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Abstract

This tutorial presents an introduction to generalized semi-infinite programming (GSIP) which in recent years became a vivid field
of active research in mathematical programming. A GSIP problem is characterized by an infinite number of inequality constraints,
and the corresponding index set depends additionally on the decision variables. There exist a wide range of applications which give
rise to GSIP models; some of them are discussed in the present paper. Furthermore, geometric and topological properties of the
feasible set and, in particular, the difference to the standard semi-infinite case are analyzed. By using first-order approximations
of the feasible set corresponding constraint qualifications are developed. Then, necessary and sufficient first- and second-order
optimality conditions are presented where directional differentiability properties of the optimal value function of the so-called lower
level problem are used. Finally, an overview of numerical methods is given.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

This article describes theory, applications and methods for the so-called generalized semi-infinite optimization prob-
lems. These problems have the form

GSIP: min f (x) s.t. x ∈ M

with

M = {x ∈ Rn|g(x, y)�0 for all y ∈ Y (x)}
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and

Y (x) = {y ∈ Rm|v�(x, y)�0, � ∈ L}.
All defining functions f, g, v�, � ∈ L = {1, . . . , s}, are assumed to be real-valued and at least continuous in their
respective domains. Moreover, we assume that the set-valued mapping Y : Rn ⇒ Rm is locally bounded, that is, for
each x̄ ∈ Rn there exists a neighborhood U of x̄ such that

⋃
x∈UY (x) is bounded in Rm.

As opposed to a standard semi-infinite optimization problem (SIP), the possibly infinite index set Y (x) of the semi-
infinite inequality constraint is allowed to vary with x in a GSIP. For surveys and detailed studies about standard
semi-infinite optimization we refer to [13,18,23,24,31,34,45,68,70].

In applications (cf. Section 2) often finitely many semi-infinite constraints gi(x, y)�0, y ∈ Yi(x), i ∈ I, describe
the feasible set M of GSIP, along with finitely many equality constraints in the definitions of M and Y (x). In order to
avoid technicalities in this tutorial article we focus on the basic case of a single semi-infinite constraint and refer the
interested reader to [85] for more general formulations.

First systematic studies of GSIP in [36,52] gave the impression that GSIP is merely a slight generalization of
standard SIP. However, in [47] first indications appeared that GSIP is an essentially harder problem than SIP. In
particular it turned out that the feasible set of GSIP can possess topological structures that are neither known from
finite nor from standard semi-infinite optimization. From a geometrical point of view it was also clear that these
phenomena are stable under data perturbations. These observations inspired a number of authors to have a closer look
at the topological structure of M [75,81–83,91,99], at optimality conditions [46,47,73,74,76,84,88,103], and at solution
methods [8,30,51,61,89,92,93,98] for GSIP.

This tutorial is structured as follows. After pointing out some important applications of GSIP in Section 2, we explain
the geometry of the feasible set M, including appropriate constraint qualifications, in Section 3. Based on these results
first- and second-order optimality conditions are presented in Sections 4 and 5. Section 6 reviews numerical methods
for GSIP before the tutorial closes with some final remarks in Section 7.

2. Applications

From the numerous real-life applications of generalized semi-infinite programming this section explains three im-
portant classes in some detail: Chebyshev approximation, design centering, and robust optimization. Examples for
further applications are the optimal layout of an assembly line [50,98], time minimal control [51,55,98], and disjunc-
tive optimization [85]. Many examples for standard semi-infinite optimization problems can be found in [34] and the
references cited therein. We also remark that semi-definite programming [96,102] can be interpreted as a special case
of standard semi-infinite programming. This approach is elaborated in [17,97].

2.1. Chebyshev and reverse Chebyshev approximation

In applications one often seeks to approximate a given continuous function F on a nonempty and compact set
Z ⊂ RM by a simpler function a(p, ·) which can be chosen from a parameterized family of continuous functions
{a(p, ·)|p ∈ P } with some parameter set P ⊂ RN . Depending on the application, different norms may be used to
measure the deviation between F and a(p, ·) on Z. For computational reasons one often uses the Euclidean norm since
this gives rise to an optimization problem with a smooth objective function.

However, in many applications it is not sufficient to minimize some averaged deviation, but one actually needs to
minimize the maximal deviation, that is, the Chebyshev norm is used instead of the Euclidean norm.

This leads to the nondifferentiable problem of Chebyshev approximation (cf., e.g., [14,22])

CA: min
p∈P

‖F(·) − a(p, ·)‖∞,Z = min
p∈P

max
z∈Z

|F(z) − a(p, z)|.

The epigraph reformulation of CA yields the equivalent problem

min
(p,q)∈P×R

q s.t. ‖F(·) − a(p, ·)‖∞,Z �q,′
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which can be rewritten as

SIPCA: min
(p,q)∈P×R

q s.t. F (z) − a(p, z)�q for all z ∈ Z,

− F(z) + a(p, z)�q for all z ∈ Z,

that is, as a standard semi-infinite optimization problem. The main advantage of this reformulation of CA is that SIPCA
is a smooth optimization problem if all defining functions are smooth, whereas CA is intrinsically nonsmooth. The
price to pay for smoothness is, of course, the presence of infinitely many inequality constraints. Solution methods for
this specially structured SIP can be found for example in [37].

In engineering applications a modification of CA, termed reverse Chebyshev approximation, has received interest
as it can be used to model for example the approximation of a thermo-couple characteristic or for the construction
of low pass filters in digital filtering theory [38,51]. In this framework, let F be a real-valued continuous function on
a nonempty and compact set Z(q) ⊂ RM which depends on a parameter q ∈ Q. Given an approximating family of
functions a(p, ·) and a desired precision e(p, q), the aim is to find parameter vectors p and q such that the domain
Z(q) is as large as possible without exceeding the approximation error e(p, q). This yields the problem

RCA: max
(p,q)∈P×Q

Vol(Z(q)) s.t. ‖F − a(p, ·)‖∞,Z(q) �e(p, q),

where Vol(Z(q)) denotes the M-dimensional volume of Z(q). Again, this intrinsically nonsmooth optimization problem
can be reformulated with semi-infinite constraints.

However, as opposed to the situation in standard Chebyshev approximation, we now obtain a generalized semi-infinite
optimization problem:

GSIPRCA: max
(p,q)∈P×Q

Vol(Z(q))

s.t. F (z) − a(p, z)�e(p, q) for all z ∈ Z(q),

− F(z) + a(p, z)�e(p, q) for all z ∈ Z(q).

Numerical approaches to this problem class for small dimensions are presented in [38,51].

2.2. Design centering

A design centering problem consists in maximizing some measure, for example the volume, of a parameterized body
B(x) while it is inscribed into a container set C:

DC: max
x∈Rn

Vol(B(x)) s.t. B(x) ⊂ C.

In applications the set C often has a complicated structure, while B(x) possesses a simpler geometry (cf. Fig. 1).
If the container C is described by functional constraints,

C = {y ∈ Rm|c(y)�0},

an equivalent formulation of the design centering problem as a GSIP is

GSIPDC: max
x∈Rn

Vol(B(x)) s.t. c(y)�0 for all y ∈ B(x).

Note that the semi-infinite constraint function c does not depend on x in this case, but only its index set does. In
applications, if the set C or the function c, respectively, are not too complicated, parts of the decision variable x like
translations and rotations may also be modeled to affect C, so that the inclusion constraint in DC becomes B(x) ⊂ C(x).
In the latter case also the function c in GSIPDC depends on x and y.
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Fig. 1. A disk B(x�) with maximal area in a container C.

Design centering problems have been studied extensively, see for example [27,41,65,67,87] and the references
therein. They are also related to the so-called containment problem from [63].

Applications for design centering arise in different circumstances. It is used for example to determine lower bounds
for the volume of a complicated container set by inscribing ellipsoids in the so-called maneuverability problem of a
robot from [26]. This problem gave rise to one of the first formulations of a generalized semi-infinite optimization
problem in [35].

If B(x) is a norm ball, design centering can also be used to find “innermost” points of C. As described in [41] at such
a point a company should produce a good, if its uncertain quality parameters are to be contained in a set of feasible
parameters.

A third major application of design centering is the cutting stock problem. The problem of cutting a gem of maximal
volume with prescribed shape features from a raw gem is treated in [65] and, with the numerical method from [90], in
the recent thesis [101].

2.3. Robust optimization

Robustness questions arise when an optimization problem is subject to uncertain data. If one wishes to treat uncertainty
in an optimization problem without using stochastic information, one possible approach is to solve the problem for some
nominal choice of parameters, and then to study the influence of parameter perturbations on the solution. Apparently
this stability and sensitivity investigation is an a posteriori approach, and reasonable criteria for the special choice of
the nominal parameters are needed.

