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Abstract. Mutual information is used in a procedure to estimate time-delays between recordings of electroencephalogram 
(EEG) signals originating from epileptic animals and patients. We present a simple and reliable histogram-based method to 
estimate mutual information. The accuracies of this mutual information estimator and of a similar entropy estimator are 
discussed. The bias and variance calculations presented can also be applied to discrete valued systems. Finally, we present 
some simulation results, which are compared with earlier work. 

Zusammenfassung. Die Auswertung von Elektroenzephalogrammen bei Epilepsie-Kranken erfordert die Bestimmung von 
Totzeiten zwischen den einzelnen Aufzeichnungen. Hierzu sind Verfahren geeignet, die am informationstheoretischen Begriff 
"mittlere Transinformation" ankn/ipfen. In diesem Beitrag wird eine einfache und zuverl/issige Methode beschrieben, die 
mittlere Transinformation auf der Basis experimenteller Daten zu sch/itzen. Diskutiert werden Erwartungstreue und Varianz 
der vorgeschlagenen Sch/itzfunktionen. Die theoretisch erzielten Ergebnisse werden mit experimentellen Daten verglichen, 
die an Signalfolgen mit Gaul3-verteilten Amplituden gewonnen wurden. 

Rrsumr. L'information mutuelle est utilisre dans une procrdure pour estimer les retards temporels entre les enregistrements 
de signaux electroencrphalographique (EEG) provenant des animaux et patients 6pileptiques. Nous prrsentons une mrthode 
simple et fiable basre sur l'histogramme pour estimer l'information mutuelle. La prrcision de cet estimateur d'information 
mutuelle et celle des estimateurs d'entropie sont discutres. Les calculs de biais et de variance prrsentrs peuvent 6galement 
&re appliqurs aux systSmes /t valeurs discr~tes. Finalement, nous prrsentons quelques rrsultats de simulations qui sont 
comparrs aux travaux antrrieurs. 

Keywords. Mutual information, entropy, bias, variance, estimator, delay estimation. 

1. Introduction 

To estimate time-delays between recordings of electroencephalogram (EEG) signals we use a method 
based on maximum mutual information [8]. This procedure to locate epileptic foci has produced promising 
results [9, 10]. The method can be compared with the cross-correlation method, because both methods 
search for the maximum correspondence of pairs of samples (x(t), y(t - ¢ ) )  as a function of a time-shift 
z. In the case of a binormally distributed x and y, theoretically both methods are equivalent. These methods 
do not take the statistical dependence of subsequent sample pairs into account. An example of a method 
which does, is the maximum likelihood delay estimation method of Knapp et al, [7]. The mutual information 
method can handle those cases in which y is a corrupted non-linear response of x. Recently, this method 
was used to analyse human electroencephalogram signals [15]. 

We assume the x- and the y-signal are corrupted responses to a common cause and all signals originate 
from stationary stochastic processes. The probability density function (pdf) of the pair (x(t), y ( t -  ~-)) is 
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234 R. Moddemeijer / On entropy and mutual information 

denoted by f~y(X, y; ~) (notational conventions with respect to stochastic variables and estimators are 
explained in Appendix A). The time-shift maximizing the mutual information I{_x(t); _y(t - r)} is regarded 
as the delay of x with respect to y. In our present analysis the time-shift r does not play any role, so we 
suppress it. 

The definitions of entropy and mutual information go back to Shannon [ 14] and these are for continuous 
distributions 

n{y} = Hx = -f~ofx(X) logfx(x) dx, (1.1) 

H ( x , y _ } = H x y = - f ~ o f ~  fxy(X,y) logfxy(X,y)dxdy, ( 1 . 2 )  

, f x y ( x , y )  
X{x; y}= Ixy= f~of~ofxy(x,y) log f ~ )  dx dy. (1.3) 

We asume base "e" for the logarithm, so the unit of measurement is "nat".  We will use the shorthand 
notation Ixy instead of I{_x; _y} and similarly for the entropy. The mutual information is a function of 
entropies 

Ixy = Hx + Hy- Hxy. (1.4) 

Because of (1.4) we have to develop a theory to estimate Hxy only: the modifications to estimate Hx or 
Ixy are almost trivial, so we will concentrate on Hxy and we only present the results for Hx and Ixy. 

