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I. Introduction 

For  the description of the mechanical be- 
haviour of linear viscoelastic materials a number 
of characteristic material properties is in use. 
So the relaxation functions in shear, J(t), in 
extension, D(t), and in compression, B(t), de- 
scribe the response of the material to a step- 
function H(t) in the corresponding stress. It 
can be shown theoretically that the relaxation 
functions are monotonically decreasing func- 
tions of time, whereas the retardation functions 
are monotonically increasing functions of time. 
It is obvious that Poisson's ratio of a visco- 
elastic material too is a function of time, so one 
could define a relaxation Poisson's ratio, c.q. 
a retardation Poisson's ratio. It cannot be 
proved, however, that these functions are mo- 
notonically decreasing, resp. increasing with 
time. In case of harmonic deformations a com- 
plex Poisson's ratio v* =- v' + iv" can be defined. 
But also here it cannot be proved that complex 
Poisson's ratio shows either the characteristics 
of a modulus or of a compliance. 

The variation of complex Poisson's ratio has 
been studied theoretically by Gottenberg and 
Christensen (1) for the special cases where either 
one or both of G' and G" assume finite non 
zero values and ~c' or ~c" tend to zero. It turned 
out that v' is varying between - 1  and 0.5, 
while v" may take positive or negative values. 
In a similar study Rigbi (2) discussed the special 
cases where either v" = 0 or ~c"= 0. 

An experimental study of the complex moduli 
and Poisson's ratio of several polymers was 
performed by the present author(3,4),  from 
which it appeared that v' > 0 and v" < 0. Using 

*) Part of this study was performed while the author 
was an employee of TNO, Delft. 
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these constraints on v' and v" Theocaris (5) 
deduced the sequence of the magnitudes of 
several loss angles. In this paper the same goal 
will be achieved along a different line and it will 
be shown that some propositions deduced by 
Theocaris (5) are either incorrect or only correct 
for a more severe constraint on v'. In accordance 
with the former authors we shall confine 
ourselves to homogeneous, isotropic materials, 
so two complex moduli (f.i. complex shear 
modulus G*(co) and complex bulk modulus 
K*(co)) suffice for a complete description of the 
viscoelastic behaviour. The only requirements 
regarding the form of a complex modulus is that 
both its real and imaginary part is non negative. 
This is a consequence of the requirements of 
non negative energy storage and non negative 
energy dissipation (6). The complex quantities 
to be discussed are: 

G*(i(o) = 

~c*(io)) = 

E*(ie)) = 

v*(i(o) = 

2*(it)) = 

L*(ico) = 

G'((~)) + iG'(c,)) - shear modulus 

K'(~o) + iK"(co)- bulk modulus 

E'(e)) + i E " ( e ) ) -  Young's modulus 

v'(eJ) + iv"O,))-  Poisson's ratio 

;o'((s)) + i)J'((o)- second 
Lam6 function**) 

;t*(ico) + 2G*(i~.) 

E(~o) + iE'((~J) - longitudinal modulus 

2. Calculations 

The relations between the various complex 
functions for an isotropic linear viscoelastic 
material are compiled in table 1. 

**) By its definition the second Lame function has not 
the properties of a modulus, i.e. both the real and 
imaginary part of 2"(i~) can be negative. The same 
applies to Poisson's ratio. 
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F rom table 1 we read: 

E* 
1 - 2 v *  = [ 1 ]  

3to* 

Equat ing the real and imaginary parts of both  
sides of eq. [1] and dividing one of the resulting 
equat ions by the other  one leads to: 

- 2 v "  ~c'E"- E' ~:" 
fl - 1 - 2v' ~c'E' + ~c"E" = tan(aE 6~) [2] 

with 
/(1¢ 

tan 6~ - = -  etc. 
K' 

For  a fixed value of fl eq. [2] represents in the 
v', v" plane a line through [½ ; 0] with the slope 
fl = tan(hE -- 8~), see fig. 1. This line is the locus 
of v* for this part icular  value of ( a E - a 0 .  
F rom [2] it follows further:  

v" = 0 ; v' 4= ½ ~ tana~ = tan6~.  [3] 

In the same way from 

E* 
1 + v * -  2G* [4] 

it follows 

-= - -  - tan(aG - 6e). [5] 
l + v '  

Eqs. [2] and [5] were derived before by Schwarzl 
and Burgers (7) in a somewhat  different way. 

