
Info Systems J (1 994) 4,213-233 m

Evolving information systems: meeting the
ever-changing environment
J. L. H. Oei, H. A. Proper* 8, E. D. Falkenbergt
University of Twente, Department of Computer Science, PO Box 21 7, 7500 A€ Enschede,
The Netherlands *, Department of Computer Science, University of Queensland, Queensland
4072, Australia and ?University of Nijmegen, Faculty of Mathematics and informatics,
Toernooiveld, 6525 ED Nijmegen, The Netherlands

Abstract. To meet the demands of organizations and their ever-changing envir-
onment, information systems are required which are able to evolve to the same
extent as organizations do. Such a system has to support changes in all time-and
application-dependent aspects. In this paper, requirements and a conceptual
framework for evolving information systems are presented. This framework
includes an architecture for such systems and a revision of the traditional notion of
update. Based on this evolutionary notion of update (recording, correction and
forgetting) a state transition-oriented model on three levels of abstraction (event
level, recording level, correction level) is introduced. Examples are provided to
illustrate the conceptual framework for evolving information systems.

Keywords: evolving information systems, information system concepts, meta
modelling, schema evolution, temporal information systems.

1 INTRODUCTION

Owing to the dynamic behaviour of organizations and their environment, organizations have to
deal with rapidly changing information needs. Given the fact that information is gradually
becoming a production factor of more and more importance, it becomes crucial to have infor-
mation systems which can easily be adapted to the same extent as these information needs
change. However, organizations are increasingly faced with the problem of obsolete information
systems. Information needs are not met, not adequately met or not met in time. The absence of
overdue arrival of correct information makes adequate management impossible and rightly
irritates the user. Besides the problem of the inadequate information supply of information, the
increase in automation costs (with regard to development, production and maintenance) is also
increasingly causing concern (Visschedijk & van der Werff, 1991).

Thus, in order to cope with rapidly evolving application domains, information systems are
needed which are more flexible than the current generation of information systems. Information
systems which are able to evolve to the same extent and at the same pace as their underlying

organizations are called evolving information systems (Falkenberg et a/. , 1992a-c; Oei et a/.
1992a). This paper discusses the need, the requirements and a conceptual framework for a
generalized evolving information system. This framework for evolving information systems
includes fundamental concepts and an architecture for such systems. In the architecture, a
distinction is made between a part that is application independent and time invariant and a part
that is not. The description of the former part is contained in the meta model, while the latter part
is described in the application model.

In the process of the development of a generalized evolving information system, we distin-
guish three subobjectives:

1 The design of a meta model and a language based on it. This language must be able to
support all aspects of evolution.
2 The implementation of a generalized information system shell which is based on that meta
model and language.
3 A suitable method for the process of designing, building up and maintaining an application
model.

The conceptual framework as presented in this paper forms the basis for the meta model for
such a generalized evolving information system. This meta model deals with all conceptual
aspects of evolution, i.e. the ability to update all the constituent parts of the application model,
without forgetting any aspect ever fed to the system, unless explicitly asked for. Furthermore,
update is not allowed to interrupt the activities of the organization system. It should be noted that
we do not deal with the evolution of user interfaces, implementation and technical aspects.

In this paper the meta model and the corresponding specification language(s) are assumed to
be stable. Changes are restricted to the application model only. In accordance with the termi-
nology introduced by Oei et a/. (1992b), this means that in this paper we restrict ourselves to
information systems supporting first-order evolution. Second-order evolution involves changes
in the meta model. This becomes particularly important for large organizations with various sorts
of application, and in which new sorts of applications also become necessary from time to time.
An approach towards second-order evolution is considered in Oei et a/. (1992b) and Oei &
Fa1 kenbe rg (1 994).

The need for support of evolution in information systems has already been recognized by
others. However, most of them restrict themselves to evolution of only part of the application
model, e.g. schema evolution (McKenzie & Snodgrass, 1991; Ariav, 1991; Roddich, 1991). In
McKenzie & Snodgrass (1990) a relational algebra is presented in which relational tables are
allowed to evolve, e.g. change of their arity. In this paper, we take a more conceptual approach
to the evolution of information systems. Furthermore, we do not restrict evolution to the data
model (and its population) only. We allow evolution of the application model as a whole. Others
discuss support of evolution by version management (e.9. Banerjee eta/ . , 1987; Katz, 1990;
Jarke et a/., 1992). The existence of versions assumes a series of replacements of system
versions by new ones, thus allowing interruption of the organization processes. In our evolving
information systems, however, only one system version exists at any time and captures the
complete history of information recorded as well. Updates of any part of the application model in

Empty system

=l
1

Validate
c system

increment

Update system
requests * (automatically)

Specify update

- -

Figure 1. Evolving information systems approach

this system have to be performed on-line. In our approach to evolving information systems,
there is no essential difference between the development phase of an information system and
the operation and maintenance phase. Our evolving information systems approach is
characterized by an iterative life cycle having the length of the organization’s existence. Starting
from an empty system, the application model of the system is built up and maintained by pro-
cessing update requests. These update requests are caused by changes in the organization
and/or changes in the (user) requirements. This evolving information approach is represented in
Fig. 1.

As stated before, the main requirement for an evolving information system is that it is able to
revolve to the same extent and at the same pace as the underlying organizations. The notions of
‘to the same extent’ and ‘at the same pace’ are now refined in more detail.