In contrast to this, one can use the a priori approach of robust optimization which has attracted a lot of attention
in recent years. In fact, robust counterparts of finite optimization problems constitute a very important application of
semi-infinite programming since they arise naturally in a large number of real-life situations.

If an inequality constraint function G(x, p) depends on some uncertain parameter vector p from a so-called uncer-
tainty set P ⊂ Rm, then the “most cautious” or “pessimistic” way to deal with this constraint is to use its worst case
reformulation

G(x, p)�0 for all p ∈ P ,

which is clearly of semi-infinite type. If a point x is feasible for this semi-infinite constraint, then we have G(x, p)�0,
no matter what the actual parameter p ∈ P is. This approach is also known as the “principle of guaranteed results”
(cf. [21]). When the uncertainty set P also depends on the decision variable x, we arrive at a generalized semi-infinite
constraint. For example, uncertainties concerning small displacements of an aircraft may be modeled as being dependent
on its speed. For an example from portfolio analysis see [90].
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Similarly, if an objective function F(x, p) depends on the unknown parameter p ∈ P(x), in the worst case one has
to minimize the maximal objective value, that is, one considers the problem

min
x∈Rn

max
p∈P(x)

F (x, p).

Such a minimax problem can be cast in a semi-infinite form by epigraph reformulation. Summarizing, the robust
formulation of a finite problem

FP(p): min
x∈Rn

F (x, p) s.t. Gi(x, p)�0, i ∈ I ,

with an unknown parameter p ∈ P(x) is given by

GSIPRO: min
(x,z)∈Rn×R

z s.t. F (x, p)�z for all p ∈ P(x),

Gi(x, p)�0 for all p ∈ P(x), i ∈ I .

In [6] it is shown that under special structural assumptions the semi-infinite problem GSIPRO can be reformulated
as a semi-definite problem and then be solved with polynomial time algorithms [5]. The structural assumptions are
essentially bilinearity of F and Gi as well as an ellipsoidal fixed uncertainty set P. Under similarly special assumptions
a saddle point approach for robust programs is given in [95]. As a tailored solution method for robust optimization the
so-called cascading algorithm is introduced in [54].

3. Geometry of the feasible set

This section focuses on the structure of the feasible set M of a generalized semi-infinite optimization problem, that
is, the objective function f of GSIP will not play a role throughout Section 3.

3.1. A projection formula

We define the sets

G = {(x, y) ∈ Rn × Rm|g(x, y)�0},
Y = {(x, y) ∈ Rn × Rm|v�(x, y)�0, � ∈ L},

for a set A ⊂ RN we denote by Ac the set complement of A in RN , and � stands for the orthogonal projection from
Rn × Rm to Rn. The following formula provides basic geometrical insight into the topological features of feasible sets
in generalized semi-infinite programming. It is proved straightforwardly by characterizing the elements of Mc.

Lemma 3.1 (Stein [85]). An alternative description of the feasible set is

M = [�(Y ∩ Gc)]c. (3.1)

Formula (3.1) reveals important features of M in the case of a variable index set mapping Y (x) by a simple geometric
consideration. Assume for the moment that the function g is affine in (x, y) and that Y is a polytope. Then Y ∩ Gc

is the intersection of the polytope Y with the open halfspace Gc and hence, unless g is a redundant constraint, it is a
“polytope with a missing facet”. The feasible set M is the complement of the orthogonal projection to the x-space of
this object. In Fig. 2, which illustrates this situation with x ∈ R2 and y ∈ R1, it becomes clear geometrically that M can
be the union of finitely many closed and open halfspaces. For an explicit description of M under linearity assumptions
see [75,85].

These considerations show that two topological phenomena arise which are not known from standard semi-infinite
optimization and which are, of course, not related to our temporary linearity assumptions: M is endowed with an
inherent disjunctive structure, and M is not necessarily a closed set.
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Fig. 2. Illustration of the projection formula.

Fig. 3. A re-entrant corner point.

The following examples illustrate these features some more, with g and Y given in functional form.

Example 3.2 (Re-entrant corner point). For x ∈ R2 consider the index set

Y (x) = {y ∈ R|y�x1, y�x2}

and put g(x, y) = −y. Then we obtain

M = {x ∈ R2|g(x, y)�0 for all y ∈ Y (x)}
= {x ∈ R2|y�0 for all y ∈ [max(x1, x2), +∞)}
= {x ∈ R2| max(x1, x2)�0}.

Fig. 3 illustrates that M is the union of two closed halfplanes. Note that M is nonconvex, although all defining functions
are linear. More precisely, M exhibits a so-called re-entrant corner point at the origin.

Example 3.3 (Local nonclosedness). For x ∈ R2 consider the index set

Y (x) = {y ∈ R|y�x1, y�x2}
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Fig. 4. Local nonclosedness.

and put again g(x, y) = −y. Now we have

M = {x ∈ R2|g(x, y)�0 for all y ∈ Y (x)}
= {x ∈ R2|y�0 for all y ∈ [x1, x2]}
= {x ∈ R2|x1 �x2, y�0 for all y ∈ [x1, x2]}

∪ {x ∈ R2|x1 > x2, y�0 for all y ∈ ∅}
= {x ∈ R2|x1 �x2, x1 �0} ∪ {x ∈ R2|x1 > x2}.

As depicted in Fig. 4, M is the union of an open with a closed halfplane, although all defining inequalities are nonstrict.

By a well-known theorem of Whitney [12] re-entrant corner points as in Example 3.2 can also occur in finite
optimization, even with a single (degenerate) smooth inequality constraint function. There, however, the local disjunctive
structure of the feasible set is destroyed under small perturbations of the defining function. In contrast to this, re-entrant
corner points are stable in GSIP [82,85]. Even the local nonclosedness phenomenon, which does not have any analog
in finite or standard semi-infinite programming, is a stable phenomenon in GSIP.

3.2. Topological properties of the feasible set

The key to a theoretical treatment of the topological features in the feasible set of GSIP lies in the bilevel structure
of semi-infinite programming. In the following we sketch the main ideas of this approach. For stability properties of
the feasible set in SIP we refer the reader to [47,48].

Under our assumptions it is easy to see that the semi-infinite constraint in GSIP is equivalent to

�(x) := max
y∈Y (x)

g(x, y)�0,

which means that the feasible set M of GSIP is the lower level set of some optimal value function:

M = {x ∈ Rn|�(x)�0}. (3.2)

The usual convention “max∅ = −∞” is consistent here, as an empty index set Y (x) corresponds, loosely speaking, to
“the absence of restrictions” at x and, hence, to the feasibility of x.

The function � is the optimal value function of the so-called lower level problem

Q(x): max
y∈Rm

g(x, y) s.t. v�(x, y)�0, � ∈ L. (3.3)

In contrast to the upper level problem which consists in minimizing f over M, in the lower level problem x plays the
role of an n-dimensional parameter, and y is the decision variable. The main computational problem in semi-infinite
programming is that the lower level problem has to be solved to global optimality, even if only a stationary point of the
upper level problem is sought.

The alternative description of the feasible set in (3.2) shows that the topological properties of M are determined by
continuity properties of �. In view of Example 3.3 � may be discontinuous, even if the underlying optimization problem
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is defined by smooth functions. Properties of optimal value functions have been studied extensively in parametric
optimization [2]. For a brief introduction to these results we refer to [85].

Recall that we assume the functions g and v�, � ∈ L, to be continuous. In particular the set-valued mappingY is closed.
Since we also assume local boundedness of Y, the optimal value function � can be shown to be at least upper semi-
continuous. Thus points x ∈ Rn with �(x) < 0 belong to the topological interior of M. However, upper semi-continuity
of � does not imply that the set of points with �(x)�0 is closed, but for this we need lower semi-continuity.

A sufficient condition for lower semi-continuity of � can be given in terms of another topological property of the
index set mapping: the set-valued mapping Y is called inner semi-continuous at x̄ if and only if for all y ∈ Y (x̄) and all
sequences x� → x̄ there are points y� ∈ Y (x�) with y� → y. Inner semi-continuous mappings are also called lower
semi-continuous [7] or open [39]. In [39] it is shown that � is lower semi-continuous at x̄ if Y is inner semi-continuous
at x̄. This implies the following result:

Proposition 3.4. Let the index set mapping Y be inner semi-continuous on Rn. Then M is a closed set.

Obviously Y is not inner semi-continuous in Example 3.3. Simple examples show that inner semi-continuity of Y is
not necessary for the closedness of M [85]. In applications Y is usually inner semi-continuous and the feasible set is
thus closed.

