feature vector requirement.
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solutions cannot be integrated into the large amount of existing
minutiae-based fingerprint recognition systems, in which only
minutiae sets are stored as templates. The spectral minutiae
representation we present in this paper only needs the minutiae
templates as input, so that it can be easily integrated into any
arbitrary minutiae-based fingerprint recognition system. This
motivates us to consider our spectral minutiae algorithm as a
preselector (or pre-filter) for a large-scale AFIS to improve
the overall matching speed performance, especially in systems
operating at geographical level (e.g., police patrolling) or in
complex critical environments (e.g., airports). Besides the speed
advantage, our algorithm can also be combined with template
protection schemes, which gains more and more attention due
to the substantial privacy concerns.

This paper is organized as follows. First, the background of
the spectral minutiae representation is presented in Section II.
Next, in Section III and Section IV, we introduce the
Column-PCA and Line-DFT feature reduction algorithms.
Then, Section V presents the experimental results. Finally, we
draw conclusions in Section VI.

II. SPECTRAL MINUTIAE REPRESENTATION

The spectral minutiae representation is based on the shift,
scale and rotation properties of the two-dimensional continuous
Fourier transform. In [3], the concept of two representation
methods are introduced: the location-based spectral minutiae
representation (SML) and the orientation-based spectral minu-
tiae representation (SMO).

A. Location-Based Spectral Minutiae Representation (SML)

When implementing the Fourier transform there are two im-
portant issues that should be considered. First, when a discrete
Fourier transform is taken of an image, this results in a repre-
sentation of a periodic repetition of the original image. This is
undesirable because it introduces errors due to discontinuities at
the image boundaries. Second, the re-mapping onto a polar-log-
arithmic coordinate system after using a discrete Fourier trans-
form introduces interpolation artifacts. Therefore, we introduce
an analytical representation of the input minutiae, and then use
analytical expressions of a continuous Fourier transform that
are evaluated on a grid in the polar-logarithmic plane. These
analytical expressions are obtained as follows. Assume we have
a fingerprint with Z minutiae. With every minutia, a function
mi(z,y) = 6(x —xi,y —yi), i = 1,..., Z is associated where
(z;,y:) represents the location of the sth minutia in the finger-
print image. Thus, in the spatial domain, every minutia is rep-
resented by a Dirac pulse. The Fourier transform of m;(z, y) is
given by

F{mi(z,y)} = exp (=j(wsi + wyyi)) (D

and the location-based spectral minutiae representation is de-
fined as

M (wy, wy)

Z exp (

wxx + Wy %)) . (2)

419

In order to reduce the sensitivity to small variations in minu-
tiae locations in the spatial domain, we use a Gaussian low-pass
filter to attenuate the higher frequencies. This multiplication in
the frequency domain corresponds to a convolution in the spatial
domain where every minutia is now represented by a Gaussian
pulse.

Following the shift property of the Fourier transform, the
magnitude of M is taken in order to make the spectrum invariant
to translation of the input and we obtain

Mo (@, wyi0f) |

w—i—w
= lexp | —

Z exp

Equation (3) is the analytical expression for the spectrum
which can directly be evaluated on a polar-logarithmic grid.
The resulting representation in the polar-logarithmic domain
is invariant to translation, while rotation and scaling of the
input have become translations along the polar-logarithmic
coordinates.

—j(wxzi + wyyi))| . (3)

B. Orientation-Based Spectral Minutiae Representation
(SMO)

The location-based spectral minutiae representation (SML)
only uses the minutiae location information. However, including
the minutiae orientation as well may give better discrimination.
Therefore, it can be beneficial to also include the orientation
information in our spectral representation. The orientation 6 of
a minutia can be incorporated by using the spatial derivative
of m(z,y) in the direction of the minutia orientation. Thus, to
every minutia in a fingerprint, a function m;(z, y, #) is assigned
being the derivative of m;(x, y) in the direction §;, such that

F{m;(z,y,0)} = j(wxcosb; + wysinb;)
-exp (—j(wxmi + wyyi)) . 4

As with the SML algorithm, using a Gaussian filter and taking
the magnitude of the spectrum yields

w? + w?
Mo (wy,wy;03)] = e -= 7
| o y UO)| xp 2052
z
XZj(wXCOSHi—}—wysinﬁi)-exp(—j(wxzvi—{—wyyi)) )
im1

C. Implementation

In the previous sections we introduced analytical expressions
for the spectral minutiae representations of a fingerprint. In
order to obtain our final spectral representations, the continuous
spectra (3) and (5) are sampled on a polar-logarithmic grid.
In the radial direction A, we use M = 128 samples between
A1 = 0.1 and A, = 0.6. In the angular direction /3, we use
N = 256 samples uniformly distributed between 5 = 0 and
[ = m. Because of the symmetry of the Fourier transform for
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Fig. 1. Illustration of the polar-logarithmic sampling (SML spectra). (a)
Fourier spectrum in a Cartesian coordinate and a polar-logarithmic sampling
grid. (b) Fourier spectrum sampled on a polar-logarithmic grid.

real-valued functions, using the interval between 0 and 7 is suf-
ficient. This polar-logarithmic sampling process is illustrated
in Figs. 1 and 2.