1 The information system allows update of all information that is dependent on the specific
organization domain (universe of discourse) of the information system. Our notion of update
which includes recording, correction and forgetting, is discussed in section 3. The specification
of information which is dependent on a specific organization domain is part of the architecture
for evolving information systems, as is discussed in section 2.
2 The information system allows correction of all information (previously) recorded in the
system. Information which has been recorded in the information system may appear to be
(empirically) invalid. In evolving information systems correction of this invalid information is
possible. The notion of correction is discussed in section 3. Note that the need for correction
results from validation and not from verification. Consistency is checked by the information
system itself.

JLH Oei, HA Proper& ED Fatkenberg

3 The system does not forget any information recorded in the information system unless
explicitly asked for. In other words, the complete history of information inside the information
system is kept, including that of correction, unless a user request or a law demands that
information has to be forgotten (e.g. because of privacy reasons).
4 Updates of the information system may not interrupt activities of the organization. The intention
of evolving information systems is to minimize the discrepancy between the information needs of
the organization and the information supply by the information system. For that reason, the
information system is required to remain available to users of the system in the case of updates.

A major consequence of these requirements is that the notion of time has to be introduced to
meet these requirements. Further, at least two distinct notions of time have to be distinguished. It
will be obvious that to meet requirement 3 events in the organization have to be recorded together
with their time of occurrence. The point of time at which an event occurs in the organization is
called the event time of that event. To perform corrections a roll-back operator is needed (see
below).This roll-back operator enables us to restore a former state of the information system. To
accomplish this, the point of time at which recordings of events take place in the information
system must be known. These points of time are called the recording times of events.

Our notions of event time and recording time are identical to the notions of valid time and
transaction time, respectively, in Snodgrass & Ahn (1986). (The reason for this renaming is that
the new names correspond better to the level architecture that will be introduced in section 3.)
The classification which is made in Snodgrass & Ahn (1 986) is based on the support of valid and
transaction time. In accordance with this classification (which distinguishes snapshot, historical,
roll-back and temporal systems), evolving information systems are temporal systems because
both valid and transaction time are supported. However, it should be noted that not all temporal
systems are evolving information systems. As we have seen in this section, evolving information
systems have to meet additional requirements.

2 THE ARCHITECTURE FOR EVOLVING INFORMATION SYSTEMS

The information systems which we will consider are restricted to information systems in which
the only actor performing information processing activities is computerized, This computerized
actor is called the information processor. The information processor may be formed from
several subprocessors, which may also be (physically) distributed. In this paper, however, the
specific aspects of distributed information systems are not taken into consideration.

The restriction to a computerized actor performing information system processing activities
corresponds to what has been defined (Verrijn-Stuart, 1989) as an information system in the
narrower sense ‘IS(N)’. In this paper, whenever we use the term information systems, we mean
information systems in the narrower sense. Conforming with our systems view on organizations
and information systems, a general architecture for information systems is presented (see also
Falkenberg eta/. 1992a, c). On the basis of this architecture the distinction between traditional
and evolving information systems is explained.

Evoking information systems

The information processor in an information system accepts input messages (requests),
which, among other things, may reflect changes in a state (events) in the universe of discourse,
triggering the information processor to perform activities. As a result of these activities, the
information processor may produce output messages (responses). These output messages are
received in turn by the universe of discourse, which is embedded in the environment of the
information system.

In an information system, the description of that part which is consulted by the information
processor to process user requests is called the processing model. (The description of the user
requests themselves is not considered to be part of the processing model.) The processing
model can be divided into a part which describes a particular universe of discourse, the appli-
cation model, and a part which describes the language (technique) in which this application
model is specified and can be manipulated. The latter part is called the meta model, and
contains the description of a classification of domain elements, general rules about these
elements, their behaviour and how they can be treated (Brinkkernper & Falkenberg, 1991).

As stated before, the meta model is application independent and time invariant. The appli-
cation model, however, is application dependent, and can be time variant. As a result, the meta
model is provided in a particular information system once and for all, while the application model
must be built up and maintained for each new application. The building up and maintenance of
an application model is done by the information processor, which acts on, or reacts to, events in
the universe of discourse (after receiving input messages) by consulting both the meta model
and the application model. Thus, unlike the meta model, the application model is not only input,
but also output, of the activities of the information processor. Besides update of the application
model, information can be retrieved from the application model as well. Messages are corre-
spondingly classified into update and retrieval messages. The language for formulating such
messages in an information system is based on the meta model of that particular information
system. The architecture discussed is depicted in Fig. 2.

This figure shows that the information processor (actor) performs the information processing
(activity), having requests, the meta model and the application model as input (operand), and
having responses and the (updated) application model as output (operand). Requests are
generated and responses are consumed by the universe of discourse (in the environment).

An application model can be subdivided further. On the one hand, we need a model of that
part of the perceived world (universe of discourse) that the interaction between the information
system and the environment is about. This model is called the world model. Many techniques for
describing world models distinguish in their language an information structure, a set of
constraints defined upon the information structure and a population of the information structure,
conforming to these constraints [e.g. entity relationship modelling (Chen, 1976), Natural Lan-
guage for Information Analysis Method - NlAM (Nijssen & Halpin, 1990; Wintraecken, 1990) or
Predicator Set Model - PSM (ter Hofstede eta/., 1992a; ter Hofstede & van der Weide, 1993)]

On the other hand, rules are needed which determine the actions of the information
processor. These rules are specified in what is called the action model. The action model can be
subdivided into a part that specifies activities - we call it the activity model - and a part that
describes the (trigger) relations between the activity model and the world model. We will refer to

JiN Oei, HA Proper & ED Falkenbeg

Information
Processor

.. ..'" ".... ...