For  a fixed value of ~ eq. [5] represents in 
the v', v" plane a line through [ - 1 ; 0 ]  with the 
slope - t a n ( a G  - aE). This line is the locus of v* 
for this part icular  value of (6G - 6E), see fig. 1. 
Obviously  v* is determined by two differences 
between loss angles. F r o m  [5] it further follows: 

v" = 0 ; v' (: - 1 --* tan 6G = tan 6E. [6] 

F rom [3] and [6] it is concluded:  

v" = 0  } 
--. tan a~ = tan 6 G = tan 6E. 

[7] 

In an earlier paper  Rigbi (8) concluded that 
v" = 0 if, and only if E" = G" = 0, which means:  
tanaE = tanaG = 0. F r o m  inspection of fig. 1 
(from which [7] is revealed directly) it is seen 
that the criterion of Rigbi (3) is only a special 
case of [7]. 

F r o m  fig. 1 it follows, using a simple geometric 
theorem, that for a fixed value of ( a G - a ~ )  

(all triangles ABC then have the same vertical 
angle) the locus of v* is a circle passing through 
[½;0]  and [ - 1 ;  0], intersecting the positive v' 
axis at the slope t a n ( a G -  at). Analytically this 
circle can be found from the relation 

K * =  G* 2 ( 1 + v * )  
3(1 - 2,,*) [8] 

Equating the real and imaginary parts of both 
sides of eq. [8] and dividing one of the resulting 
equations by the other  one leads to: 

tan6~ = {1 - v' - 2(v') 2 - 2(v") 2} t a n a a -  3v" 
{1 - v ' -  2(v') 2 - 2(v") z} + 3v"tan6G ' 

[9] 
from which follows: 

{1 - v' - 2(v') 2 - 2(v") 2} tan(OG - 6~) - 3v" = 0.  

[10] 

By complet ing the squares eqs. [10] can be 
written as 

4tan(aG - a~) 

4sin(aG - a~) ' 

which represents the circle mentioned.  
Now from G' >_ O, G" >_ 0 etc. it follows: 

0 < 6G.~.E < ~/2,  [12] 

so l aG-6~]  < ~/2. F r o m  inspection of fig. 1 
it is then learned that - 1  < v' < ½, which is 
the same range found from the theory of linear 
elasticity. 

For  a ~ = 0  the circle represented by [11] 
intersects the positive v' axis at the slope tan 6G. 
The latter circle was ment ioned before by 
Gottenber 9 and Christensen (1). If moreover  
6G = ~z/2, the centre of the circle is located on 
the v' axis (see fig. 2) and then the radius of the 
circle equals the maximum value of ]v"l. A 
similar situation arises for aG = 0 and a~ = 7r/2. 
F rom fig. 2 it is seen 

v"_< 

For  laG-6~1 _< 1.25 and l aG-a~ ]  < ~/2 v* is 
located in the shaded areas of fig. 1 and fig. 2 
respectively. 

In studying the mechanical  behaviour  of 
viscoelastic materials, besides techniques for 
measuring E* and G*, wave propagat ion  methods 

3 
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Fig. 1. Locus of complex Poisson's ratio v* for fixed 
values of 16a - 6el, 16E - 6~1 and 16 G - 6~1 respectively 

v T 1 

Fig. 2. Locus of complex Poisson's ratio v* for 
laa - 6~1 = n/2 

.O.5 

°, V I 

Fig. 3. Locus of complex Poisson's ratio v* for a fixed 
value of 16L -- 6~1 

0.5 

Fig. 4. Combination of figs. 1 and 3 for 0a > fie 

are in use f rom which both  G* and L* are 
determined.  It is of some interest therefore to 
include L* in our  examinat ions.  F r o m  table 1 
we read:  

= L* (1 + v*) [13] 
3(1 - v*) 

F r o m  [13] it is found that  for a fixed value of 
(fL - f~) the locus of v* is a circle the centre of  
which is located on the v" axis. This circle 
intersects the positive v' axis at the slope 
t an ( f  L--  f~) in [1 ;0] ,  see fig. 3. In fig. 4 we 
combined  figs. 1 and 3 for the case f~ > fiE. 
F r o m  fig. 4 the following relat ion is found from 
simple geometr ical  a rguments :  

- v'____~' _ tan {(fL -- f~c) -- ((~G -- fiE)}" [14] i -~- l _ y r  

This relat ion is of an ana logous  form as [2] 
and [5], but  it has not yet been ment ioned  in 
literature. It can be found analytically f rom 

L*/~c* = 6(1 - v*), 
G*/E* 

see table 1. 