The sampled spectra (3) and (5) will be denoted
by Svu(m,n;or) and So(m,n;o0), respectively, with
m = 1,....M, n = 1,...,N. When no confusion can

arise, the parameter ¢ and the subscripts L and O will be
omitted. For each spectrum, the horizontal axis represents the
rotation angle of the spectral magnitude (from O to w); the
vertical axis represents the frequency of the spectral magnitude
(the frequency increases from top to bottom). It should be noted
that the minutiae spectrum is periodic on the horizontal axis.

D. Spectral Minutiae Matching

Let R(m,n) and T(m,n) be the two sampled minutiae
spectra respectively achieved from the reference fingerprint and
the rest fingerprint. Both R(m,n) and T'(m, n) are normalized
to have zero mean and unit energy. We use the two-dimensional
correlation coefficient between |2 and T' as a measure of their
similarity.

In practice, the input fingerprint images are rotated and might
be scaled (for example, depending on the sensor that is used to
acquire an image). Assume that the scaling has already been
compensated for on the level of the minutiae sets [9]. Then we
only need to test a few rotations, which become the circular
shifts in the horizontal direction. We denote T'(m,n — n.s) as
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Fig. 2. Illustration of the polar-logarithmic sampling (SMO spectra). (a)
Fourier spectrum in a Cartesian coordinate and a polar-logarithmic sampling
grid. (b) Fourier spectrum sampled on a polar-logarithmic grid.

a circular shifted version of T'(m,n). We use the fast rotation
searching algorithm, based on variable stepsizes that was pre-
sented in [10]2 and choose the maximum score of the different
combinations as the final matching score between R and T’

SET) — max

nCS

1
YN ; R(m,n)T(m,n —nes) p,

—15 < nes < 15, (6)

III. CoLUMN-PCA FEATURE REDUCTION (CPCA)

The spectral minutiae feature isad = M x N = 32,768
real-valued feature vector. This high dimensionality can cause
the small sample size problem [7]. Small sample size effects
are normally encountered in applications with high dimensional
features and a complex classification rule, while the number of
available training samples is inadequate. A sophisticated clas-
sifier relies on assumptions about the statistics of the feature
vectors that are obtained from training data. A mismatch be-
tween the actual statistics and the assumptions will lead to a loss
of recognition performance. We can increase robustness against
this type of mismatch by reducing the feature space dimension-
ality. PCA is a commonly used tool to achieve this, which at the
same time decorrelates the features [11].

2In [10], a total of nine rotations are tested in a range of —10° to +10° in
case of N = 256 samples between 0 to 7.
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A. PCA Feature Reduction and Its Problem on Spectral
Minutiae Representation

In order to illustrate the problem of directly applying PCA on
the features St (m,n) and So(m,n), let # = (x1,...,2p)T
denote the unreduced spectral minutiae feature vector, that is, a
one-dimensional form of the two-dimensional spectral minutiae
S(m,n),withm =1,.... M,n=1,...,N,(M = 128 and
N = 256). Thus, the dimensionality of Zis D = M x N =
32, 768.

If we have L samples %1, ..., 7 in the training set, we can
create a D x L data matrix X consisting of all the samples,
as X = [¥,...,Zr]. PCA can be implemented by doing a
singular value decomposition (SVD) on the matrix X

X = UxSx V% @)

with Ux a D x L(D > L) orthonormal matrix spanning the
column space of X, Sx a L x L diagonal matrix of which the
(non-negative) diagonal elements are the singular values of X in
descending order, and Vx a L X L orthonormal matrix spanning
the row space of X. Let Ux be the submatrix of Ux consisting
of the first Dpca (Dpca < L) columns, then we can implement
PCA by

Y = ULX ®)

with Y the Dpca X L data matrix with reduced dimensionality.

However, there are two problems in performing PCA to im-
plement feature reduction on the minutiae spectra. The first is
the small sample size problem [7]. In case the feature vector is
an unreduced spectral minutiae representation, the dimension-
ality of the feature vector is D = 32, 768. A reliable PCA fea-
ture reduction requires a large number of fingerprint samples to
implement the PCA training, which is difficult to acquire. The
second problem is that the minutiae spectra are not rotation-in-
variant. As we mentioned in the previous section, the rotation
of fingerprints becomes a circular shift of the minutiae spectra
in the horizontal direction. For the PCA training, all the minu-
tiae spectra must be aligned in order to get meaningful results.
Then both the training and matching processes become com-
plicated. To cope with the small sample size problem and to
avoid the rotation alignment of minutiae spectra, we introduce
the Column-PCA method to perform a feature reduction.

B. Column-PCA: Feature Reduction Without Small Sample
Size Problems

We first look at the spectral minutiae feature .S in the 2-D
case as we presented in Section II-C. From Figs. 1 and 2, we
can see that the minutiae spectrum is periodic on the horizontal
axis. Moreover, on the vertical axis, the spectra with different
frequencies are correlated. Therefore, we consider to use PCA
to decorrelate the spectra with different frequencies in the ver-
tical direction. To achieve this, we regard each column of S
as a new feature vector Z = (z1,...,2a7)T (we will call Z
a column feature vector later in this paper), then each (sam-
pled) minutiae spectrum S(m, n) consists of N feature vectors
Z,8 =(Z1,...,2n).