Legend:

- Actor performing Activity - Information-flow
Actor

Figure 2. An (evolving) information system and its environment

this latter part as behaviour model. In the behaviour model, for example, the relationship
between events in the universe of discourse and the activities performed by the information
processor in the information systems is described. In other words, the behaviour model contains
the description of when activities, under which conditions, and what activities should be
performed by the information processor, whereas the activity model specifies how these
activities should be performed. Examples of modelling techniques for the activity model are data
flow diagrams (Gane & Sarson, 1986) or the A-schemas in Information Systems work and
Analysis of Changes (ISAC) (Lundeberg eta/., 1981). Petri-Nets (Genrich & Lautenbach, 1981),
task structures (Wijers eta/., 1992; ter Hofstede & Nieuwland, 1993) and the WHEN-IF-THEN
rules in REMORA (Rolland & Richard, 1982) are examples of techniques which are used for
modelling behaviour models. The subdivision of the processing model is illustrated in Fig. 3.
Note that there exist also (unified) modelling techniques, such as Telos (Jarke eta/., 1992) and
Transaction Modelling Technique (TMT) (ter Hofstede, 1993), which intend to specify both
world, activity and behaviour model. Furthermore, meta models and application models can be
specified either in one and the same modelling technique (language) or in different modelling
techniques (as will be shown in Fig. 4).

Example 2.1

To illustrate the subdivision ofprocessing models, a possible subdivision of the processing model

Meta
Model

Application
Model

Model i Model Model
w u

Act ion Figure 3. The structure of the
processing model. Model

of an information system supporting the calculation and registration of scholarships for Dutch
students is presented. In The Netherlands, every student receives a scholarship from the
government. The size of this scholarship depends whether students live on their own or with their
parents, the parents’ income and the amount of their extra earnings. In Fig. 4 three different
modelling techniques are used to describe the application model of this universe of discourse. The
world modelpart is described in an entity-relationship modelling technique, the activity model part
uses A-schemas of /SAC (Lundeberg et al., 1981), whereas event decomposition diagrams of
Yourdon (1989) are used for describing the behaviour model part. The language@) used for
Specification of the application model is based on the meta model of the information system.
Although we can use the same techniques fordescribingits meta model, in Fig. 4 the (partial) meta
modelis described in another modelling technique, namely NlAM (Nvssen & Halpin, 1989). Note,
however, that the specifications of the constituent parts of the processing model are incomplete.
For example, the instantiations of the conceptual schema at a particularpoint of time are omitted
from the application model. This example is simply intended to be illustrative.

On the basis of this architecture, the distinction between a traditional information system and
an evolving information system can be explained more specifically. In a traditional information
system in which the schema (type) versus instance dichotomy (e.g. Brinkkemper & Falkenberg,
1991) is applied to the application model, only the instances can be updated. That is schema
specifications, as well as activity and behaviour specifications (which are usually hidden in
programming procedures), cannot be updated in traditional information systems. Note that the
schema versus instance dichotomy is also applicable to the processing model as a whole. The
relationship between the meta model and the application model is that a particular application
model is an instantiation of the meta model of the technique in which the application model is
specified.

The intention of an evolving information system, however, is that the complete application
model will become updatable. As can be seen in Fig. 3, this application model is composed of
the world model (including both schema and instance specification), activity model and
behaviour model. In our scholarship system example, the need to update all specifications in the

World Model

Entity

ct

is-part-of

Change
Residence

Relat-

Change
Earnings

n

I
co1cu1.tion
Scholarship

Activity Model

I
Calculatron
Scholarship

Behaviour Model

is-output-of

is-input-of

triggers
Event

81 consists-of

precedes

wfeta
lode1

ipplication
Model

Figure 4. The processing model for the Dutch scholarship information system

application model is apparent, because the laws of the scholarship system in the Netherlands
appear to change frequently. For example, because of subsequent cuts in the total budget,
maximum study time has been limited over years.

Given a meta model for evolving information systems, a software environment for these
evolving information systems can be developed which is time invariant and independent of any
universe of discourse. Such an environment is called an evolving information system shell (EIS
shell). When an evolving information system has to be developed for a particular universe of
discourse, an application model describing this domain is built up and conforms with the
language defined in the (meta model of the) EIS shell.

The EIS shell is independent of any universe of discourse. Application models describing
different domains can be 'plugged' into the EIS shell. Furthermore, an EIS shell has to be
designed in such a way that it is independent of any software environment, i.e. independent of
any database management system andlor operating system. This is illustrated in Fig. 5.

3 U P D A T E I N E V O L V I N G I N F O R M A T I O N S Y S T E M S

In Falkenberg et a/. (1992a, c) a conceptual framework for update in evolving information
systems was introduced. This framework has been formalized by Falkenberg eta/. (1992b) and

Evoiving lnfomation systems

.

EIS Shell

Oracle DBMS

EIS Shell

Figure 5. The EIS shell: independent of any application model and software environment.

Oei eta/. (1992a). In this section, the framework is explained and illustrated by means of our
running example.