If the functions v�, � ∈ L, are continuously differentiable with respect to y, a sufficient condition for inner semi-
continuity ofY at x̄ is the validity of the Mangasarian–Fromovitz constraint qualification (MFCQ) everywhere in Y (x̄).
MFCQ is said to hold at ȳ in Y (x̄) if the system Dyv�(x̄, ȳ)� < 0, � ∈ L0(x̄, ȳ), has a solution �. Here Dyv� stands
for the row vector of partial derivatives of v� with respect to y, and L0(x̄, ȳ) = {� ∈ L|v�(x̄, ȳ) = 0} is the lower level
active index set. The stronger linear independence constraint qualification (LICQ) holds at ȳ in Y (x̄) if the gradients
Dyv�(x̄, ȳ), � ∈ L0(x̄, ȳ), are linearly independent. Proposition 3.4 yields that M is closed if for all x ∈ Rn MFCQ
or even LICQ hold everywhere in Y (x).

This sufficient condition for closedness can be weakened considerably. In fact, for investigations of the local structure
of M or of local optimality conditions we are only interested in points from the boundary �M of M. In view of the
upper semi-continuity of � it suffices to consider the zeros of �, that is, points x ∈ Rn for which Q(x) has vanishing
maximal value. We denote the corresponding globally maximal points of Q(x) by

Y0(x) = {y ∈ Y (x)|g(x, y) = 0}.
The set Y0(x) is also called the upper level active index set of GSIP. In [20] it is shown that under our assumptions �
is continuous at some x̄ ∈ Rn if Y (x̄) is nonempty and MFCQ holds at some element of Y0(x̄). Hence M is closed if
for all x ∈ Rn the index set Y (x) is nonempty and MFCQ or even LICQ hold at some element of Y0(x).

3.3. The reduction ansatz

For theoretical as well as numerical purposes it is of crucial importance to keep track of the elements of Y0(x) for
varying x. An important piece of information is that these points solve the lower level problem, that is, for functions g
and v�, � ∈ L, which are continuously differentiable with respect to y they satisfy the first-order necessary optimality
condition of Karush–Kuhn–Tucker (KKT): let

L(x, y, �) = g(x, y) − �Tv(x, y)

denote the Lagrangian of Q(x) with multiplier vector � ∈ Rs . Then for x̄ ∈ M and each ȳ ∈ Y0(x̄) such that MFCQ
holds at ȳ in Q(x̄), there exist multipliers �̄�0 with DyL(x̄, ȳ, �̄) = 0 and �� · v�(x̄, ȳ) = 0, � ∈ L. Note that the
multiplier vector �̄ is uniquely determined if instead of MFCQ the stronger LICQ holds at ȳ.

Keeping track of the elements of Y0(x) can now be achieved for example by means of the implicit function theorem, if
the functions g and v�, � ∈ L, are C2 with respect to y. For x̄ ∈ M a local maximizer ȳ of Q(x̄) is called nondegenerate in
the sense of Jongen/Jonker/Twilt [43], if LICQ, strict complementary slackness (SCS) and the second-order sufficiency
condition (SOSC) D2

yyL(x̄, ȳ, �̄)|TȳY (x̄) ≺ 0 are satisfied. Here TȳY (x̄) is the tangent space to Y (x̄) at ȳ, and A ≺ 0
stands for the negative definiteness of a matrix A. SCS means �̄� > 0 for all � ∈ L0(x̄, ȳ). The reduction ansatz is said
to hold at x̄ ∈ M if all global maximizers of Q(x̄) are nondegenerate. Since nondegenerate maximizers are isolated,
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and Y (x̄) is a compfact set, the set Y0(x̄) can only contain finitely many points, say Y0(x̄) = {ȳ1, . . . , ȳp} with p ∈ N.
By a result from [19] the local variation of these points with x can be described by the implicit function theorem.

In fact, for x locally around x̄ there exist continuously differentiable functions yi(x), 1� i�p, with yi(x̄)= ȳi such
that yi(x) is the locally unique local maximizer of Q(x) around ȳi . Moreover, if �̄i is the uniquely determined multiplier
vector corresponding to ȳi , then there exists a continuously differentiable function �i (x) with �i (x̄)= �̄i such that �i (x)

is the unique multiplier vector corresponding to yi(x), 1� i�p. It turns out that the functions �i (x) := g(x, yi(x))

are even C2 in a neighborhood of x̄. Their gradients are

D�i (x̄) = DxL(x̄, ȳi , �̄i ). (3.4)

The reduction ansatz was originally formulated for standard semi-infinite problems in [32,100] under weaker regularity
assumptions. It was transferred to generalized semi-infinite problems in [36]. A major consequence of the reduction
ansatz is the so-called reduction lemma [36]: if the reduction ansatz holds at x̄, then for all x from a neighborhood U
of x̄ we have

�(x) = max
1� i �p

�i (x).

In view of (3.2) this means that M can locally be described by finitely many C2-constraints, that is, GSIP locally looks
like a smooth finite optimization problem:

M ∩ U = {x ∈ U | g(x, yi(x))�0, i = 1, . . . , p}. (3.5)

In particular, locally around x̄ the set M is closed and only in degenerate situations will it possess a re-entrant corner
point at x̄.

For standard semi-infinite problems the reduction ansatz is a natural assumption in the sense that for problems with
defining functions in general position it holds at each local minimizer [80,104]. For GSIP this result can be transferred
to local maximizers x̄ with |Y0(x̄)|�n [82]. Moreover, in [89] it is shown that it holds in the “completely linear” case,
that is, when the defining functions f, g and v�, � ∈ L, of GSIP are affine on their respective domains. For GSIP without
these special structures it is not yet known whether the reduction ansatz generically holds at all local minimizers. The
reduction ansatz also serves as a basic regularity condition for numerical solution methods (see Section 6).

3.4. First-order properties of the feasible set

Since the reduction ansatz cannot be expected to hold generically everywhere in M, we study the first-order structure
of M under considerably weaker assumptions inn this section. In particular, we will explain re-entrant corner points in
terms of the lower level KKT multipliers.

For the first-order approximation of M we define the contingent cone ��(x̄, M) to M at x̄ as follows: d̄ ∈ ��(x̄, M)

if and only if there exist sequences of scalars (t�)�∈N and of vectors (d�)�∈N such that

t� ↘ 0, d� → d̄ (� → ∞) and x̄ + t�d� ∈ M for all � ∈ N.

Moreover, we define the inner tangent cone �(x̄, M) to M at x̄ as: d̄ ∈ �(x̄, M) if and only if there exist some t̄ > 0
and a neighborhood D of d̄ such that

x̄ + td ∈ M for all t ∈ (0, t̄), d ∈ D.

The contingent cone is a closed cone, not necessarily convex, containing first-order information about M. In Example
3.2 the set M coincides with ��(0, M). In view of (3.2) the contingent cone to M at x̄ should be related to a level
set of a first-order approximation of � at x̄. Unfortunately the differentiability properties of � can be very weak,
so that we recall the definition of lower and upper directional derivatives of � at x̄ in direction d̄ in the Hadamard
sense [11]:

�′−(x̄, d̄) = lim inf
t↘0,d→d̄

�(x̄ + td) − �(x̄)

t
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and

�′+(x̄, d̄) = lim sup
t↘0,d→d̄

�(x̄ + td) − �(x̄)

t
.

� is called directionally differentiable at x̄ (in the Hadamard sense) if for each direction d̄ �= 0 we have �′−(x̄, d̄) =
�′+(x̄, d̄). In this case, we put

�′(x̄, d̄) = lim
t↘0,d→d̄

�(x̄ + td) − �(x̄)

t
.

We define the outer linearization cone of M at x̄ as

L�(x̄, M) = {d ∈ Rn|�′−(x̄, d)�0}
and the inner linearization cone by

L(x̄, M) = {d ∈ Rn|�′+(x̄, d) < 0}.

Lemma 3.5 (Laurent [58], Stein [86]). For x̄ ∈ �M ∩ M the following chain of inclusions holds:

L(x̄, M) ⊂ �(x̄, M) ⊂ ��(x̄, M) ⊂ L�(x̄, M).

A good first-order description of M around x̄ by the contingent cone ��(x̄, M) can thus be obtained if the linearization
cones L(x̄, M) and L�(x̄, M) do not differ too much from each other.