If we have L samples Sq, ..., S, in the training set, we can

’ ’

create a M X Ly (L = N x L, N = 256) data matrix Z

421

the dimensionality of the column feature vector 2, M = 128, is
N times smaller than the dimensionality of the spectral minutiae
D =M x N = 32,768. At the same time, the sample size Ly
is N times bigger than the previous sample size L. If we denote
75 as the rate of the sample size [ to the feature dimensionality d,
re = l/d, we can see that in case the sample number L keeps the
same, the 7 of using the column feature vector is N 2 = 65,536
times bigger than the one of using the original feature vector.
Therefore, by using column feature vectors of spectral minutiae
to implement PCA feature reduction, we can avoid the small
sample size problem.

As we indicated in the previous section, another problem
of directly using minutiae spectra to implement PCA feature
reduction is that a rotation alignment of the minutiae spectra
is needed, which is difficult to implement. In the spectral
minutiae representation, the rotation operator commutes with
column transformation. By using column feature vectors, the
rotation variation becomes the samples sequence difference
in the training procedure. This will not have any influence on
the PCA feature reduction results. Therefore, by using column
feature vectors to implement PCA feature reduction, we can
cope with both the small sample size problem and avoid the
rotation alignment of minutiae spectra as well. We call this
method as the Column-PCA feature reduction (CPCA).

To implement CPCA, we first subtract the sample mean
(column mean) from the data matrix Z. The next step is to
apply SVD on Z

consists of all the samples, as Z = [, ..., Z1x]- In this case,

Z=U,S,V} ©9)

with Uz a M X M orthonormal matrix spanning the column
space of Z, Sz a M x M diagonal matrix of which the (non-neg-
ative) diagonal elements are the singular values of Z in de-
scending order, and Vz a Lx x M orthonormal matrix span-
ning the row space of Z. Finally, we can obtain the CPCA trans-
form matrix Uz by retaining the first Mcpca (Mcpca < M)
columns of Uyz. The CPCA transform on the minutiae spectra
S(m,n) is written as

Scrca = UyS (10
with Scpca the Mcopca X N data matrix with reduced dimen-
sionality. After the CPCA feature reduction, the relation of the
energy retainment rate Fcpca and Mcpca is

Mcpca

>, Sz(n,n)

n=1

Ecpca(Mcepea) = ———,

> Sz(n,n)

n=1

1< Mcpca £ M

(11)

and
M
Z SZ(n7n)
Mcpca(Ecpca) = arg  min n;ll — Ecpcal.
ISMEM | §3 g, )
n=1
(12)

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on January 29, 2010 at 07:34 from IEEE Xplore. Restrictions apply.



422

(®)

(©)

Fig. 3. Illustration of the CPCA transform and the LDFT representation.
(a) Location-based spectral minutiae. (b) Minutiae spectrum after the CPCA
transform. (c) Magnitude of the LDFT representation of (b).

The CPCA transform is illustrated in Fig. 3(a) and 3(b) (here,
we define Uy = Uy, that is, Mcpca = M for a clear illus-
tration). We can see that after the CPCA transform, the main
energy of the original minutiae spectrum S is concentrated in
the top lines of Scpca . By only retaining the top Mcpca lines,
we perform the CPCA feature reduction, with a reduction rate
Rcepca = (M — Mcpca)/M. Because the rotation operator
commutes with column transformation, the minutiae spectrum
Scpca remains periodic on the horizontal axis after the CPCA
transform.

IV. LINE-DFT FEATURE REDUCTION (LDFT)

The CPCA feature reduction method reduces the minutiae
spectrum feature S in the vertical direction. In this section, we
will introduce the Line-DFT feature reduction (LDFT) method,
which will reduce the feature in the horizontal direction. This
method is based on the fact that the minutiae spectrum S is
periodic on the horizontal axis. Therefore, it can be applied
both independently and in combination with the CPCA feature
reduction.

A. Line-DFT Representation of the Minutiae Spectrum

We denote each line of the minutiae spectrum S (here S
can be the original minutiae spectrum or the minutiae spectrum
after the CPCA feature reduction) as a line feature vector i/ =

IEEE SYSTEMS JOURNAL, VOL. 3, NO. 4, DECEMBER 2009

(y1,---,yn), thus S = (#1,...,7wm)". Then we can regard
each line feature vector as a periodic discrete-time signal (or
sequence) with period N, and we denote this signal as y,,(n),
(m=1,...,M) (M = 128 for the original minutiae spectrum
or M = Mcpca for the spectrum after the CPCA feature re-
duction). The discrete Fourier transform [12] of y,,,(n) is given
by
N-1 9

Y (k) = nz:% ym(n) exp ( iy kn) ,

k=0,1,...,N—1,m=1,...,M. (13)

Because y,,(n) is periodic, by performing DFT (imple-
mented as FFT) on each line y,,,(n) of the minutiae spectrum S,
we can obtain Spprr = (Yi(k),...,Yar(k)T, Suprr € CM,
which is an exact representation of S.