First of all, the notion of update in evolving information systems is summarized. The traditional
notion of update, namely addition, deletion and modification, is replaced by an evolutionary one
that is based on the possible reasons for update requests rather than internal database
operations. Three kinds of updates are distinguished, namely recording, correction and
forgetting. Recording of an event is the processing of an update request caused by a change in
the state of the universe of discourse. Update requests are formulated in a language that is
based on the meta model of the system. They are communicated to the system by the user.

During the operation phase of the system, incorrect recordings may take place. These
incorrect recordings are caused by accidental mistakes in the formulation of update requests or
because incorrect or incomplete information is available to the users. Incorrectness of these
kinds can only be detected by empirical validation. An information system reflects an organi-
zation correctly if and only if there exists an isomorphism between the states in the information
system and the states in the organization system being modelled. The order in which the events
occurred in the organization has to be preserved by this mapping (Falkenberg et a/., 1992a).
The order of processing update requests is of importance because of possible interrelationships
between events (as will also be shown in our example). For that reason, whenever it is detected
that this constraint is violated, a correction should take place. To accomplish this correction, an
operator has been introduced which retrieves a former state. This operator is called the roll-back
operator. The use of this roll-back operator is explained in one of the following subsections.

Based on this notion of update, a conceptual framework is presented which distinguishes

different types of state transitions on different levels of abstraction in the context of update in
evolving information systems. The levels distinguished are called the event level, the recording
level and the correction level. State transitions on the event level take place as a result of events
occurring in the organization, state transitions on the recording level are caused by recordings of
these events, whereas corrections of previous recordings cause state transitions on the
correction level.

3.1 The event level

It is generally assumed that the universe of discourse described in an information system
contains a set of stable states, and that there are a number of actions that result in a change of
state (state transitions) (see, for example, ter Hoftede & van der Weide, 1993). The states and
state transitions in a universe of discourse are modelled in an information system. The state of
an organization at a particular point of time is modelled by a set of modelling constructs which
we call application model elements. This set of application model elements constitutes the
application model state. Note that the types of application model elements (e.g. objects, entities,
relationships, activities, events, triggers, etc.) are dependent on the modelling technique used.

A state transition in the organization is modelled in the information system by means of a
transition of the application model state. A transition of an application model state can include
more than one elementary transition of an application model element. The elementary transi-
tions involved in a particular application model state transition depend on the trigger relation-
ships between the elementary transitions invoked by the transition in the organization.

A transition in the organization taking place at a particular point of time is called an
(organizational) event. The point of time at which such an event occurs in the organization is
called the event time of that event. These events are considered to occur on the organizational
level (Falkenberg et al., 1992a). The corresponding transitions in the information system are
considered to occur on the so-called event level. A sequence of these application model state
transitions is called an application model history (see Fig. 6).

Figure 6. Application model state
(AMS) transitions at the event level

Example 3.1

To illustrate our conceptual framework for update we now continue our example of the Dutch
scholarship information system. First of all, the application model is specified in a more detailed
way.

World model. The information structure of our universe of discourse can be specified in LISA-D
(ter Hostede et al., (1992b) as follows:

0 ENTITY-TYPE Student, Amount, Residence
0 LABEL-TYPE Residence-statusHAS-DOMAIN {'Parents', 'Independent')

EvoivinQ information systems

0 BRIDGE-TYPEResidence HASResidence-status
0 FACT-TYPE Scholarship:(getting-scholarship: Student, being-

0 FACT-TYPE Earnings:(having-earnings: Student, being-earnings-of:

0 FACT-TYPE Living:(living-at: Student, being-residence-of: Residence)
0 FACT-TYPE Parental-income:(having-parents-with: Student,

scholarship-of: Amount),

Amount)

being-parental-income-of: Amount)

Behaviour model. There are some rules concerning the calculation of a student's scholarship.
One of them is that when you live with your parents you receive FI 300, whereas you receive Fl
400 when you live on your own. Another rule states that the scholarship is cut whenever you
have some extra earnings exceeding a certain amount (200). This can be specified in the
behaviour model as follows:

0 WHEN BIRTHS (Student s living-at Residence r)
IF r = 'Parents'
THEN
CREATE(Student sgetting-scholarship Amount 300)

CREATE(Student sgetting-scholarshipAmount400)
ELSE

FI
0 WHEN BIRTH (Student s having-earning Amount y)
Ify> 200ANDStudentsgetting-scholarship Amount z

THEN Reduce-Scholarship(s , y , z)

Activity model. The way in which the scholarship is reduced in case of extra earnings exceeding
FL 200 is specified in the activity model as follows:

0 ACTIVITY Reduce Scholarship (8 , y, old)
BEGINnew:= o l d - 0.75 * (y - 200)
CHANGE (Student s getting-scholarship Amount o l d)
INTO (Student sgetting scholarship Amount new

END

From now on the history of a student called Jim is observed. From the information we
obtained from the environment we know that two events affecting Jim's scholarship have
occurred. The first event is that Jim started living on his own on 1 January 1990. The second
event says that 1 year later Jim found a job providing him with extra earnings of FL 300. The
application model history caused by these events can be derived from Fig. 6 by using the
following substitutions:

el=(BIRTH('Jim' living-at 'Independent') ATO1/01/90)
e2=(BIRTH('Jimr having-earnings 300) AT 01/01/91)
t1=01/01/90
t2=01/01/91
AMSO= {initial state)
AMS1=AMSoUFACT ('Jim' living-at 'Independent')

UFACT('Jim' getting-scholarship 400)
AMS2=AMS1 UFact ('Jim' having-earnings 300)

- FACT('Jimgetting-scholarship400)
UFACT ('Jim' getting-scholarship325)

Note that Jim's scholarship has been reduced from 400 (living independently) to 325 [400 - 0.75
x (300 - 200)] because of his extra earnings. The substitutions in Fig. 6 for our example result
in Fig. 7.