For example, in standard semi-infinite programming the index set mapping Y (x) ≡ Y is constant, and the Theorem
of Danskin [15] then says that � is directionally differentiable with

�′(x̄, d) = max
y∈Y0(x̄)

Dxg(x̄, y)d

for all d ∈ Rn. The linearization cones

L(x̄, M) =
⋂

y∈Y0(x̄)

{d ∈ Rn| Dxg(x̄, y)d < 0}

and

L�(x̄, M) =
⋂

y∈Y0(x̄)

{d ∈ Rn|Dxg(x̄, y)d �0}

thus differ only by the strictness of inequalities, and they do not possess a disjunctive structure.
If in GSIP the reduction ansatz (cf. Section 3.3) holds at x̄, using (3.4) it is not hard to see that � is directionally

differentiable with

�′(x̄, d) = max
1� i �p

DxL(x̄, ȳi , �̄i )d

for all d ∈ Rn. The linearization cones

L(x̄, M) =
p⋂

i=1

{d ∈ Rn| DxL(x̄, ȳi , �̄i )d < 0}

and

L�(x̄, M) =
p⋂

i=1

{d ∈ Rn| DxL(x̄, ȳi , �̄i )d �0}

again differ only by the strictness of inequalities, and they do not possess a disjunctive structure.
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Under weaker assumptions than the reduction ansatz the situation in GSIP becomes more involved, since � does
not even have to be directionally differentiable. The following estimates for the upper and lower directional derivatives
from [20,59] are known to be tight: for x̄ ∈ �M ∩ M such that MFCQ is satisfied at each y ∈ Y0(x̄) we have for each
d ∈ Rn

sup
y∈Y0(x̄)

min
�∈KKT(x̄,y)

DxL(x̄, y, �)d ��′−(x̄, d)

��′+(x̄, d)� max
y∈Y0(x̄)

max
�∈KKT(x̄,y)

DxL(x̄, y, �)d.

Here

KKT(x, y) = {� ∈ Rs |��0, DyL(x, y, �) = 0, �� · v�(x, y) = 0, � ∈ L}
denotes the set of KKT multipliers at y in Q(x).

At least this gives us estimates for the linearization cones:⋂
y∈Y0(x̄)

⋂
�∈KKT(x̄,y)

{d ∈ Rn|DxL(x̄, y, �)d < 0}

⊂ L(x̄, M) ⊂ ��(x̄, M) ⊂ L�(x̄, M)

⊂
⋂

y∈Y0(x̄)

⋃
�∈KKT(x̄,y)

{d ∈ Rn|DxL(x̄, y, �)d �0}.

In [84] an analogous result is given without the assumption of MFCQ in Y0(x̄). However, the estimate for the inner
linearization cone is rather poor in many situations in which the problem data are endowed with a special structure. In
fact, in Example 3.2 it coincides with the topological interior of the first orthant rather than with the topological interior
of M. A critical point notion based on this estimate treats re-entrant corner points as candidates for local minimizers of
GSIP, although many feasible directions of first-order descent for f may exist in the actual feasible set M.

In the case ��(x̄, M) = L�(x̄, M) (see also Section 3.5) we see that a disjunctive structure of ��(x̄, M) is intimately
related to the nonuniqueness of the lower level KKT multipliers.

This becomes clearer if we assume that the lower level problems Q(x), x ∈ U, are convex for some neighborhood
U of x̄, and that Y (x̄) possesses a Slater point. Note that these assumptions are satisfied in Example 3.2. Due to results
from [25,40,71] the multiplier set KKT(x̄) then does not depend on y ∈ Y0(x̄) and � is directionally differentiable at
x̄ with

�′(x̄, d) = min
�∈KKT(x̄)

max
y∈Y0(x̄)

DxL(x̄, y, �)d

for all d ∈ Rn. As a consequence we obtain

L(x̄, M) =
⋃

�∈KKT(x̄)

⋂
y∈Y0(x̄)

{d ∈ Rn|DxL(x̄, y, �)d < 0}

and

L�(x̄, M) =
⋃

�∈KKT(x̄)

⋂
y∈Y0(x̄)

{d ∈ Rn|DxL(x̄, y, �)d �0}.

Now both the inner and the outer linearization cone possess a disjunctive structure, and they only differ by the strictness
of inequalities. Moreover it becomes obvious that the occurrence of stable re-entrant corner points in GSIP is caused
by nonunique lower level KKT multipliers. Consequently a stable re-entrant corner point at x̄ can be avoided if LICQ
holds at all y ∈ Y0(x̄). A characterization of unique multipliers which is weaker than LICQ can be found in [57]. For
more details on lower level problems with a special structure see [73,76,85].

Together with the results of Section 3.2 we find that local nonclosedness of M around x̄ is related to the failure of
MFCQ at all y ∈ Y0(x̄), and that a re-entrant corner point at x̄ is related to the failure of LICQ at some y ∈ Y0(x̄).
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Thus we see that the major difference between standard and generalized semi-infinite programming is the possibility of
violated constraint qualifications in the lower level problem. In fact, in [98] it is shown that up to a smooth coordinate
transformation a GSIP is equivalent to a standard SIP if for all x ∈ Rn LICQ holds everywhere in Y (x). On the other
hand, results from [82] show that generically LICQ cannot be expected to hold everywhere in the lower level problem.
Therefore not only in degenerate cases does the feasible set of GSIP have richer structural features than the feasible
set in standard SIP.

3.5. Constraint qualifications

Throughout this section let the functions f, g, and v�, � ∈ L, be continuously differentiable. It is well known [3]
that at a local minimizer x̄ of f on M the following primal first-order necessary optimality condition holds:

{d ∈ Rn|Df (x̄)d < 0} ∩ ��(x̄, M) = ∅. (3.6)

To obtain a more explicit condition from (3.6) we need an explicit description of ��(x̄, M). A good candidate would
be the outer linearization cone L�(x̄, M) which contains the contingent cone by Lemma 3.5. The simple example

M = {x ∈ R|x2 �0} (3.7)

shows, however, that ��(0, M) can be a proper subset of L�(0, M). In this case we cannot replace the contingent cone
in (3.6) by the outer linearization cone.

On the other hand, in view of Lemma 3.5 it is always possible to replace the contingent cone in (3.6) by the inner
linearization cone. However, the example in (3.7) shows that the resulting optimality condition may be trivially satisfied
since L(0, M) can be void itself.

These observations give rise to the following definitions.

Definition 3.6. We say that the extended Mangasarian–Fromovitz constraint qualification (briefly: EMFCQ) holds at
x̄ ∈ M if L(x̄, M) �= ∅ and that the Extended Abadie constraint qualification (briefly: EACQ) holds at x̄ ∈ M if
��(x̄, M) = L�(x̄, M).

Note that EMFCQ coincides with the Mangasarian–Fromovitz constraint qualification [64] for finite differentiable
optimization problems. Furthermore it is obvious that EACQ coincides with the Abadie constraint qualification (ACQ,
[1]) for finite differentiable optimization problems. For a survey of the multitude of other constraint qualifications in
smooth finite optimization see [66].

In finite optimization MFCQ is stronger than ACQ. For GSIP this is not necessarily the case as an example in [86]
shows. We have, however, the following result:

Proposition 3.7 (Stein [84]). Let � be directionally differentiable at x̄ ∈ M , and let the directional derivative �′(x̄, ·)
be subadditive with respect to the direction. Then EMFCQ implies EACQ at x̄.

Explicit formulations of EMFCQ under different structural assumptions on the lower level problem Q(x̄) can easily
be obtained from the descriptions of L(x̄, M) in Section 3.4.

In general, for x̄ ∈ M MFCQ need not hold at each ȳ ∈ Y0(x̄); but, ȳ ∈ Y0(x̄) as a solution of the lower level problem
Q(x̄) satisfies the first-order necessary optimality condition of Fritz John [42]: there exist nonnegative multipliers �̄ ∈ R,
�̄ ∈ Rs , with

�̄�v�(x̄, ȳ) = 0, � ∈ L

and

DyL
0(x̄, ȳ, �̄, �̄) = 0, �̄ +

∑
�∈L

�̄� = 1, (3.8)

where

L0(x, y, �, �) = �g(x, y) − �Tv(x, y).
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In [47] it is shown, that the nonempty sets

F(x̄, ȳ) = {(�, �) ∈ R1+s |(�, �) satisfies (3.8)}
and

V (x̄) =
⋃

y∈Y0(x̄)

{−DxL
0(x̄, y, �, �)|(�, �) ∈ F(x̄, y)}

are compact. We use the approximations

H�(x̄, M) =
{
d ∈ Rn

∣∣∣∣ max
y∈Y0(x̄)

min
(�,�)∈F(x̄,y)

DxL
0(x̄, y, �, �)d �0

}

and

H(x̄, M) = {d ∈ Rn|wTd > 0, w ∈ V (x̄)},
of the outer and inner linearization cone of M at x̄, respectively, and introduce the following corresponding constraint
qualifications.