3 .  R e l a t i o n s h i p s  b e t w e e n  l o s s  t a n g e n t s  

F r o m  fig. 1 it follows that  

v" >< 0.--~ tan6G -~ tan6E ~ tan6~.  [15] 

We can wonder  now whether  the posi t ion of 
t an fL  in this row can be located. F r o m  [14], 
[15] and [12] we conclude 

v" >< 0.--~ tan6L >< tan6~.  [16] 

Fur ther  we prove:  

v" <> 0.--~ tangL >< tan6~ [17] 

o r  

~c'+ ~G" G" 
v" % 0 *--, N 6--7- K ' +  4 , ~G 

which reduces to 

h2" G "  
v" X 0 ~ - - 7 -  X 

~¢ G' ' 

and  this indeed follows f rom [15]. 
Fur ther  we try to find the posi t ion of tan 6L 

with respect to tan fE. It is seen f rom table 1 
that  Im. L*/E*, the imaginary  par t  of  L*/E*, is: 
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/2E'(tanfL -- tan6~) 
Im .L* /E*= (E,) 2 + (E,,)2 

1 - v *  =Im. 
(1 + v*)(1 - 2v*) 

v "{ -  2(v') 2 - 2(v") 2 + 4v'} 
{1 - v' - 2(v') 2 + 2(v")2} 2 + {v" + 4v'v'} 2 " 

[18] 

Excluding [½; 0] the denominator of [18] is 
always positive. The numerator of [18] can be 
written in the form 

- 2 v " { ( v ' -  1) ~ + (v') ~ - 1}. 

From [18] it can be concluded therefore: 
V r' X 0 

} ~ tan6E <> tan6L. [19] 
(V' - -  1) 2 "t- (V") 2 < 1 

In the v',v" plane the equation ( v ' - 1 ) 2 +  
(v")2 = 1 is represented by the dotted circle 
in fig. 5. From this figure it is seen that the value 
of v' for which tan 6~= tanaL  depends on 
16a - 6~1. It is evident, however, that for v ~ > 0.2 
we have 

I / '  X 0 
} ~ tan fie ~ tan 6L. [20] 

v' > 0.2 

From fig. 5 it is also seen' 

V"v, <>< 00} --* tan6~ >< tan'SL' [21] 

Let us assume v' >0.2;  then from [15], [16] 
and [20] it follows: 

1/' 0 
--, tan6G ~ tanfE <> tan6L ~ tan6~. 

v' > 0.2 J [22] 
A proposition similar to [22] is given by 
Theocaris (5), viz. 

V'Tl 8K=.  " "' 
- 1 2 

/ 
/ 

/ 
/ 

/ 

5G='l'r/2 ;1~ K=0 ~ l J  

v'. 

Fig. 5. Illustration to the inequalities [19] and [20] 

v" < 0 / ~ tan 6G > tan fie > tan 6L 
v' > 0J  > tan6~ > tang,., 

where 

Iv'l tan 8,. = 

In deriving the proposition 

v " < : }  ~ t a n 6 ~ > t a n 6 L ' v '  > 

[23] 

Theocaris showed : 

v ' > 0  } 
v" < 0 ~ tan~E 

{(K,)2 -{'- (t<,,)2} > 4 { ( G , )  2 -{'- (G,,)2 } > tan6L. 

[243 
The proposition 

{(re,)2 + (x,,)2} > _~ {(6,)2 + (a,,)2} [25] 

is, without proof, claimed to hold rigorously 
by Theocaris (5). It is easily shown, however, 
that [25] is only valid with some restriction. 
From table 1 it follows: 

I1 + v*l 
t~:*r = ~ l G * l  

I1 - 2v*l 
o r  

{(~c') 2 + (U') 2} = ~-{(G') 2 + (G") 2} 

. + iv!; 
" [(i-2_-} v ~  ~ 2 j .  [26] 

So for [25] to be valid the following inequality 
must hold: 

(1 - 2v') 2 + 4(v") 2 < (1 + v') 2 + (v" )  2 

o r  

(V' - -  1) 2 -~- (V") 2 < 1 .  