Lives: indep.

Get.: 325

Figure 7. Application model history for our example

3.2 The recording level

A second level is introduced on which state transitions take place: the recording level. When-
ever an event occurs in the organization, it should be communicated to the information system
by means of an update request. The processing of this update request, called the recording of
an event, should result in an appropriate state transition in the information system. The point of
time at which the recording of an event takes place in the information system is called the
recording time of that event. The resulting state transition is more than a single transition of an
application model state: it can be seen as a transition of the complete application model history
which modelled the history of the organization up to the occurrence of the newly recorded event.
A sequence of these application model history transitions due to successive recordings is called
an application model recording history. Such an application model recording history reflects
both the events occurring in the organization and the recordings of these events in the
information system. In Fig. 8, the graphical representation of an application model recording
history is given.

Example 3.2

In our Dutch scholarship information system, update requests are processed at the end of every
month. The recordings of the two events e 1 and e2 are formulated in a language based on our
framework for update.

AM History2
AM History1

_..
AM Historyo

............. .._

Figure 8. Application model history (AMH) transitions at the recording level

0 RECORDel(BIRTH('Jim' living-at'Independent')AT01/01/90)AT31/01/90
0 RECORDe2(BIRTH('Jim' having-earnings '300') AT 01/01/91) AT31/01/91

The application model recording history resulting from these recordings is obtained by further
substitufing T1=37/07/90 and T2=37/07/97 in Fig. 8. This results in an application model
recording history for our example which is represented in Fig. 9.

3.3 The correction level

In the process of recording events, mistakes can be made. Validation may reveal that
information about events in the organization which have been recorded in the information
system are empirically wrong. To perform corrections, an operation has to be introduced which
makes it possible to go back in a sequence of successive recordings. This operation is called the
roll-back operation.

In all cases which need a correction, i.e. the mapping between organization system and
information system appears to be non-isomorphic, a roll-back should take place to the latest

AM Historyo AM History1
. :. ..

. I

'_ Rec(e1 at 01/01/90) ; Jim:
. C

at 31/D1/91

.._..

Rec(e2 at 01/01/91) :'

at 31/01/91 :.
. . ' A M History2

.

Jim:

.

Figure 9. Application model recording history for our example

JLH Oei, HA Prupr & ED FMcenberg

application model history which is correct. Replacement, removal and insertion of a recording of
an event require a roll-back to the appropriate application model history in the application model
recording history of the information system. After performing the appropriate roll-back, all
correct (rolled back) events have to be rerecorded. In the case of a replacement and an
insertion, the first event recorded after the roll-back is the replacing event and the event to be
inserted, respectively. In Fig. 10, the performance of a correction by means of a roll-back is
represented.

A sequence of successive recordings, i.e. an application model recording history, can be seen
as the view of the world (organization) by the information system. A correction of this belief of the
world is performed by means of a roll-back, causing a transition of the current application model
recording history in the information system. A sequence of these application model recording
history transitions due to roll-backs is called the application model evolution, which is said to
take place on the correction level. In the same way corrections requiring the removal or insertion
of a recording of an event can be represented. In Falkenberg etal. (1 992a) more examples are
given and elaborated.

Example 3.3

Suppose in our running example that at 31/01/90, it is detected that Jim did not live on his own
when he became a student at 01/01/90, but that he still lived with his parents. The update
request for correcting this mistake is formulated as follows:

AM Recording History1 . . .

AM History1 AM History2
:kM Historyo

. : . .

.'

: n f T 1 .,

. _ . . ' .

: CORRECT Rec(e1 at t l)
: T O Rec(e; at t l) AT Tg

1
AM Recording History2

........................... ..

. . '

.......
AM History;

.
:kM Historyo AM History;

_.'
. :

. - AMS; - - 1 '
. .

._

.

Figure 10. Application model recording history (AMRH) transition at the correction level

Evolving information systems

0 CORRECTRECORDel(BIRTH('Jim' living-at 'Independent') AT01/01/90)
BYRECORDel'(BIRTH('Jim' living-at 'Parents') AT01/01/90) AT31/01/92

This correction is obtained from Fig. 10 by extending the substitutions of the previous figures
with:

T3=T4=T5=31/01/92 and
AMS;=AMSo U FACT ('Jim' living-at 'Parents')

0 AMS;=AMS; U FACT('Jim' having-earnings 300)
UFACT ('Jim' getting-scholarship300)

- FACT('Jim' getting-scholarship 300)
UFact ('Jim' getting-scholarship225)

Note that this example shows that it is really important to roll back the system to the latest
correct state and to perform the rerecordings of events afterwards. It is insufficientjust to correct
the latest state. If we onlyreplaced the FACT ('Jim'living-at 'Independent') by FACT ('Jim'living-
at 'Parents') in the latest application model state (AM&), it would have cost the Dutch
government a lot of money because Jim would still have received a scholarship of FL 325
instead of the correct FL 225. The resulting application model evolution for our running example
is represented in Fig. 1 1.