The LDFT representation is illustrated in Figs. 3(b) and 3(c)
(here, the LDFT representation after the CPCA feature reduc-
tion is presented). We can see that after the LDFT represen-
tation, the main energy is concentrated in the low frequency
part (the middle columns). Therefore, for each line of the LDFT
representation Spppr, we only retain the Fourier components
with a certain percentage of energy (for example, 80%) in the
lower frequency part. By reducing the number of Fourier com-
ponents, we implement the LDFT feature reduction. For each
line m, the relation of the energy retainment rate E'pppr after
the LDFT feature reduction and Nyppr (which indicates that
only the Ny ppr Fourier components from the low frequency
part are retained) is

NiprT—1 9
5 W)
Evprr(Niprr;m) = N_/g L
> Y (k)
5=0
N
1 < Npppr < > +1 (14)
and
N-1 )
5 v )
Niprr(ELprr;m)=arg min N_/2 —ErLprT|-
1SN<E+1 2
o Yo (E)|
£=0
(15)

As mentioned in Section II-D, the rotation of the fingerprint
becomes the circular shift of the minutiae spectrum along the
horizontal axis in the space domain. To test different fingerprint
rotations (see Section II-D) after applying the LDFT represen-
tation, we will implement the shift operation in the frequency
domain according to the shift property of the discrete Fourier
transform. Thus, the Line-DFT transformation of 7'(m, n—n.)
in (6) becomes

T(m,n —nes) = (y1(n—nes),y ...,y (n — ncs))T

LDET exp (—j2—7rkn )
N cS

x (Yi(k), ..., Yar(k)". (16)
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B. Transform of Fourier Components to a Real-Valued Feature
Vector

Consider two discrete-time, periodic signals f1[n] and fa[n],
filn], f2[n] € RY, with period N (N is an even number),
and their discrete Fourier transform are Fy[k] and F»[k] respec-
tively. The DFT is orthnormal, thus it preserves inner products.
Therefore, because of the symmetry properties of the DFT for
real-valued signals, the correlation of f;[n] and f[n] becomes

N

FOIF0] + 20" FuHES 4
k=1

N-1

1
2;% fi[n]f2[n] =N
(17)

where * denotes the complex conjugate and i denotes the real
part.
Because F [k] and F»[k] are complex numbers, we can write
them as
Fi[k] = A;[k] + i Bi[k]

i=1,2 (18)

?

with A;[k] the real part, and B; [k] the imaginary part. Then, (17)
becomes

N—-1

> Alnlfaln] = 5 (RO)F[0]
n=0

w|z

+2
k

(A1[k]A2[k] + B1[k] B2[k])

(19)

Therefore, we can generate two one dimensional real-valued
feature vectors v7 and v3 from the Fourier components that are

7 = (\/I—NAi[O],\/%Ai[I],...,\/%Ai [g] ,

2 2 [N -

The correlation of ©7 and v3 is exactly the same as the cor-
relation of the real-valued signals fi[n] and fa[n]. There-
fore, by generating the new feature vectors as v; and 03,
we can continue using the correlation-based spectral minutiae
matching algorithm. Moreover, by performing the correlation
of ¥1 and 73, instead of implementing the complex number
multiplications as in (17), we can save about half of the real
multiplications.

In case the LDFT feature reduction, the reduced feature vec-
tors v7 and v become

s (o2, 24 _
vi_(\/NA,L[OL\/;Az[l],...,\/;Al[NLDFT 1],

423

For the matching algorithm presented in Section II-D, we
denote v, and vy ,_, as the reduced features of R(m,n) and
T(m,n — n.s), respectively, then (6) becomes

1
S(R,T) = max{m E 'U;,/U-t’ncs} 5 —15 S Nes S 15.
(22)

V. EXPERIMENTS

A. Measurements

We test the spectral minutiae representation in a verification
setting. The matching performance of a fingerprint verification
system can be evaluated by means of several measures. Com-
monly used are the false acceptance rate (FAR), the false rejec-
tion rate (FRR), and the equal error rate (EER). In this paper,
we use FAR, EER and the genuine accept rate (GAR), GAR =
1 — FRR, as performance indicators of our scheme.

B. Experimental Settings

The proposed algorithms have been evaluated on MCYT [13]
and FVC2002-DB2 [14] fingerprint databases. The fingerprint
data that we used from MCYT are obtained from 145 individ-
uals (person ID from 0000 to 0144 and finger ID 0) and each
individual contributes 12 samples. We use samples from person
ID 0100 to 0144 for the CPCA and LDFT training (total 540
fingerprints) and samples from person ID 0000 to 0099 for test
(total 1200 fingerprints). We also tested our algorithms on the
FVC2002-DB2 because it is a public-domain fingerprint data-
base. Compared with MCYT, the fingerprints in FVC2002 have
lower quality and bigger displacements. For the FVC database,
we apply the same experimental protocol as in the FVC compe-
tition: the samples from finger ID 101 to 110 for the CPCA and
LDFT training (total 40 fingerprints) and samples from person
ID 1 to 100 for test (total 400 fingerprints).? The minutiae sets
were obtained by the VeriFinger minutiae extractor [15].4