With this restriction [24] renders into [19]. 
As for the proposition 

V"v, >< 00}tan6~ > tantS,, 

Theocaris (5) showed 

v'>0E } v ' < O  ~ t a n 6 ~ > t a n 6 , . .  

3 x " >  " 
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The  proposi t ion  3 • " >  E" is deduced by this 
au thor  f rom an argument  I could not  understand.  
N o w  from eq. [1] it is found:  

3~c" = E" (1 - 2v') + 2v"/tan6 E [27] 
(1 -- 2V') 2 + 4(V") 2 ' 

f rom which it follows that 3 ~c" > E" if 

(1  - 2v') + 2v"/tan6E > (1 ± 2v') 2 + 4(v") 2 , 

which after some manipula t ion  leads to 

[28] 

Eq. [28],  with < substi tuted by = ,  represents 
a circle passing through [0; 0] and [½ ; 0]. Fo r  
points within this circle 3 x" > E" and therefore 
t a n h ~ > t a n f i v ,  while for points outside this 
circle tan6~ > t a n @  

Another  bound  that could be established is 

v" -< 00 ,} 
v' > ~ tan6  G > tan6,, .  [29] 

E " > 2 G '  

Suppose 

G" Iv"[ 
- -  > - -  ; [ 3 0 ]  
G' v' 

now from [4] it follows: 

E'G' E"G" } v' = -1- 
2,{(G,)2 + (G,,)2 } - 1 

[31] 
E'G" - G'E" 

[v"l = - v "  = 2{(G,) 2 + (G,,)2 } 

In t roducing  [31] into [30] yields: 

E" > 2 G " .  

F r o m  [4] it also follows: 

E" = 2G" (1 + v') z +(v") 2 
1 + v' - v"/ tan3 E [33] 

So E" > 2G" if 

(1 + v') z + (v") 2 > 1 + v' - v"/ tan6~, 

which can be rewritten as 

+ 1 2 

Eq. [34],  with > substituted by --,  represents 
a circle passing through [ - 1 ,  0] and [0, 0], 
intersecting the positive v' axis at the latter 
point  with the slope - t a n  ~E, see fig. 6. On this 
circle 6 G = 6v, as is readily confirmed by simple 
geometr ic  arguments.  For  points outside this 
circle 6G > tS,,. In fig. 7 we combined figs. 5 and 6. 
Also shown in this figure is the circle represented 
by [28]. It is clear from this figure that for a 
given value of (6G - 6~) for which (6 G - ~ )  < 6 E 

v Q5 

Fig. 6. Graphic representation of [34] (with > sub- 
[32] stituted by =) to illustrate the inequality [29] 

t l°'5 ~ 1 2 

AB: tan6,. 
BC : tanfv 

~tan 6a 
C D :  ~tan6~ 

DE: tan6G 

Fig. 7. Combination of figs. 5 and 6, 
illustrating the various regions for 
which different inequalities are 
valid. In this fgure we chose 
6G--6K< 6~. 

> tan6c > tan6L > tan6E > tan6~ 
> tanfG > tan6E > tanfL > tan6~ 
> tan6~ > tan6z > tan6~ 
> tan 6, > tan6K 
> tan6E > tan6L > tan6~ > tan0,, 
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four regions can be distinguished as illustrated 
in fig. 7. 

A similar situation arises for v " >  0, v ' <  0; 
i.e. a relation analogous to [22] can be derived. 
The conditions v" > 0, v' < 0 have no practical 
value, however, as will be shown later on in 
this paper. For  the other combinations, viz. 
v" < 0, v' < 0 and v" > 0, v' > 0, no simple bounds 
can be established. 

4. On the second Lam6 function 

As mentioned before 2* is no real modulus, 
i.e. both 2' and 2" may be negative. The same 
applies to Poisson's ratio, but while limits can 
be set to the magnitudes of v' and v", this is 
not so for 2' and 2". 

A useful proposition connecting the signs 
of v' and v" on one hand and the sign of 2' on 
the other hand can be derived however. 