This concludes the explanation of the conceptual framework for update in evolving
information systems. It should be noted that the complete framework has been formalized
(Falkenberg etal., 1992b; Oei eta/., 1992a). On the basis of this formalization a prototype of a
generalized EIS shell is being implemented.

4. SCHEMA EVOLUTION I N EVOLVING INFORMATION SYSTEMS

The example provided in the previous section involved the recording and correction of
recordings of events on the instance level of (the world model) of the application model. It should
be noted, however, that the framework for update is applicable for updates of any part of the
application model. An event can be any change of state of the application model, i.e. an event
can also be a change of the schema, or the action rules in the application model. In the following
an example is provided of an evolving application domain, which involves in both changes the
schema and the action rules.

Consider a rental store for audio records (LPs). In this store a registration is maintained of the
songs that are recorded on the available LPs. In order to keep track of the wear and tear of LPs,
the number of times an LP has been lent is registered. The schema (or information structure)
and constraints of this universe of discourse are modelled in Fig. 12 in the style of Entity
Relationship (ER) modelling, according to the conventions of Yourdon (1989). Note the special
notation of attributes (Title) using a mark symbol (#) followed by the attribute (# Title).

An action specification in this example is the rule Init-freq, stating that whenever a new
LP is added to the assortment of the store, its lending frequency must be set to 0:

. . .
.

. Y ' " "

zKJO?S!H AV
. ' Z6/10/1E I*

' (i s / r o / r a a* c=)==n

.

. .
. . I Z6/10/1P IQ : +

(oe/ro/ro a* 1ab.n '.

._ . . ,
. . .

l A I O V ! H YVV OAl.OO?S!H h V A '
z h O l S ! H %!p303ax WV zs/ro/ra LV (zs/ro/rc ?= Ja)Ja.tl OJ, :

(06/10/1C 2% Ia)Ja.tl LL33.tl.tlO3

.
.

_ . . _

. Y '
zKlO?S!H W V . . '

. ' 16/lO/lE 1-

. . ' ~16/10/10 1. c a) a W

.

. . . 16/1O/IE 1- : .. *
.. (06lrolro a= 1a)o.n ..

.
rLlO'+s!H OAi,o~s!H ' ~ v

.
~ L I O ~ S ! H Bu!pio3ax mv

Evohiing lnfomation systems

Medium
Title
Artist

Figure 12. The information structure of
an LP rental store.

Song

Title
Author

Song

Title
Author

Frequency

Times

-L

0 ACTIONInit-freq=
0 WHEN ADD Lg : x DO
0 AddLP:xhas Lending-frequency0fFrequency:O

After the introduction of the compact disc, and its conquest of a sizeable piece of the market, the
rental store has been transformed into an ‘LP and CD rental store’. This leads to the introduction
of object type ‘medium’ as a generic term for LP and CD. The relation type ‘medium type’
effectuates the subtyping of ‘medium’ into LP and CD. In the new situation, the registration of
songs on LPs is extended to cover CD as well. The frequency of lending, however, is not kept for
CDs, as CDs are hardly subject to any wear and tear. As a consequence, the application model
has evolved to Fig. 13.

The action specification Init-f req evolves accordingly, now stating that whenever a
medium is added to the assortment of the rental store, its lending frequency is set to 0 provided
the medium is an LP:

Frequency

Times Figure 13. The information structure of
a i P and CD rental store.

JiH Uei, HA Proper & ED Fatkenberg

0 ACTIONInit-freq=
0 WHENADDMedium:xDO
0 IF LP: x THEN
0 ADDLP:xhas Lending-frequency0fFrequency:O

After some years, the CDs have become more popular than LPs. Consequently, the rental store
has decided to stop renting LPs and to become a CD rental store. This change in the rental store
leads to the information structure as depicted in Fig. 14. As a result of this evolution step, the
action specification Init-f reg can be deleted, since the lending frequency of CDs is no longer
recorded.

The three ER schemata and the associated action specifications, as discussed above, cor-
respond to three distinct snapshots of an evolving universe of discourse.

In our framework for update, updates of the schema (e.g. the birth of the CD and the death of
the LP) and updates of the action specification are managed in exactly the same way as updates
of events on the instance level were managed in the previous section. Update requests are
accepted or rejected by the information processor on the basis of the rules being specified in the
meta model, i.e. the rules for preserving consistency between schema and instances are also
part of the meta model. It should be noted that this issue of consistency is treated independently
from the evolution management discussed in the framework for update.

Several approaches can be adopted to guarantee consistency between schema and
instances. We consider an application model to be composed of distinct application model
elements (such as, for example, object types, instances, constraints). The specific application
model elements, and the relationships between them, depend on the chosen modelling
technique. As a consequence, the implications of evolution of application model elements
belonging to the schema also depend on the chosen modelling technique. In Veenstra et a/.
(1 991), for example, the detection and correction of population conflicts with scheme evolution
in object-role models, such as NIAM, is considered.

In Proper & van der Weide (1993), a more technique-independent approach is adopted.
Instead of maintaining the evolution of the application model as a whole (as in most
approaches for scheme versioning), it is proposed to maintain the evolution of each distinct
application model element, thus keeping track of the evolution of individual object types,
instances, constraints, etc. A (snapshot) version of the application model as a whole can
be derived from the (current) versions of its component application model elements. The
approach being proposed enables one to state well-formedness rules about the evolution of
distinct application model elements which are more or less independent of the chosen
modelling technique.