The estimation of mutual information and entropy is a two-step process: first the pdf  is estimated and 
thereafter the mutual information or entropy is calculated. In his work Mars estimated fxy(X, y) by a kernel 
method [3, 13] and he calculated from this estimate I~y by numerical integration. The main disadvantages 
of this method were: its complexity, the inefficient computation (mainly because he determined the optimal 
kernel-width iteratively), and the lack of understanding of the statistical properties. 

We discretize x and y and estimate the pdf, represented by a histogram; thereafter we calculate flxy 
from this estimate. The problem of choosing the optimal kernel-width is replaced by the problem of 
choosing the optimal rectangular grid dividing the xy-plane into cells. 

2. The estimator function 

We define a rectangular grid in the xy-plane by lines parallel to the axes dividing a part of the xy-space 
into (I  x J) equally sized (Ax x Ay) cells with coordinates (i,j). The origin and the grid are chosen with 
the histogram covering the area Ix -  E I < 3tTx and lY-)~l < 3tTy. We define a probability Po of observing a 
sample in cell (i,j) with 

f f fxy(X,y) dxdy~-fxy(xi, yj) AxAy (2.1) 
cell(/.j) 

and (x,, yj) representing the centre of the cell. The number of samples observed in cell (i, j )  is k0: the total 
number of samples equals N. We neglect the probability of observing a sample outside the histogram. 
Row and column sums are denoted by 

J ! 
k,. = Y~ ki~, k.j = ~ k,j. (2 .2)  

j ~ l  i=1 
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If the samples are independent, the stochastic variables _k 0 are multinomially distributed [1] with expecta- 
tions 

E{ko} =/~J = NPÜ (2.3) 

and covariances 

COV{k 0, kin,} = NPo(1 - p ~ ) ,  if i = m and j = n, 

= - Npup,,.,  all others. (2.4) 

The third- and fourth-order central moments of  the multinomial distribution are 

E{ (k 0 -/~u)3} = N ( Z p 3  _ 3p~ + Po), 

E{(k ° /~0)4} 2 4 3 2 - = N 3 ( p u - 2 p o + p o ) + O { N  }. (2.5) 

If the pdf  is approximately constant within a cell, a reasonable approximation of the entropy would be 

Hxy ~ -  E Ax  Ay" f~y(Xi, y~) Iogf,:y(X,, yj) 
i,j 

- }'. pu(log pij - log(Ax Ay)). (2.6) 
t,J 

If we omit the boundaries of a summation over i or j, we mean summation from i = 1 t o / ,  respectively 
from j = 1 to J. For the time being we assume that replacing pu by k ~ / N  results in a proper estimator 
function of  Hxy. Similarly, we define the estimator functions of  Hx and Ixy 

[ k~. 1 k,.~ Ax=-z   og ) +logax, (2.7) 

,, / k o ko\ 
HxY = -Zi,j ~ l o g ~ )  +log (Ax Ay), (2.8) 

k o koN 
Ly = 2 ~ log (2.9) 

i,j ki.k.j" 

Replacing ko, k~., respectively k.j, by ko, ki. and k.j provides us with estimates of entropy and mutual 
information. We study the bias and the variance of the estimators. If necessary, we improve these estimators 
by bias correction. 

3. Bias 

The bias is considered as a sum of two components: 

(1) R-bias, caused by insufficient representation of the pdf  by the histogram, and 
(2) N-bias, due to the finite sample size. 

The behaviour of both components is different: R-bias is constant and a priori determined by the pdf  
and by the estimation method, N-bias depends on the sample size (N-)  and tends to zero for N ~ o o .  
After sub-division of the R-bias into two separate sources (a) and (b) we end up with three causes: 

(a) limited integration area (R-), 
(b) finite resolution (R-), and 

(c) non-linear transformation of  unbiased local density estimates to contributions to the entropy (N-). 
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236 R. Moddemeijer / On entropy and mutual information 

In reverse order we present an approximation of the bias caused by these sources. 
(c) The entropy estimator according to (2.8) is in fact a non-linear function of probability estimators 