Definition 3.8. We say that EMFCQ* holds at x̄ ∈ M if H(x̄, M) �= ∅. We say that EACQ* holds at x̄ ∈ M if
��(x̄, M) = H�(x̄, M).

In order to generalize the Kuhn–Tucker constraint qualification KTCQ (cf. [56,94]) to GSIP define the cone of
attainable directions of M at x̄:

A(x̄, M) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

	 ∈ Rn\{0}

∣∣∣∣∣∣∣∣∣∣

There exist some 
 > 0 and a

continuously differentiable arc

C : [0, 
) → Rn such that C(0) = x̄,

C′(0) = 	, and C(t) ∈ M, t ∈ [0, 
)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(where C′(0) = (DC1(0), . . . , DCn(0))). In particular, it is clA(x̄, M) ⊂ ��(x̄, M) [29].

Definition 3.9. We say that the extended Kuhn–Tucker constraint qualification (briefly: EKTCQ) holds at x̄ ∈ M if
H�(x̄, M) ⊂ cl(A(x̄, M)).

EKTCQ is a stronger condition than EACQ*. In finite optimization, MFCQ is stronger than KTCQ; however, an
example in [29] shows that, in general, this is not the case for GSIP.

4. First-order optimality conditions

Assume throughout this section that the functions f, g and v�, � ∈ L are continuously differentiable. We present
three approaches to first-order conditions for x̄ ∈ M to be a local minimizer of GSIP. For a more detailed study on
first-order optimality conditions for GSIP we refer to [47,73,84,85,88].

4.1. A Fritz–John and a KKT condition

For a set A ⊂ Rn define its dual cone by A0 = {d ∈ Rn|dTx�0, x ∈ A}. Let x̄ be a local minimizer of GSIP. If
EKTCQ holds at x̄, then

V (x̄)0 ⊂ H�(x̄, M) ⊂︸︷︷︸
by EKTCQ

cl(A(x̄, M)) ⊂ ��(x̄, M) ⊂︸︷︷︸
by (3.6)

{Df (x̄)}0.
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If co(V (x̄)) is closed (co denotes the convex cone hull), then the latter condition V (x̄)0 ⊂ {Df (x̄)}0 is equivalent to
the KKT first-order optimality condition

Df (x̄) ∈ co(V (x̄)). (4.1)

Furthermore, without assuming any constraint qualification at x̄ we obtain the following Fritz–John first-order optimality
condition.

Theorem 4.1 (Jongen et al. [47], Guerra Vázquez and Rückmann [29]). Let x̄ ∈ M be a local minimizer of GSIP with
Y0(x̄) �= ∅ (if Y0(x̄) = ∅, a first-order condition reduces to Df (x̄) = 0). Then:

(i) There exist yj ∈ Y0(x̄), (�j , �j ) ∈ F(x̄, yj ), j = 1, . . . , p and multipliers �j �0, j = 0, . . . , p, not all of them
being zero, such that

�0Df (x̄) +
p∑

j=1

�jDxL
0(x̄, yj , �j , �j ) = 0. (4.2)

(ii) If EMFCQ* holds at x̄ ∈ M , then we obtain (4.1).
(iii) If EKTCQ or EACQ* holds at x̄ ∈ M and co(V (x̄)) is closed, then we obtain (4.1).

If EMFCQ* holds at x̄ ∈ M or when Y0(x̄) is finite, then co(V (x̄)) is always closed; however, if only EKTCQ
or EACQ* holds at x̄, then, in general, one has to assume the closedness of co(V (x̄)) in order to satisfy (4.1). It is
obvious that (4.2) describes a family of first-order optimality conditions which is parameterized by the choice of the
multipliers (�j , �j ) ∈ F(x̄, yj ), j = 1, . . . , p. In [47] it is shown that there do not exist for each possible choice of
(�j , �j ) ∈ F(x̄, yj ), j = 1, . . . , p corresponding multipliers �j �0, j = 1, . . . , p, not all of them being zero, such that
(4.2) can be satisfied. However, we have the following result.

Proposition 4.2 (Rückmann and Shapiro [73]). Assume that x̄ is a local minimizer of GSIP and that the optimal value
function � is directionally differentiable with

�′(x̄, d) = max
y∈Y0(x̄)

inf
�∈KKT(x̄,y)

DxL(x̄, y, �)d . (4.3)

Furthermore, choose for each y ∈ Y0(x̄) a vector of multipliers �(y) ∈ KKT(x̄, y) such that the set {DxL(x̄, y, �(y)),

y ∈ Y0(x̄)} is compact. Then, there exist yj ∈ Y0(x̄), j = 1, . . . , p and corresponding multipliers �j �0, j = 0, . . . , p,
not all of them being zero, satisfying (4.2) with

�0Df (x̄) +
p∑

j=1

�jDxL
0(x̄, yj , 1, �(yj )) = 0.

An example in [47] shows that a choice of �(y), y ∈ Y0(x̄) as described in the latter proposition is not always possible;
however, in the important case that Y0(x̄) is a finite set, such a choice always exists. In particular, if Y0(x̄) = {ȳ} is a
singleton and there exist �1, �2 ∈ KKT(x̄, ȳ) such that DxL(x̄, ȳ, �1) and DxL(x̄, ȳ, �2) are linearly independent,
then Df (x̄) = 0 [73].

4.2. First-order conditions obtained from the linearized problem

In the remainder of this section let x̄ ∈ M with Y0(x̄) �= ∅ and assume that � is directionally differentiable with
(4.3). We consider the following linearization of GSIP [73]:

Min Df (x̄)d s.t. d ∈ M1 (4.4)
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with

M1 = {d ∈ Rn|�′(x̄, d)�0}

=
{
d ∈ Rn

∣∣∣∣ inf
�∈KKT(x̄,y)

DxL(x̄, y, �)d �0, y ∈ Y0(x̄)

}
.

If the constraint qualification

{d ∈ Rn|�′(x̄, d)�0} = cl{d ∈ Rn|�′(x̄, d) < 0}
holds, then a first-order necessary optimality condition for GSIP is that d̄ = 0 is a local minimizer of (4.4). If one does
not wish to use a constraint qualification, one can consider the auxiliary directionally differentiable function

�(x) := max{f (x) − f (x̄), �(x)}. (4.5)

If x̄ is a local minimizer of GSIP, then x̄ is also a local minimizer of the (unconstrained) function � with �(x̄) = 0 and,
hence, �′(x̄, d)�0 for all d ∈ Rn. Obviously, the latter condition means that either the optimal value of the problem

inf Df (x̄)d s.t. d ∈ M2 (4.6)

is zero with

M2 = {d ∈ Rn|�′(x̄, d) < 0}

=
{
d ∈ Rn

∣∣∣∣ inf
�∈KKT(x̄,y)

DxL(x̄, y, �)d < 0, y ∈ Y0(x̄)

}

or M2 = ∅. Now, we assume for a moment that Y0(x̄) = {ȳ} is a singleton and that KKT(x̄, ȳ) is not a singleton. Then,
the feasible set M1 of (4.4) is the union of halfspaces (cf. Example 3.2), that is, the feasible set of the linearized problem
(4.4) is not convex! If, furthermore, d̄ = 0 is a local minimizer of (4.4), then for each � ∈ KKT(x̄, ȳ) it is also a local
minimizer of the problem

Min Df (x̄)d s.t. {d ∈ Rn|DxL(x̄, ȳ, �)d �0}
and the vectors Df (x̄) and DxL(x̄, ȳ, �) have to be linearly dependent.

4.3. First-order conditions based on quasidifferentiable functions

In the remainder of this section we assume that Y0(x̄)={y1, . . . , yp} and that MFCQ holds at each yj , j =1, . . . , p.
Following [73], we derive first-order optimality conditions for GSIP by using the calculus of quasidifferentiable
functions based on the linearizations (4.4) and (4.6). Let

Bj = −conv

⎛
⎝ ⋃

�∈KKT(x̄,yj )

DxL(x̄, yj , �)

⎞
⎠ , j = 1, . . . , p

(conv denotes the convex hull) and


(d, Bj ) = sup
	∈Bj

	Td, j = 1, . . . , p

be the corresponding support function. Since MFCQ holds at yj , the sets Bj , j = 1, . . . , p are compact. Then, (4.3)
implies

�′(x̄, d) = max{−
(d, Bj ), j = 1, . . . , p}
and, by Demyanov and Vasilev [16], we have

�′(x̄, d) = 
(d, C1) − 
(d, C2),
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where

C1 = conv

⎛
⎝ p⋃

j=1

⎛
⎝∑

v �=j

Bv

⎞
⎠

⎞
⎠

and C2 = B1 + B2 + · · · + Bp are compact sets, too. We obtain the following necessary and sufficient first-order
optimality conditions.