Evolving information systems

5 CONCLUSION

To meet the demands of organizations and their ever-changing environment, this paper
presented the requirements and a conceptual framework for evolving information systems. An
architecture was presented which divided the processing model into an application-independent
and time-invariant part, the meta model, and a part that is application dependent and/or time-
variant, the application model. Another subdivision was made into a world model, activity model
and behaviour model. Unlike traditional information systems, evolving information systems
allow update of all application dependent aspects, i.e. the complete application model, without
the need to interrupt the processes in the organization.

In order to handle temporal and evolutionary aspects in an evolving information system, we
revised the traditional notion of update, resulting in the three-element system: recording,
correction and forgetting. With this notion of update, we required the meta model to provide
concepts and axioms supporting the update of all constituent parts of the application model.
Furthermore, we required an evolving information system not to forget any aspect ever fed to
the system, unless explicitly asked for. The notion of updating the application model was
clarified by introducing a state transition-oriented model distinguishing three levels of abstrac-
tion (event, recording and correction level). This framework was illustrated by a concrete
example. It is claimed that the framework for update is applicable to a change in any part of the
application model. Preservation of consistency in the case of schema evolution is considered as
an additional, but separate, problem.

The conceptual framework proposed in this paper is the basis of a metal model for update in a
generalized evolving information system. In this meta-modelling process, further work is being
done. This work involves the formalization of the meta model (Falkenberg eta/., 1992b; Proper
& van der Weide, 1993) and the design of a language for manipulating and specifying appli-
cation models. Furthermore, a (prototype) information system shell based on that meta model
and that language is being implemented, and a design method is being developed for the
process of building up and maintaining an application model of an evolving information system
based on the presented evolving information systems approach.

ACKNOWLEDGEMENTS

The investigations were partly supported by the Foundation for Computer Science in the
Netherlands (SION) with financial support from the Netherlands Organization for Scientific
Research (NWO).

REFERENCES

Ariav, G. (1991) Temporally oriented data definitions:
managing scheme evolution in temporally oriented data-
bases. Data& KnowledgeEngineering, 6,451-67. (1987)

Banerjee, H.-T., Chou, J.F.. Garza, W., Kim, D. & Ballou, N.
Data model issues for object-oriented applications. ACM
Transactions on Office Information Systems, 5, 3-26.

Brinkkemper, S. & Falkenberg, E.D. (1991) Three
dichotomies in the information system methodology. In:
Bots, P.W.G., Sol, H.G. and Sprinkhuizen-Kuyper, I.G.
(eds) lnformatiesystemen in beweging, pp. 75-87.
Kluwer, Deventer.

Chen, P.P. (1976) The entity-relationship model: toward a
unified view of data. ACM Transactions on Database
Systems., 1, 9-36.

Falkenberg, E.D., Oei, J.L.H. & Proper, H.A. (1992a) A
conceptual framework for evolving information systems.
In: Sol, H.G. and Crosslin, R.L. (eds) pp. 353-375.
Dynamic Modelling of lnformation Systems /I. North-
Holland, Amsterdam. 1991.

Falkenberg, E.D., Oei, J.L.H. & Proper H.A. (1992b) A
Metamodel for Update in lnformation Systems. Technical
Report 92-05. Department of Information Systems,
University of Nijmegen, Nijmegen.

Falkenberg, E.D., Oei, J.L.H. & Proper, H.A. (1992~)
Evolving information systems: beyond temporal infor-
mation systems. In: Tjoa, A.M. & Ramos, I. (eds) pp.
282-287. Proceedings of the Data Base and Expert
System Applications Conference (DEXA 92), Valencia,
Spain, September 1992. Springer-Verlag, Berlin.

Gane, C. & Sarson, T. (1986) Structured System Analysis:
Tools and Techniques. IST Databooks. MacDonald
Douglas Corporation, St Louis.

Genrich, H.J. & Lautenbach, K. (1981) System modelling
with high-level Petri-Nets. Theoretical Computer
Science, 13, 109-1 36.

ter Hofstede, A.H.M. (1993) lnformation Modelling in Data
lntensive Domains. PhD thesis. University of Nijmegen,
Nijmegen.

ter Hofstede, A.H.M. & Nieuwland, E.R. (1993) Task
structure semantics through process algebra. Software
Engineering Journal, 8(l)< 14-20.

ter Hofstede, A.H.M., Proper, H.A. & van der Weide, Th.P.
(1 992a) Data modelling in complex application domains.
In: Proceedings of the Fourth lnternational Conference
CAiSE92 on Advanced lnformation Systems Engineer-
ing, Manchester, United Kingdom, May 7992, Louco-
poulos, P. (ed.) Lecture Notes in Computer Science,
593, 364-377.

ter Hofstede, A.H.M., Proper, H.A. & van der Weide, Th.P.
(1 992b) Formal Definition of a Conceptual Language for
the Description and Manipulation of lnformation Models.
Technical Report 92/10, Software Engineering Research
Centre, Utrecht.

ter Hofstede, A.H.M. & van der Weide, Th.P. (1993)
Expressiveness in conceptual data modelling. Data &
Knowredge €ngineering, 1 O(f), 6 5 1 00.

Jarke, M.. Mylopoulos, J., Schmit, J.W. & Vassiliou, Y.
(1992) DAIDA: an environment for evolving information
systems. ACM Transactions on lnformation Systems,
20(1); 1-50.