We test our algorithm in a verification setting. For matching
genuine pairs, we used all the possible combinations. For
matching imposter pairs, we chose the first sample from each
identity. We will further follow the same parameter setting
in [3].5

C. Results Without CPCA and LDFT Feature Reductions

For a comparison with the results after the CPCA and the
LDFT feature reductions, we first tested our algorithm without
feature reductions. The results are shown in Table I and the ROC
curves are shown in Figs. 4(a) and 5(a). From the results, we can
see that the MCYT database received much better results than

3We propose to use our algorithm in a high security scenario. In FVC2002
databases, samples 3, 4, 5, and 6 were obtained by requesting the users to pro-
vide fingerprints with exaggerated displacement and rotation. In a high security
scenario where the user is aware that cooperation is crucial for security reasons,
he will be cooperative. Therefore, only samples 1, 2, 7, and 8 are chosen. To
deal with the large rotations, an absolute pre-alignment based on core and its
direction can be applied.

4VeriFinger Extractor Version 5.0.2.0 is used.

SWe will only present the sum-rule fusion results of SML and SMO in this
paper. We also use the singular points to assist the verification, following the
procedure in [3].
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TABLE I
RESULTS WITHOUT CPCA AND LDFT FEATURE REDUCTIONS
GAR
Databases EER "FAR = 1% | FAR = 0.1% | FAR = 0%
MCYT 0.30% 99.8% 99.7% 99.1%
FVC2002-DB2 | 3.86% 95.5% 92.7% 89.7%
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the FVC database. This shows that our algorithms are sensitive
to the minutiae quality and fingerprint quality.

D. Results After CPCA and LDFT Feature Reductions

In case of using SML and SMO fusion, the spectral minu-
tiae representation results in a 65 536 real-valued feature vector.
For fingerprint identification systems with very large databases,
using the spectral minutiae representation requires a big tem-
plate storage space and its matching speed is also limited. There-
fore, applying the proposed CPCA and LDFT feature reduc-
tion algorithms is needed. To evaluate the two feature reduction
methods, we tested them in three cases: 1) only applying the

IEEE SYSTEMS JOURNAL, VOL. 3, NO. 4, DECEMBER 2009

TABLE II
PARAMETERS OF THE CPCA FEATURE REDUCTION

MCYT FVC2002-DB2
SML SMO Fusion SML SMO | Fusion
Ecpca 85% 90% 87.5% 85% 90% 87.5%
Reduction | 76.6% | 78.1% | 773% | 672% | 76.6% | 71.9%
TABLE III
RESULTS AFTER THE CPCA FEATURE REDUCTION
GAR
Databases EER ["EAR = 1% | FAR = 0.1% | FAR = 0%
MCYT 0.30% 99.8% 99.6% 99.2%
FVC2002-DB2 | 3.72% 95.4% 92.6% 89.7%
TABLE IV

PARAMETERS OF THE LDFT FEATURE REDUCTION

MCYT FVC2002-DB2
SML SMO Fusion SML SMO Fusion
ErpFT 97% 99.5% | 98.3% 97% 99.8% | 98.4%
Reduction | 81.4% | 88.5% | 849% | 77.5% | 89.0% | 83.3%

CPCA feature reduction; 2) only applying the LDFT feature re-
duction; and 3) applying both the CPCA and the LDFT feature
reductions.

From our experiments, we noticed that the selection of the
energy retainment rates Fcpca and Epppr are essential for a
high performance. When Fcpca and Epppr are chosen, we
can calculate Mcpca and N1 ppr.,, using the fingerprints in the
training sets, according to (12) and (15).

1) Only Applying the CPCA Feature Reduction: When
only applying the CPCA feature reduction, the energy retain-
ment rates Fcpca and the feature reduction rates for the two
databases are shown in Table II. The results we achieved are
shown in Table III and the ROC curves are shown in Figs. 4(b)
and 5(b). From Figs. 4(b) and 5(b), we can see that the CPCA
feature reduction does not degrade the recognition performance
of the system. At the same time, we reach a feature reduction
rate of more than 70% (the feature length is about four times
smaller). In the FVC2002-DB2 case, we only used 40 finger-
prints for the training and we still performed an effective feature
reduction. This illustrates that the CPCA feature reduction does
not suffer from the small sample size problem.

2) Only Applying the LDFT Feature Reduction: When
only applying the LDFT feature reduction, the energy retain-
ment rates F1prr and the feature reduction rates for the two
databases are shown in Table IV. From Table IV, we can see
that we achieved a higher reduction rate for SMO, at the same
time the energy retainment is also higher. The reason is that
for SMO, we used a Gaussian kernel to attenuate the higher
frequencies. The LDFT feature reduction can achieve a higher
reduction rate in case the minutiae spectra are with lower
frequencies.