From table 1 it is read: 

3K'v* 
2* - - -  [35] 

l + v * '  

from which it follows: 

y, @ y,2 .~_ y,,2 __ y - t a n 6 ~  

2' = 3~:' (1 + v') 2 + (v") 2 [36] 

From eq. [36] it is concluded: 

> 0. [37] 
V" < 

A similar proposition cannot be established for 
2". With respect to the position of tan6a - 12"/2'1 
in [15] and [22] resp. it will be shown: 

v" ><0} 

2' > 0 ,--* tan6~ X tan6~. [38] 

2 " > 0  

Eq. [35] can be written as 

~c* 1 + v* 
- - -  [35a] 

2* 3 v* 

Equating the imaginary parts of both sides of 
this equation we find: 

K'2'(tan 6~ - 2"/2') - v "  
= [ 3 9 ]  

(232 + (2") 2 3 {(v') 2 + (v") 2 } ' 

from which [38] is seen to be valid. 
Eq. [38] was given before by Theocaris (5) in 

a different way where he took 2' > 0 and 2" > 0 

tacitly for granted, however. From [39] it also 
follows: 

v"~0 1 
2' < 0 ,--* tan6~ .~ tan6~. 

2 " < 0  

[403 

For  the remaining possibilities, viz. 2' > 0 ,  
2 " <  0 and 2 <  0, 2 ' >  0, no bounds can be 
deduced. 

Finally we prove: 

v" < ~tan6, ,  > tan6; .  [41] 

2 " <  

From table 1 we read: 

3K'v* 

1 + v *  ' 

from which it is found: 

2 • 
v---Z-= 3~* - 2*. [42] 

So 

2* 2'v'(tan6,, - tan6~) - 2" 
Ira. = = 3~c" , 

y* (V') 2 -1- (V") 2 

from which, together with [37], [41] is seen to 
be valid. 

Taking into account the fact that there is a 
strong experimental evidence that v' > 0(v' > 0.2 
respectively) and v" < 0 the main results can be 
summarized as follows: 

v '>00}  2' > 0, [37] 
1/' < 

2 ' >  

2 " >  

~ t a n 6 ~  > tan6a, [38] 

v>il V" < 

,~" < 
--, tan6,, > tan6; ,  [41] 

(2'> 0)J 
tan6G > tan6r > tan6K(> tan,5~), 

[43] 
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0.45 

0.40. 

0.35 

v' l 
0.30 

v " < 0  t 
v' > 0.2 

(2"> o) 

--* tan 6G > tan 6E > tan 6L 
> tan6~(>  tan6),). [443 

5. Experimental evidence 

To check the relations deduced two illustrative 
examples will be given calculated from data 
published by the present author (3). In fig. 8 
v' and v" are plotted vs. temperature for an 
isotactic polypropylene. This figure shows that 
over the whole temperature region measured 
v' > 0.2 and v" < 0. In fig. 9 2' and 2" are plotted 
vs. temperature for the same polymer. It is 

2,10 -2 

10 -2 

- 5 0  0 50 100 
• Temp I°C ) 

Fig. 8. Real part v' and imaginary part v" of complex 
Poisson's ratio v* vs. temperature for an isotactic 
polypropylene. Frequency 5 MHz 

seen that 2' > 0 in accordance with [37], while 
here 2 " >  0 too. In figs. 10 and 11 similar 
graphs are plotted for a high density poly- 
ethylene. Here too v' > 0.2, v" < 0 and 2' > 0 
over the whole temperature region, but now 2" 
changes sign three times. So for the first polymer 
[44] applies throughout, while for the second 
one the last part of [44] (tan6~ > tan64 with 

t an6~ . -  ) does not necessarily hold. In 

figs. 12 and 13 the relevant quantities are 
plotted for both polymers. (For clarity in fig. 13 
2"/2' is plotted instead of tan 6a.) From these 
figures it is seen that [44] holds, whereas this 
is not the case for [23] as in some temperature 
regions tan6~ > tan6,,, while in other ones 
tan6~ < tan~,,. Moreover it is seen that the 
curves in fig. 13 are in accordance with [41]. 

s..109 

T2. 
1 

- 50 0 50 100 
• T e m p  (04 

5.107 

.4 

.3 ) 

21 
1 

0 

Fig. 9. Real part :/and imaginary part 2" of the complex 
second Lam6 function vs. temperature. Same polymer 
as in fig. 8 and same frequency. 

0.50- 

0.45- 

0.40- 

0.35. 