Proposition 4.3 (Demyanov and Vasilev [16], Shapiro [77]). (i) If x̄ is a local minimizer of GSIP, then

C2 ⊂ conv(C1 ∪ (Df (x̄) + C2)).

(ii) If

C2 ⊂ int(conv(C1 ∪ (Df (x̄) + C2))), (4.7)

then x̄ is a local minimizer of GSIP (int denotes the set of interior points).

Note that (4.7) means that �′(x̄, d) > 0 for all d ∈ Rn (where � is defined as in (4.5)).

5. Second-order optimality conditions

Assume throughout this section that the functions f, g, and v�, � ∈ L, are twice continuously differentiable and that
x̄ ∈ M is the point under consideration with Y0(x̄) �= ∅. In [36], second-order optimality conditions for GSIP have
been presented under the assumption that the reduction ansatz holds at x̄. Later, [74] derived second-order optimality
conditions for GSIP without assuming the reduction ansatz; the results in this section are taken from [74]. We also refer
to the related papers [53,79].

5.1. Second-order optimality conditions for an unconstrained nonsmooth problem

According to Section 4.2, if x̄ ∈ M is a local minimizer of GSIP, then x̄ is also a local minimizer of the (unconstrained)
function � (defined in (4.5)) with �(x̄) = 0. We start this section with a general discussion of first- and second-order
optimality conditions for the following unconstrained optimization problem:

(P ) Min �(x) s.t. x ∈ Rn,

where � is a real valued function which is locally Lipschitz continuous and second-order (parabolically) directionally
differentiable at x̄ ∈ Rn, where the latter condition means that � is directionally differentiable at x̄ and the limit

�′′(x̄; d, u) := lim
t↓0

�(x̄ + td + 1
2 t2u) − � (x̄) − t�′(x̄, d)

1
2 t2

(5.1)

exists for any d, u ∈ Rn. It is well known that directional differentiability and local Lipschitz continuity imply that

�′(x̄, d) = lim
t↓0

d ′→d

�(x̄ + td ′) − �(x̄)

t
,

that is, � is directionally differentiable at x̄ in the sense of Hadamard. Then, a first-order necessary optimality condition
for x̄ to be a local minimizer of (P ) is

�′(x̄, d)�0 for all d ∈ Rn. (5.2)

Denoting the cone of critical directions at x̄ by

C(x̄) = {d ∈ Rn|�′(x̄, d) = 0}, (5.3)
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a second-order necessary optimality condition is

�′′(x̄; d, u)�0 for all d ∈ C(x̄) and all u ∈ Rn.

According to (5.1), local optimality in the latter condition is verified along parabolic paths. Now, we recall the following
sufficient optimality condition for x̄: The second-order growth condition is said to hold at x̄ if there exist a constant
c > 0 and a neighborhood N of x̄ such that

�(x)��(x̄) + c‖x − x̄‖2 for all x ∈ N .

In particular, the second-order growth condition implies that

inf
u∈Rn

�′′(x̄; d, u) > 0 for all d ∈ C(x̄)\{0}, (5.4)

but, in general, (5.4) does not imply the second-order growth condition. In [9], the following regularity condition is
introduced which implies the equivalence of the second-order growth condition and (5.4) if (5.2) is assumed: � is called
second-order epiregular at x̄ if for any d and for t �0 and any path u(·) : R+ → Rn such that tu(t) → 0 as t ↓ 0, the
following holds:

�(x̄ + td + 1
2 t2u(t))��(x̄) + t�′(x̄, d) + 1

2 t2�′′(x̄; d, u(t)) + o(t2)

(R+ denotes the set of nonnegative reals).

Proposition 5.1 (Bonnans et al. [9]). Suppose that (5.2) holds and that � is second-order epiregular at x̄. Then, the
second-order growth condition holds at x̄ if and only if (5.4) is satisfied.

For a more detailed study on this kind of optimality conditions we refer to, e.g., [4,11,72].

5.2. Second-order optimality conditions for GSIP

Now, we return to GSIP and apply the foregoing general results to the function � defined in (4.5). As mentioned in
[74], a general discussion on the second-order epiregularity of the optimal value function � is too complicated with the
techniques currently at hand. Therefore, we will restrict ourselves to a particular subclass of GSIP and we will assume
the following conditions (A1)–(A4) at x̄ ∈ M .

(A1) LICQ holds at each y ∈ Y0(x̄).
(A1) implies for each ȳ ∈ Y0(x̄) that the set KKT(x̄, ȳ) is a singleton, say KKT(x̄, ȳ)={�(ȳ)} and that, restricted
to a neighborhood of ȳ, the set

�(x̄, ȳ) = {y ∈ Rm|v�(x̄, y) = 0, � ∈ L0(x̄, ȳ)}
is a subset of Y (x̄) and a smooth manifold. For a given d ∈ Rn define the following nonempty and compact
subset of Y0(x̄):

Y1(x̄, d) := arg max
y∈Y0(x̄)

DxL(x̄, y, �(y))d .

(A2) SCS holds at each ȳ ∈ Y1(x̄, d), i.e. ��(ȳ) > 0, � ∈ L0(x̄, ȳ).
(A1) and (A2) mean that, locally in a neighborhood of ȳ, the active inequality constraints v�, � ∈ L0(x̄, ȳ) can
be treated as equality constraints which implies that Y0(x̄) is a subset of �(x̄, ȳ).

(A3) For each ȳ ∈ Y1(x̄, d), the set Y0(x̄), locally in a neighborhood of ȳ, is a smooth submanifold of �(x̄, ȳ).

Consider the tangent space:

Tȳ� = {y ∈ Rm|Dv�(x̄, ȳ)y = 0, � ∈ L0(x̄, ȳ)}
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of the smooth manifold �(x̄, ȳ) at ȳ and the tangent space TȳY0(x̄) of the smooth submanifold Y0(x̄). Obviously, we
have TȳY0(x̄) ⊂ Tȳ�.

(A4) At each ȳ ∈ Y1(x̄, d) the following SOSC holds:

D2
yyL(x̄, ȳ, �(ȳ))|[TȳY0(x̄)]⊥∩Tȳ� ≺ 0.

By [78], (A4) is a necessary and sufficient condition for the second-order growth condition (for the lower level problem)
to hold locally around ȳ.

Assuming conditions (A1)–(A4) we obtain that the optimal value function � is locally Lipschitz continuous, second-
order directionally differentiable and second-order epiregular at x̄.

Proposition 5.2 (Bonnans et al. [9], Bannans and Shapiro [10], Shapiro [78]). (i) If condition (A1) holds, then � is
locally Lipschitz continuous and directionally differentiable at x̄ with (4.3) for all d ∈ Rn.

(ii) If, in addition, conditions (A2)–(A4) hold for a given direction d ∈ Rn, then � is second-order directionally
differentiable and second-order epiregular at x̄ with

�′′(x̄; d, u) = max
y∈Y1(x̄,d)

{DxL(x̄, y, �(y))u + Ed(x̄, y)},

where

Ed(x̄, y) = max
�∈Zd(x̄,y)

{�D2
yyL(x̄, y, �(y))� + 2dTD2

xyL(x̄, y, �(y))� + dTD2
xxL(x̄, y, �(y))d}

and

Zd(x̄, y) = {� ∈ Rm|Dyv�(x̄, y)� + Dxv�(x̄, y)d = 0, i ∈ L0(x̄, ȳ)}.

A careful calculation shows that a second-order necessary optimality condition for x̄ to be a local minimizer of
GSIP is that for any d ∈ C(x̄) (C(x̄) is defined as in (5.3) with � = �) the optimal value of the following problem is
nonnegative.

Min r s.t. (r, w) ∈ M3

with

M3 =
{
(r, w) ∈ R × Rn

∣∣∣∣DxL(x̄, y, �(y))w + Ed(x̄, y)�r, y ∈ Y1(x̄, d)

Df (x̄)w + dTD2f (x̄)d �r, in case Df (x̄)d = 0

}
,

where the last constraint does not appear if Df (x̄)d < 0. This latter optimization problem is a linear semi-infinite
programming problem which satisfies a corresponding constraint qualification of Mangasarian–Fromovitz type such
that its dual problem has the same optimal value. This dual problem provides the following necessary and sufficient
second-order optimality conditions for x̄ to be local minimizer of GSIP.