The results we achieved after the LDFT feature reduction are
shown in Table V and the ROC curves are shown in Figs. 4(c)
and 5(c). From Figs. 4(c) and 5(c), we can see that the LDFT fea-
ture reduction does not degrade the recognition performance of
the system. At the same time, we reach a feature reduction rate
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TABLE V
RESULTS AFTER THE LDFT FEATURE REDUCTION
GAR
Databases EER |'EAR = 1% | FAR = 0.1% | FAR = 0%
MCYT 0.29% 99.8% 99.7% 99.1%
FVC2002-DB2 | 3.72% 95.6% 92.7% 89.7%
TABLE VI
PARAMETERS OF THE CPCA AND THE LDFT FEATURE REDUCTIONS
MCYT FVC2002-DB2
Methods [ gmi. | sMO | Fusion | SML | SMO | Fusion
Ecpca 83% | 90% | 86.5% | 75% | 92% | 83.5%
Reduction | 78.1% | 78.1% 78.1% 75% 75% 75%
ELDFT 9% | 99% | 99% | 97% | 98% | 97.5%
Reduction | 69.5% | 74.2% | 72.0% | 68.1% | 72.5% | 70.4%
ETotal 822% | 89.1% | 85.6% | 72.8% | 90.2% | 81.5%
Reduction | 92.9% | 94.0% | 93.5% | 92.0% | 93.1% | 92.6%
TABLE VII
RESULTS AFTER THE CPCA AND THE LDFT FEATURE REDUCTIONS
GAR
Databases EER |'FAR = 1% | FAR = 0.1% | FAR = 0%
MCYT 0.30% 99.8% 99.7% 99.2%
FVC2002-DB2 | 3.52% 95.1% 92.0% 90.7%

of about 84% (the feature length is more than 6 times smaller).
The same as the CPCA feature reduction, the LDFT feature re-
duction also does not suffer from the small sample size problem.

3) Applying Both the CPCA and the LDFT Feature Reduc-
tions: After testing the CPCA and the LDFT feature reductions
separately, we tested the combination of the two methods. We
applied the LDFT feature reduction after the CPCA feature re-
duction. The final energy retainment rates Ecpca and Frprr,
and the feature reduction rates for the two databases are shown
in Table VI. The results we achieved are shown in Table VII
and the ROC curves are shown in Figs. 4(d) and 5(d). From
Figs. 4(d) and 5(d), we can see that after applying the CPCA
and the LDFT feature reductions, the recognition performance is
not degraded. We finally reach a feature reduction rate of about
92%-94% (the feature length is more than 13—15 times smaller).

Comparing the three different feature reduction cases [the
ROC curves in Figs. 4(b)—(d) and 5(b)—(d)], we can see that all
these three cases show comparable recognition performances,
while the combination of CPCA and LDFT received the biggest
feature reduction rates.

For fingerprint identification systems with very large
databases, the matching speed is crucial. In case the feature
length is d and n, rotation possibilities are tested (in our exper-
iments n, = 9), we need to implement n,d real multiplications.
Therefore, applying the feature reductions to decrease d will
improve the speed performance of our scheme. We tested the
matching speed for the fusion case of SML and SMO before
and after the CPCA and the LDFT feature reductions (using
the MCYT database). Without feature reductions, we can
implement 8,000 comparisons per second using optimized C
language programming on a PC with Intel Pentium D processor
2.80 GHz and 1 GB of RAM. After applying CPCA and LDFT,

TABLE VIII
RESULTS COMPARISON ON FVC2002-DB2
GAR
Methods EER |"EAR = 1% | FAR = 0.1% | FAR = 0%
Our method | 3.52% | 95.1% 92.0% 90.7%
VeriFinger | 1.0% 99% 98.8% 98.6%
Fuzzy Vault - - 91% 86%

we can implement 125000 comparisons (the speed is more
than 15 times higher) under the same setting.

E. Comparison

We compared our results with other well-known minutiae
matchers on the FVC2002-DB2 database: VeriFinger® and
Fuzzy Vault according to the protocol in [6]. The results are
shown in Table VIII. We notice that the commercial minutiae
matcher VeriFinger received much better results than ours. One
reason is that the VeriFinger matcher uses some fingerprint
features that are not defined in the ISO minutiae template [9].
Another reason is that, with our global representation, we
cannot perform minutiae pair searching, which is a crucial step
for the minutiae-based matching. These two reasons may cause
the degradation of our algorithm compared with VeriFinger.

We also compared the performance of our method with a
minutiae-based fingerprint recognition system combined with a
template protection scheme based on fuzzy vault, which is pre-
sented in [6]. The reason of this comparison is that in [6] an
alignment between a fingerprint pair using minutiae information
is also not possible. It should be noted that [6] includes a tem-
plate protection scheme, whereas our system does not. More-
over, because [6] implemented an alignment using high curva-
ture points, this caused a 2% failure to capture rate (FTCR),
while our method does not suffer from this.

Regarding the speed performance,” using the spectral minu-
tiae representation after the CPCA and the LDFT feature re-
ductions, we can implement 125000 comparisons per second.
We also tested the VeriFinger matcher using the same PC set-
ting and the matching speed is 8,000 comparisons per second.
Our matching speed advantage is due to the fact that our algo-
rithm uses a fixed-length feature vector and avoids fingerprint
alignment. After applying CPCA and LDFT, the feature length
is greatly reduced, which leads to a promising matching speed.