0.32 

.10.103 

5 

Fig. t0. Real part v' and imaginary 
part v" of complex Poisson's ratio 
v* vs. temperature for a high 
density polyethylene. Frequency 
5 MHz 

0 
-100 -50 ,~_~ 0 50 100 150 

Temp FC~ 
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5.1o9 

-10 -50 Tem p (OC) 0 5'0 100 150 

5.10 z 

.5.10 7 Fig. 11. Real part )J and imaginary 
part 2" of the complex second 
Lame function vs. temperature. 
Same polymer as in fig. 10 and 
same frequency 

20,. 

tan 6 " 

l 
1o 

o / 

o tan ~. 

-20 () 5'0 
• Temp ~C) 

100 

Fig. 12. Various loss tangents vs. 
temperature for the polymer of fig. 8. 
Frequency 5 MHz 

10. 

tan& 

1 5- 

,,2 j 
j , ' / x  , tan~G 

f / *  =tan~E 
.,//~" ~tan~L 

/ " ~ \  /,,2" ,~ tan ~r 
/ /  '~k."~ / /  o tan 6K 

-100 

Fig. 13. Various loss tangents vs. 
temperature for the polymer of fig. 10. 
Frequency 5 MHz 

-50  Temp(OC)0 50 100 150 
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6. Phase shift in stress-strain relationship 

Let us consider an uniaxial stress experiment 
and let us face a cube oriented under n/4 radians 
with the stress direction, see fig. 14. The cube 
will be sheared over the angle qJ and it is readily 
shown that for small deformations the shear 
angle is given by ~O = (1 + v)g, which for har- 
monic stress turns into 

,I v 

i \x 

~ J  

Fig. 14. Physical interpretation of 7 - 
y,i 

1 + V '  

0 = (1 +.v*) 5. [45] 

F rom [45] and [5] we find that the principle 
strain 5 is in advance of O by the angle 

6G - fit = arct c~. 

The cube mentioned is subjected to the maxi- 
mum shear stress in the sample, only, which 
amounts to Tll/2. From this fact and eq. [4] 
the relationship [45] is also directly found. 
Eq. [45] provides in principle the possibility 
of measuring e. 

No such simple illustration of }, could be 
found. A physical interpretation of }, can be 
given in the following way, however. From 
table 1 it is seen that 

1 - -  v *  - v ' L *  2* [46] 

Now when a longitudinal wave is propagating 
in a material a volume element only shows a 
strain in the direction of propagation, i.e. no 
lateral contraction occurs. The components of 
the stress tensor for this type of deformation 
are: 

Tll = T22 = 2 " 5 ,  T33=(2*+2G*)g ,  TI~:j=0. 

The deformation therefore can be decomposed 
into two elementary deformations, viz. a universal 
expansion due to a hydrostatic pressure 2*5 
and a uniaxial strain due to the stress 2 G ' 5  
in the direction of propagation. For  the lateral 
contraction to be zero we must have 

2* 2 G ' v *  
3 t ~ -  E ~  [47] 

Further we see from table 1: 

L'v* 
2* [48] 

By eliminating 2* from [47] and [48] eq. [14] 
can be found. 

For  the volume change A V/V in an experiment 
with a harmonic uniaxial strain we have: 

AV/V = (1 - 2v*)g. [49] 

From [49] and [2] it follows that A V/V leads 
5 by the angle 6E - 6, = arctg ft. 

In fig. 15 the various quantities for the 
isotactic polypropylene mentioned before are 
shown. From [49] we further see that for volume 
changes to be in phase with longitudinal 

I0 
x=zaT 'o 

2.48°,, 6K 
LUME CHANGE 

/____~10° (~E =0.262 •X 
L I ,  F... x , ,  

P= A Re TG-VTV 
~v- 0.3 7 ~x 

Fig. 15. Phase relationships for the deformations and 
volume change for the polymer of fig. 8. Frequency 
5 MHz, temperature 50°C 

;,v-e~ ~'x 
v 

Fig. 16. Phase relationships assuming volume change 
to be in phase with longitudinal deformation 
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deformations v" must be zero, which is illustrated 
in fig. 16. Figures similar to our figs. 15 and 16, 
using the same experimental data, were given 
previously by Rigbi (8). Unfortunately this 
author (2) used two wrong arguments, viz. 

i) for v" = 0 volume changes are in phase with 
the principle stresses but at a phase angle 6 
in advance of the principle strains; 

ii) if volume changes are assumed in phase with 
longitudinal deformations, ~c"= 0. 

From [49] it is evident that both arguments are 
wrong and so are the figures of Rigbi (3) based 
on these arguments. 