Theorem 5.3 (Rückmann and Shapiro [74]). Assume that a Fritz–John first-order optimality condition as in Theorem
4.1(i) holds at x̄. Furthermore, let conditions (A1) as well as (A2)–(A4) for any d ∈ C(x̄) be satisfied. Then:

(i) If x̄ is a local minimizer of GSIP, then for any d ∈ C(x̄) there exist finitely many yj ∈ Y1(x̄, d), j = 1, . . . , p and
�i �0, i = 0, . . . , p with

∑p

i=0 �i = 1 such that

�0Df (x̄) +
p∑

j=1

�jDxL(x̄, yj , �(yj )) = 0 (5.5)

and

�0d
TD2f (x̄)d +

p∑
j=1

�jEd(x̄, yj )�0.
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(ii) The following conditions are necessary and sufficient for the second-order growth condition to hold at x̄ with �
defined in (4.5). For any d ∈ C(x̄)\{0} there exist finitely many yj ∈ Y1(x̄, d), j = 1, . . . , p and �i �0, i = 0, . . . , p

with
∑p

i=0 �i = 1 such that (5.5) holds and

�0d
TD2f (x̄)d +

p∑
j=1

�jEd(x̄, yj ) > 0.

According to (A3), the set Y0(x̄) is locally in a neighborhood of ȳ a smooth manifold; [74] contains a corresponding
example where Y0(x̄) is locally a one-dimensional manifold which means in particular that the reduction ansatz does
not hold at x̄. Furthermore, [74] provides also a discussion for second-order optimality conditions for another particular
subclass of GSIP where Y0(x̄) is a finite set but, in general, the reduction ansatz does not hold at x̄.

We conclude this section with the following:

Remark 5.4. It is not difficult to see that under the assumptions in Section 5.1 the case C(x̄) = {0} (see (5.3)) implies
that x̄ is a local minimizer of order one, that is, with some c > 0 in a neighborhood N of x̄ the relation

�(x)��(x̄) + c‖x − x̄‖ for all x ∈ N

holds. In case of GSIP under the condition, that �(x) is directionally differentiable in the sense of Hadamard, then
the assumption C(x̄) = {0} for a feasible x̄ also implies that x̄ is a local minimizer of order one of GSIP (see,
e.g., [88]).

6. Numerical methods

Up to the present, numerical algorithms for general GSIP problems have been developed mainly from a conceptual
viewpoint. For some special structured problems, however, practical experiments have been achieved. In [51] an ill-
posed model with one-dimensional index set is treated. In [90] design centering problems and robust optimization
models have been solved numerically via the approach described at the end of Section 6.3 (see also [101]).

Roughly speaking, numerical methods for GSIP are based on the following two concepts:

• An extension of methods for common SIP to the GSIP case.
• A transformation (explicit or implicit) of GSIP into a common SIP.

Beginning with the first approach, in Sections 6.1, 6.2 and 6.3 we discuss how the primal, dual, and the discretization
method for SIP, respectively, can be adapted to work for GSIP. To do so, for the primal and the discretization method
the assumptions have to be strengthened considerably. In Section 6.4 we describe the second approach (we also refer
to [60]).

For an extensive overview on numerical methods in standard semi-infinite optimization we refer the reader
to [69].

In this exposition we cannot deal explicitly with all solution methods. We only mention here the homotopy method for
solving GSIP. This method is based on a structural and generical analysis of one-parametric families of GSIP problems
(cf. [49] for SIP and [33] for GSIP). We also only cite a new approach for computing the global minimizer of a
semi-infinite problem (cf. [8]). This method is based on lower and upper bounding procedures.

6.1. Primal methods, methods of feasible directions

The basic idea of the approach is as follows. Given xk ∈ M we compute a strictly feasible descent direction dk ,
that is,

Df (xk)dk < 0 and xk + 
dk ∈ M for all 
 > 0 small enough.

Then we proceed to a new point xk+1 = xk + 
dk ∈ M with f (xk+1) < f (xk).
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Conceptual method of feasible directions:
Step k: Given xk ∈ M .

(1) Compute a strictly feasible descent direction dk .
(2) Compute the solution 
k of min
>0{f (xk + 
dk) | xk + 
dk ∈ M} and update xk+1 = xk + 
kd

k .

We expect that (each convergent subsequence of) xk converges to a point x̄ satisfying the Fritz–John condition. For
SIP such a result holds under weak assumptions if dk is obtained as solution of the linear SIP (see [62]):

min
d,z

z s.t. Df (xk)d − z�0,

Dxg(xk, y)d − z� − g(xk, y) for all y ∈ Y ,

± di �1, i = 1, . . . , n.

Unfortunately the situation for GSIP is more difficult. The reason is that the (globally defined) function Dxg(xk, y)

in SIP must be replaced by the gradient DxL(xk, y, �) of the Lagrangian function which depends on y in a more
complicated way. To circumvent this problem the primal method could be considered under the stronger assumptions
of the reduction ansatz.

Method of feasible directions under the reduction ansatz: Let us consider a candidate minimizer x of GSIP and
assume that the reduction ansatz holds at all points near x (see Section 3.3). Then some method of feasible directions
can be applied to the locally reduced equivalent standard finite problem (cf. (3.5))

Pred(x): min f (x) s.t. �i (x) := g(x, yi(x))�0, i = 1, . . . , p. (6.1)

In such a method the derivative D�i (x) is given by DxL(x, yi(x), �i (x)) (see (3.4)).
There are different types of feasible direction methods. Apart from the classical Topkis–Veinnot variant there exist

more recent methods which use second-order information and have a better convergence behavior. As an example we
mention the Polak–He algorithm and refer the reader to [68, Section 2.6] for details. This feasible direction approach
enjoys the following general convergence property (see e.g., [17, Theorem 12.5] for the Topkis–Veinnot variant and
[68, Theorem 2.6.2] for the Polak–He algorithm).

Theorem 6.1. Suppose that the reduction ansatz holds at x̄ and that xk → x̄, where the iterates xk are generated
by the method of feasible directions applied to the finite problem Pred(x̄). Then at x̄ the Fritz–John condition (4.2) is
satisfied.

6.2. Dual methods, KKT methods

In this approach, some variant of the Newton method is applied to compute a solution of the KKT optimality
conditions for GSIP (i.e. (4.2) holds with �0 = 1).

This approach is essentially based on the reduction ansatz and it can directly be carried over from SIP to the
GSIP case. For more details, we refer to [34] (for SIP) and to [91,62] (for GSIP). Therefore, here we only sketch two
variants of this approach.

SQP-method based on the reduction ansatz:
Step k: Given xk (not necessarily feasible).

(1) Determine the local maxima y1, . . . , ypk of Q(xk) (see (3.3)).
(2) Apply Nk steps of a SQP-solver (for finite programs) to the problem (see (6.1))

Pred(x
k): min

x
f (x) s.t. �i (x) := g(x, yi(x))�0, i = 1, . . . , pk ,

leading to iterates xk,i , i = 1, . . . , Nk . Set xk+1 = xk,Nk and k = k + 1.

For a discussion of such a method combining global convergence and local superlinear convergence we refer to [34].
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In the case where the lower level problem Q(x̄) in (3.3) is a convex program (in the y variable) the following
alternative approach is especially useful (see [90] for details).

Recall that for x̄ ∈ M any active index y ∈ Y0(x̄) is a (global) maximizer of the lower level problem Q(x̄) and (under
some constraint qualification) y ∈ Y0(x̄) must satisfy the KKT condition DyL(x̄, y, �)=0 with some multiplier vector
��0. So we can consider the following relaxation of GSIP:

min
x,y,�

f (x) s.t. g(x, y)�0,

Dyg(x, y) − �TDyv(x, y) = 0,

�Tv(x, y) = 0,

��0, −v(x, v)�0. (6.2)

In fact, under a constraint qualification for Q(x), the feasible set of GSIP is contained in the (projection of the) feasible
set of (6.2). In particular, any solution (x, y, �) of (6.2) with the property that y is a minimizer of Q(x) yields a solution x
of the original program. If in addition to the constraint qualification, the problem Q(x) is convex, then (6.2) is equivalent
with the original GSIP program.

In the form (6.2), GSIP is transformed into a nonlinear program with complementarity constraints. To solve (6.2) a
smoothing (interior point) approach can be used. Here, the complementarity constraints �Tv(x, y) = 0 or (in view of
�T, −v(x, y)�0) equivalently ��v�(x, y)=0, �=1, . . . , L, are replaced by the conditions ��v�(x, y)=
, �=1, . . . , L,
where 
 > 0 is a small perturbation parameter. The corresponding perturbed problem represents a common finite program
which can be solved by standard methods. Convergence results for this approach and many numerical experiments are
given in [90]. We also refer to [101] where this technique is used to solve numerically a special type of design centering
problem appearing in the manufacturing of maximal volume gems.