Katz, R.H. (1990) Toward a unified framework for version
modelling in engineering databases. ACM Computing
Surveys, 22,375-408.

Lundeberg, M., Goldkuhl, G. & Nilsson, A. (1981) lnfor-
mation Systems Development - A Systematic
Approach. Prentice-Hall, Englewood Cliffs, NJ.

McKenzie, E. &Snodgrass, R. (1990)Schemeevolutionand
the relational algebra. lnformationSysterns, 15.207-232.

Nijssen, G.M. & Halpin, T.A. (1989) Conceptual Schema
and Relational Database Design: a Fact Oriented
Approach. Prentice-Hall, Sydney.

Oei, J.L.H. & Falkenberg, E.D. (1994) Harmonisation of
lnformation System Modelling and Specification Tech-
niques. Memoranda lnformatica 94-07. University of
Twente. The Netherlands. In: Proceedings of the IFlP
W68.1. CRIS-94 Conference on 'Methods and Asso-
ciated Tools for the Information System Life Cycle',
Maastricht, The Netherlands, September 1994.

Oei, J.L.H. & Falkenberg, E.D. (1992a) Modelling the
Evolution of lnformation Systems. Technical Report 92-
36. Department of Information Systems, University of
Nijmegen, Nijmegen.

Oei, J.L.H., van Hemmen, L.J.G.T., Falkenberg, E.D. &
Brinkkemper, S. (1992b) The Metal Model Hierarchy: A
Framework for lnformation System Concepts and
Techniques. Technical Report 92-1 7. Department of
Information Systems, University of Nijmegen, Nijmegen.

Proper, H.A. & van der Weide, Th.P. (1993) Towards a
general theory for the evolution of application models. In:
Proceedings of the Fourth Australian Database Con-
ference, Brisbane, Australia, February 1993, Orlavska,
M.E. and Papazoglou, M. (eds). Advances in Database
Research, 346-362.

Roddick, J.F. (1 991) Dynamically changing schemas within
database models. The Australian Computer Journal,
23(3), 105-109.

EVOW~Q information systems

Rolland, C. & Richard, C. (1982) The REMORA metho-
dology for information system design and management.
In: Olle, T.W., Sol, H.G. and Verrijn-Stuart, A.A. (eds)
lnformation Systems Design Methodologies: A Com-
parative Review, pp. 369-426. North-Holland/lFIP,
Amsterdam.

Snodgrass, R. & Ahn, I. (1986) Temporal databases. lEEE
Computer, 19(9), 3542.

Veenstra, B.M.J.M., Oei, J.L.H. &van Smaalen, W. (1991)
Detectie en correctie van populatatieconflicten bij sche-
mawijzigingen (Detection and correction of population
conflicts with schema changes). Journal of Software
Research, 3(4), 48-55.

Verrijn-Stuart, A.A. (1989) Some reflections on the Namur
conference on information systems concepts. In: Falk-
enberg, E.D. and Lindgreen, P. (eds) lnformation System
Concepts: An In-depth Analysis, pp. IX-x. North-Holland
IFIP, Amsterdam.

Visschedijk, Th.H. & van der Werff, R.N. (7991)
(R)evolutionary system development in practice. Journal
of Software Research, December (special issue), 46-57.

Wijers, G.M., ter Hofstede, A.H.M. & van Oosterom, N.E.
(1992) Representation of information modelling knowl-
edge. In: Tahvanainen, V.-P. and Lyytinen, K. (eds), pp.
167-223. Next Generation CASE Tools Vol. 3 of Studies
in Computer and Communication Systems. IOS Press,
Trondheim, Norway.

Wintraecken, J.J.V.R. (1990) The NlAM lnformation
Analysis Method: Theory and Pracfice. Kluwer, Deven-
ter.

Yourdon, E . (1 989) Modern Structured Analysis. Prentice-
Hall, Englewood Cliffs, NJ.

Biographies

Han Oei is an assistant professor in the subdepartment of
fnformation Systems at the University of Twente, The
Netherlands. From 1990 to 1993, after receiving his master
degree in Computer Science (major in Business Infor-
matics) from the University of Groningen, he has been
involved in the evolving information systems project as an
assistant researcher at the University of Nijmegen. He is a
member of the IFlP WG 8.1 Task Group FRISCO investi-
gating the conceptual foundations of information systems.
His current research interests include (evolving) informa-
tion system methods, techniques and concepts, meta
modelling and (situational) method engineering

Erik Proper received his master degree in Computer
Science from the University of Nijmegen, The Netherlands,
in 1990. He is currently a PhD student at the University of
Nijmegen, The Netherlands, and expects to receive his
PhD before the summer of 1994. His main research inter-
ests include (evolving) information systems, information
retrieval, hypertext and knowledge-based systems.

Eckhard D. Falkenberg is best known for his pioneering
work on information modelling. His major research projects
have been on conceptual schemata, three-level database
systems and information system design methodology. He
has been affiliated with the University of Stuttgart, the
Siemens Research Laboratories in Munich and the
University of Queensland. Since 1986, he has been a Full
Professor of Informatics at the University of Nijmegen
(Netherlands). Professor Dr E.D. Falkenberg IS a member
of lFlP working groups on databases and information
systems. He is chairman of the IFlP WG 8.1 Task Group
FRISCO investigating the conceptual foundations of
information systems.