Finally fig. 16 suggests a new experimental 
method for determining the loss angle in compres- 
sion, g)~, by measuring the angle which the volume 
change lags the stress. 

7. Discussion 

In the final relations [37], [40], [43] and [44] 
we assumed v' > 0, v" < 0, respectively v' > 0.2, 
v" < 0. Although theoretically - 1 < v' < ½ ex- 
perimentally established data for v' are always 
positive*). Negative values of v' mean that in an 
extension experiment length- and lateral de- 
formations have the same sign. Though formally 
allowed one would not expect such a behaviour, 
and in fact some authors (10) reject negative 
values of v' for that reason. Poisson (11) assumed 
in his pioneering work central forces and so 
arrived at a value of v ' =  0.25, a value which 
appears to be the lowest one found experi- 
mentally. Measurements of several investigators 
on many polymers, including filled ones, so far 
always revealed v' > 0.2. 

For  the imaginary part of v* we have 

v"_< 

v" > 0 would mean tan6~ > tan6 G, which is not 
in agreement with extensive experimental ev- 
idence. Some authors quote positive values of 
v" from their experiments, but these results are 
a matter of considerable doubt. So Thomson (12) 
not only found for an urethane rubber at room 
temperature and 100 Hz v" > 0, but also v '~  0.2, 
a value even lower than found for diamond 
(v' = 0.25). Measurements of Lepie (13) revealed 
a value of v" = 0.1 (values of v" in fig. 5 of his 

*) An exception is reported by Lewis and Tobin (9). 
As these authors also find values of v' > ½ not too much 
weight should be attached to their results, however. 

paper show an error in calculation of a factor 2) 
at room temperature and 0.5 Hz for a black 
filled rubber. From his data we calculated in the 
limit of zero strain tan6G = 0.07 and tan6~ = 1.7, 
a set of data which is hard to believe. On the 
other hand measurements of the present author 
on several polymers (3, 4, 14, 15) always revealed 
! ]rt ~ 0 .  

Summarizing one can state that there is a 
strong experimental evidence that v ' >  0.2 and 
v" < 0 for polymers, but there is no theoretical 
base for this rule and it may break dowtJ for 
other materials and/or  temperature respectively 
frequency regions. 

Summary 

Starting from the relations between complex dynamic 
moduli simple diagrams are deduced connecting the 
locus of complex Poisson's ratio v* =- v' + iv" in the 
complex v* plane with differences between various loss 
angles. From these diagrams the sequence of magnitudes 
of several loss angles appearing in linear viscoelastic 
theory is deduced. Although theoretically this sequence 
depends on the values of v' and v", it is found experi- 
mentally that for polymeric materials, due to the fact 
that the values of v' and v" are constrained to limited 
ranges, general rules can be given. The sequences 
deduced are compared with experimental data. Finally 
some relations are used to illustrate the phase rela- 
tionships between stress and deformations in an uniaxial 
stress experiment. From these relations a new method 
for measuring the loss angle in compression is sug- 
gested. 

Zusammenfassun9 

Mit Hilfe der Beziehungen zwischen komplexen 
dynamischen Moduln wurden einfache Diagramme 
konstruiert, in denen der geometrische Ort des kom- 
plexen Poisson-Verh~iltnisses v* =- v' + iv" in der kom- 
plexen v*-Ebene mit Differenzen zwischen verschie- 
denen Verlustwinkeln verbunden werden. Aus diesen 
Diagrammen kann auf die Reihenfolge der Gr6ge 
mehrerer in der linearen viskoelastischen Theorie auf- 
tretender Verlustwinkel gefolgert werden. Obwohl 
diese Reihenfolge theoretisch yon den Werten von v' 
und v" abh/ingig ist, wird experimentell gefunden, dab 
fiir polymere Substanzen allgemeine Regeln gegeben 
werden k6nnen. Dies findet seine Ursache in der Tat- 
sache, dab die Werte von v' und v" auf begrenzte Ge- 
biete beschr~inkt sind. Zum Schlug werden fiir einen 
einachsigen Spannungsversuch die Phasenbeziehungen 
zwischen den Spannungen und den Verformungen 
illustriert. Mit Hilfe dieser Phasenbeziehungen wird eine 
neue Methode f'tir die Messung des Verlustwinkels in 
Kompression vorgeschlagen. 
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