In case of fingerprint identification systems with very large
databases, we might combine good identification performance
and speed by using the spectral minutiae as a preselector, that
finds a number of best matches and then use a standard minutiae
comparison for a good accuracy. As a preselector, the recogni-
tion performance in the area of high GAR is important. We show
the performance of the spectral minutiae in this area in Table IX.
From Table IX, we can see that in case of good quality finger-
prints (MCYT), we can use the spectral minutiae algorithm as a
preselector to speed up the minutiae-based matching algorithm.

6VeriFinger Extractor Version 5.0.2.0 and VeriFinger Matcher version 5.0.2.1
are used.

TFor fingerprint identification systems with large databases, only matching
time is crucial. For the enrollment speed, because our algorithm only uses one-
sample enrollment, our enrollment time is comparable to the one from Veri-
Finger.
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TABLE IX
PERFORMANCES AFTER CPCA AND LDFT FOR HIGH GAR

FAR
Databases GAR = 100% | GAR =99.9% | GAR = 99%
MCYT 49.4% 6.7% 0%
FVC2002-DB2 90.0% 88.5% 45.5%

However, the spectral minutiae algorithm is not robust to the
low quality fingerprints. The fingerprint outliers will degrade the
recognition accuracy, which limits the application of the spec-
tral minutiae algorithm.

VI. CONCLUSIONS

The spectral minutiae representation is a novel method to rep-
resent a minutiae set as a fixed-length feature vector, which
is invariant to translation, and in which rotation and scaling
become translations, so that they can be easily compensated
for. Based on the spectral minutiae feature, this paper intro-
duces two feature reduction methods: the Column-PCA and the
Line-DFT feature reduction algorithms. The experiments show
that these methods effectively decrease the spectral minutiae
feature dimensionality with a reduction rate of 94%, while at
the same time, the recognition performance of the fingerprint
system is not degraded. The proposed spectral minutiae fin-
gerprint recognition system also shows a promising matching
speed with 125000 comparisons per second. This algorithm
overcomes the speed disadvantage of most minutiae-based al-
gorithms and enables the application of a minutiae-based fin-
gerprint identification system with a large database.

The spectral minutiae representation also enables the combi-
nation of fingerprint recognition systems and template protec-
tion schemes. In order to be able to apply the spectral minutiae
representation with a template protection scheme, for example
based on a fuzzy extractor [16], the next step would be to extract
bits that are stable for the genuine user and completely random
for an arbitrary user. For example, we can apply 2-D Gabor fil-
ters for bit extraction, which has been used in iris codes [17].
Another possibility is to first apply additional dimensionality
reduction by a combination of PCA and LDA and then apply
single bit extraction according to the reliable component scheme
or multibit extraction [18].

In this paper, we presents the experimental results using
two fingerprint databases: the MCYT and the FVC2002-DB2
databases. The MCYT database gives much better results than
the FVC database. This shows that our algorithms are sensitive
to the minutiae quality as well as the fingerprint quality. To
cope with the low quality fingerprints and minutiae errors are
topics of our further research.

REFERENCES

[1] Spotlight on Biometrics [Online]. Available: http://www.unisyssecuri-
tyindex.com//

[2] D. Maltoni, D. Maio, A. Jain, and S. Prabhakar, Handbook of Finger-
print Recognition. New York: Springer, 2003.

[3] H.Xu, R. Veldhuis, A. Bazen, T. Kevenaar, T. Akkermans, and B. Gok-
berk, “Fingerprint verification using spectral minutiae representations,”
IEEE Trans. Inf. Forensics Security, vol. 4, no. 3, pp. 397409, Sep.
2009.

IEEE SYSTEMS JOURNAL, VOL. 3, NO. 4, DECEMBER 2009

[4] P. Tuyls, A. Akkermans, T. Kevenaar, G. Schrijen, A. Bazen, and R.
Veldhuis, “Practical biometric authentication with template protec-
tion,” in Proc. AVBPA, 2005 , pp. 436-446.

[51 A.Juels, “Fuzzy commitment,” in Security With Noisy Data—On Pri-
vate Biometrics, Secure Key Storage and Anti-Counterfeiting, P. Tuyls,
B. Skoric, and T. Kevenaar, Eds. : Springer, 2007, ch. 3, pp. 45-56.

[6] K. Nandakumar, A. Jain, and S. Pankanti, “Fingerprint-based fuzzy
vault: Implementation and performance,” IEEE Trans. Inf. Forensics
Security, vol. 2, no. 4, pp. 744-757, Dec. 2007.

[7] S. Raudys and A. Jain, Small Sample Size Effects in Statistical Pat-
tern Recognition: Recommendations for Practitioners vol. 13, no. 3,
pp. 252-264, Mar. 1991.