We emphasize, that these dual methods are based of the reduction ansatz, so that the practicability of the method
strongly depends on the generic structure of the problems as discussed in Section 3.3.

6.3. Discretization method

This method also can, in principle, be extended from SIP to GSIP. The additional problem arising in GSIP is that
the index set Y (x) and thus its discretization Y ∗(x) depends on x. So, to ensure the closedness of the feasible set of
the discretized problems the discretizations have to be constructed in such a way that the grids Y ∗(x) depend (at least)
continuously on x. For simplicity we make the following assumptions.

Assumption A1. Let the feasible set M of GSIP be compact and assume that the set-valued mapping Y is continuous
on M and satisfies (6.4).

As in SIP, in a discretization method we chose a finite grid Y ∗(x) of Y (x) and solve the problem

P(Y ∗): min f (x) s.t. x ∈ M(Y ∗) := {x | g(x, y)�0 for all y ∈ Y ∗(x)}.
But different from SIP this problem is not a standard finite program since the index set Y ∗(x) changes with x. Even for
continuous index mappings Y (x) (i.e., the feasible set M(Y)=M is closed) the grid mapping Y ∗(x) is not automatically
continuous and thus the feasible set M(Y ∗) may be nonclosed (see [91] for a simple example).

To avoid this problem we assume that the mapping Y ∗ satisfies:

Assumption A2. Let assumption A1 hold and let the grid Y ∗(x) ⊂ Y (x) be defined by

Y ∗(x) = {y∗
i (x) | i = 1, . . . , i∗},

where y∗
i : M → C0 are continuous (smooth) functions. (How such a grid Y ∗(x) can be constructed is indicated

in [92].)
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Note that under the assumption A2 the problem P(Y ∗) becomes a finite (continuous or smooth) program:

P(Y ∗): min f (x) s.t. g∗
i (x) := g(x, y∗

i (x))�0, i = 1, . . . , i∗.

If we define the meshsize of a discretization Y ∗(x) ⊂ Y (x) by the maximum norm of the Hausdorff distance,

dH (Y ∗, Y ) = max
x∈M

{
max

y∈Y (x)
min

y∗∈Y ∗(x)
‖y − y∗‖

}
,

then the discretization method for SIP can be extended to GSIP as follows:
Conceptual discretization method:
Step k: Given a grid Y k(x) ⊂ Y (x) and a fixed small number � > 0.

(1) Compute a solution xk of P(Y k).
(2) Stop, if xk is feasible within the accuracy � > 0, i.e. g(xk, y)�� for all y ∈ Y (xk). Otherwise, select a (finer)

discretization Y k+1(x) and continue with step k + 1.

Theorem 6.2 (Still [92]). Let assumption A1 hold for GSIP and let a sequence of discretizations Y k(x) of Y (x) be
chosen such that for each Y k assumption A2 is satisfied. Suppose that dH (Y k, Y ) → 0 holds for k → ∞. Then, the
sequence of solutions xk of P(Y k) has an accumulation point x̄ and each such point is a solution of GSIP.

The so-called exchange methods can be extended to GSIP as well (see [92] for details). In general, exchange methods
are more efficient than the pure discretization approach as sketched above.

Due to the extra assumption that (at least locally) the grids Y k(x) ⊂ Y (x) have to be constructed to be continuously
(smoothly) depending on x, these discretization methods are not easy to implement and practical experiences have not
yet been achieved.

6.4. Transformation of GSIP into SIP

In principle, under appropriate assumptions, each GSIP can be transformed into an equivalent SIP. However such a
transformation is of practical value only in cases where this transformation is defined globally.

Globally defined transformation: The ideal situation is that the index set Y (x) is defined as follows. Suppose we
have given a nonempty, compact set Y0 ⊂ Rm and a function Tx(y) ∈ C1(Rn × Y0, Rm) such that for all x ∈ Rn,
Tx(Y0) = Y (x). Then obviously, the feasibility relation g(x, y)�0 for all y ∈ Y (x) can equivalently be described by
the SIP feasibility condition

ĝ(x, y) := g(x, Tx(y))�0 for all y ∈ Y0.

For a one-dimensional index set Y (x) such a transformation can be constructed easily. Suppose that the index set is
defined as Y (x) = [a(x), b(x)] with C1-functions a(x) < b(x), x ∈ Rn. Then we can chose

Tx(y) = yb(x) + (1 − y)a(x), y ∈ Y0 := [0, 1].
Also for higher dimensional index sets Y (x) such a global transformation exists if the set-valued mapping Y satisfies
the following star-shaped properties.

Assumption As . Let the feasible set M be compact. Assume that the sets Y (x) are star-shaped in the following sense:
There exist continuous functions c : M → Rm, r : M × Sm → R, satisfying for all x ∈ M, b ∈ Sm := {y ∈ Rm |
‖y‖ = 1}

c(x) + 
r(x, b)b

{∈ int Y (x) if 
 ∈ [0, 1),

/∈ Y (x) if 
 ∈ (1, ∞).

Here, int Y (x) denotes the interior of Y (x). Note that since Y (x) is closed this implies that for any x ∈ M the function
c(x) + r(x, b)b, b ∈ Sm gives a parameterization of the boundary �Y (x).
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Theorem 6.3 (Still [91]). Suppose that assumption As is fulfilled. Then the feasible set M of GSIP can be described
as

M = {x | ĝ(x, y) := g(x, Tx(y))�0 for all y ∈ Y0}, (6.3)

where Y0 = {y = (
, b) ∈ [0, 1] × Sm} and Tx(y) = c(x) + 
r(x, b)b. If moreover, for any fixed x, the function g(x, y)

is convex in y, then M is given by (6.3) with Y0 = Sm and Tx(y) = c(x) + r(x, y)y.

The following lemma gives a sufficient condition for As .

Lemma 6.4 (Still [91]). Let M be compact. As is fulfilled if the following holds:

(i) The set-valued mapping Y satisfies

Y : M ⇒ C0 with C0 ⊂ Rm compact. (6.4)

(ii) For any x ∈ M the functions v�(x, y) are convex functions of y ∈ C0 and v� ∈ C(M × C0, R), � ∈ L.
(iii) For any x ∈ M the Slater condition is satisfied, i.e. there exists a point yx ∈ Rm such that v�(x, yx) < 0, � ∈ L.

(This in particular implies that Y (x) has interior points.)

Remark 6.5. We emphasize that in practice it is not necessary to compute the transformation Tx(y) explicitly. It
suffices to compute the values of the function Tx(y) (and/or their derivatives) for points x, y attained by the actual
algorithm.

Locally defined transformation: The next result shows that, in theory, a GSIP can be transformed into a SIP problem
under much weaker assumptions. However, the transformations are based on locally defined transformations which are
then glued together by some partition of the unity argument (see [28,44,91,99] for details).

Theorem 6.6. Assume that the feasible set M of GSIP is compact.

(a) (Under LICQ [99]). Suppose that for any x ∈ M the condition LICQ is satisfied at all points y ∈ Y (x). Then, there
are finitely many C1-functions Gj(x, z) and sets Zj = [aj

1 , b
j

1 ] × · · · × [aj
m, b

j
m] in Rm, j = 1, . . . , P , such that

x ∈ M ⇐⇒ Gj(x, z)�0 for all z ∈ Zj , j = 1, . . . , P .

(b) (Under MFCQ [91]). Suppose that for any x ∈ M the condition MFCQ is satisfied at all points y ∈ Y (x). Then,
there are finitely many Lipschitz continuous functions gj (x, b, 
), j = 1, . . . , N , such that

x ∈ M ⇐⇒ gj (x, b, 
)�0 for all b ∈ Sm, 
 ∈ [0, 1], j = 1, . . . , N .

7. Final remarks

In analogy to standard semi-infinite programs, a long standing conjecture for generalized semi-infinite programs is
that generically the reduction ansatz holds at all local minimizers of GSIP. As the feasible set is then locally described by
finitely many smooth constraints, the optimality conditions are those of the locally reduced finite optimization problem.
Once this conjecture is proven, general purpose numerical methods could base on the latter optimality conditions as
termination criteria.

As we have pointed out, the reduction ansatz cannot be expected to hold everywhere in the feasible set. Still it may
be possible to give a classification of the possible generic local structures of the feasible set, including re-entrant corner
points and local nonclosedness. Also, a simple description for the closure of the feasible set in GSIP is desirable.

An ubiquitous problem of numerical semi-infinite programming, be it in standard or generalized form, is the com-
putation of the active index set of a feasible point. As we have seen, the computation of this set amounts to finding all
global solutions of the lower level problem, that is, to a demanding challenge for numerical reliability.

All these questions are currently under investigation and will be the subjects of future publications.
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