[8] U.S. Visitor and Immigrant Status Indicator Technology Program (US-
VISIT) [Online]. Available: http://www.dhs.gov/us-visit

[9] ISO/IEC 19794-2, Information Technology—Biometric Data Inter-
change Format—Part 2: Finger Minutiae Data 2005.

[10] H. Xu, R. N. J. Veldhuis, T. A. M. Kevenaar, A. H. M. Akkermans,
and A. M. Bazen, “Spectral minutiae: A fixed-length representation of
a minutiae set,” in Proc. IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition—Workshop on Biometrics, An-
chorage, AK, 2008.

[11] R. Duda, P. Hart, and D. Stork, Pattern Classification, 2nd ed. New
York: Wiley-Interscience, Oct. 2000.

[12] A.V.Oppenheim, A. S. Willsky, and S. H. Nawab, Signals & Systems,
2nd ed. Upper Saddle River, NJ: Prentice-Hall, 1996.

[13] J. Ortega-Garcla et al., “MCYT baseline corpus: A bimodal biometric
database,” IEE Proc. Vision, Image and Signal Processing, vol. 150,
no. 6, pp. 395-401, 2003.

[14] D. Maio, D. Maltoni, R. Cappelli, J. Wayman, and A. Jain, FVC2002:
Second Fingerprint Verification Competition vol. 3, pp. 811-814, Aug.
2002.

[15] VeriFinger
nologija.com/

[16] Y.Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors,” in Security With
Noisy Data—On Private Biometrics, Secure Key Storage and Anti-
Counterfeiting, P. Tuyls, B. Skoric, and T. Kevenaar, Eds. New York:
Springer, 2007, ch. 3, pp. 45-56.

[17] J. Daugman, “How iris recognition works,” IEEE Trans. Circuits Syst.
Video Technol., vol. 14, no. 1, pp. 21-30, Jan. 2004.

[18] C. Chen, R. Veldhuis, A. Akkermans, and T. Kevenaar, “Biometric
binary string generation with detection rate optimized bit allocation,”
in Proc. IEEE Computer Society Conf. Computer Vision and Pattern
Recognition—Workshop on Biometrics, Anchorage, AK, 2008.

SDK [Online]. Available: http://www.neurotech-

Haiyun Xu received the B.E. and M.E. degrees
in electrical engineering from Beijing University
of Technology, Beijing, China, in 2000 and 2003,
respectively. She is currently pursuing the Ph.D. de-
gree with the Department of Electrical Engineering,
University of Twente, Enshede, The Netherlands.

From 2003 to 2005, she was with Sony and
Siemens Ltd. China, respectively. She is currently
working on two research projects: Protection of Bio-
metric Templates (ProBiTe) and TrUsted Revocable
Biometric IdeNtitiEs (TURBINE). Her research
focuses on the integration of biometric identification in security systems. Her
research interests include biometrics, pattern recognition, signal processing,
and security.

Raymond N. J. Veldhuis received the M.Sc. degree
from the University of Twente, Enschede, The
Netherlands in 1981 and the Ph.D. degree from
Radboud University Nijmegen, Nijmegen, The
Netherlands, in 1988.

From 1982 to 1992, he was with Philips Research
Laboratories, Eindhoven, The Netherlands, working
in various areas of digital signal processing, in-
cluding signal restoration and source coding. From
1992 to 2001, he was with the Institute of Perception
Research (IPO) Eindhoven, working in speech signal
processing and synthesis. He is now an Associate Professor at the University
of Twente, working in biometrics and pattern recognition. He has over 120
publications in international conferences and journals.

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on January 29, 2010 at 07:34 from IEEE Xplore. Restrictions apply.



XU et al.: A FAST MINUTIAE-BASED FINGERPRINT RECOGNITION SYSTEM

-
'_-,
o1

metric information. He has over 40 publications and is co-editor of the book
Security with Noisy Data (Berlin, Germany: Springer, 2007).

Tom A. M. Kevenaar received the Ph.D. degree from
the Technical University of Eindhoven, Eindhoven,
The Netherlands, in 1993.

He worked on several subjects in the field of design
automation for analo and RF circuits, first at the Uni-
versity of Eindhoven and Hitachi Central Research
Laboratory, Tokyo, Japan, and later with Philips Re-
search. In 2001, he became involved in privacy-en-
hancing technologies for biometric applications. In
2008, he co-founded a start-up company, which de-
velops and sells products to protect the privacy of bio-

427

Ton A. H. M. Akkermans was born in 1959 in
Breda, The Netherlands. He received the M.Sc.
degree in theoretical electrical engineering from
Eindhoven University of Technology, Eindhoven,
The Netherlands, in 1987.

In 1982, he joined Philips Research Laboratories,
Eindhoven, The Netherlands, where he worked on
optical systems. In 1987, he became a Senior System
Architect at Philips Optical Storage, responsible
for mechatronical architectures of DVD systems.
In 2000, he joined Philips Research as a Principal
Scientist, where he developed architectures for copy control, DRM key-man-
agement systems, watermarking, and biometrics. Currently, he is working on
biometric and safety systems. He has published numerous papers and is the
holder of several patents.

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on January 29, 2010 at 07:34 from IEEE Xplore. Restrictions apply.