_ko/N. Because in the case of a (non-linear) concave function like - a  log a: E{-_a log _a} ~< -E{_a} log E{_a} 
if _a > 0, we expect a biased estimator. The stochastic variable: probability estimator _ko/N is affected by 
a random estimation error. Because - _ k j N  log _k~j/N is a concave function both positive and negative 
deviations of k J N  from its mean ~j /N  will cause a less than proportional deviation. Therefore the 
entropy will on the average be underestimated due to cause (c). We approximate this bias for every cell 
(i,j) by taking the first four terms of a Taylor expansion of (2.8) in k U --/qj 

(k 0 _/~)3 4 x 
+ 6 N ~  ~-Ro(ko)j +log(Ax Ay), (3.1) 

in which R4(ko) is the remainder of the Taylor expansion. We replace the formal parameters k o by the 
stochastic variables _k~j, we assume independent samples so _k 0 is multinomially distributed and we take 
the expectation 

(_ /q j  /qj [ 1 1 - E{(_k U -/~0) 2} 
E{Hxy} 

E{(_k,, - £j)3} ) 
+ 6 N ~  t- E{R4(k0)}_ + log(Ax Ay). (3.2) 

The linear term vanishes and for the variance of k 0 we substitute (2.4). If N + oo, the third-order term is 
due to (2.5) of the order N -2 and the expectation of the remainder is in the same order, see Appendix B 

,, [ ~j ~j\ I J - 1  [ 1 ] 
E{Hxy} = ~ ~ - ~  log ~ ) - - - ~ - +  O / ~ 5 ~  +log(Ax Ay), (3.3) 

and similarly for 0x and !~ .  The expression H - 1 represents the number of degrees of freedom of the 
histogram: I x J cells with probabilities Po with the condition that the sum of the probabilities equals one. 
Due to bias (c) the entropy will, on average, be underestimated and the underestimation deteriorates with 
descreasing number of samples per degree of freedom. In 1955, by a slightly different method, Miller [11] 
derived a first- and second-order approximation of the bias caused by (c). Our approximations confirm 
Miller's; for a discussion see Section 5. If/qj + 0, because of the slowly converging Taylor expansion (3.1), 
the approximation (3.3) loses its usefulness; this case will occur if there are too many cells and some of 
them are almost empty. 

(b) Also without the statistical effect in (c), the finite resolution leads to a bias of /-}~ because 
f,,y(x,y) is not constant within a cell. We study this bias locally (for one cell). Assume for the 
moment the pdf  is approximately linear within the cell (see Fig. 1). Because of the concaveness of 
-fxy(X, y) logf~y(x, y), the integral over one cell of this function will be smaller than the approximation 
-fxy(X~, Yi) " log(f~y(xi, yj))Ax Ay, which causes bias (b). To determine this bias we determine the difference 
between the entropy contribution h 0 of cell (i,j) calculated by 

 0=If 
cell(i , j)  

Signal Processing 
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Fig. 1. Bias (b) caused by finite resolution for a one-dimensional pdf. On the left-hand figure curve (1) is the true pdf, (2) its linear 
approximation in x = x~, and (3) the average within a cell of curve (2). On the right-hand figure the entropy contributions of the 

corresponding left-hand curves are shown. Curve (4) is the average within a cell of the right-hand curve (2). 

and its approximat ion  according to (2.6) 

/7~j = -p0.(log pi~ - log(Ax Ay)). (3.5) 

First we express (3.5) as a funct ion offxy(X, y) and its derivatives in (xi, yj) and thereafter  we do the same 

for (3.4). The difference between /~0 and h o leads, for each cell separately, to an expression for the bias 

(b). We calculate the probabil i ty Po by approximat ing  the integrand of  (2.1) by a second-order  Taylor  

expansion in (xi, yj) 

Pu "~ (fxy(X~, y~) + Afxy(Xi, y~) ) Ax Ay, (3.6a) 

with 

0 0 ~2 

cell(i,j) 

02 1 82 ) 
+ axiayjf~y(X,, yj)(x - x,)(y - y 2 ) + 2  -~y~fxy(X,, yj)(y _yj)2 dx dy, (3.6b) 

Note  that  integral (3.6b) only depends on the third and the fifth term of  the in tegrand because terms 
linear in x or  y or  x and y vanish. The result is small and will be shown to be irrelevant in our  calculations. 
N o w  we are able to express (3.5) as a funct ion offxy(X~, yj) and its derivatives: 

fl~j ~ -(fxy(X,, yj) + Afxy(X,, yj) ) Ax A y log(fxy(x,, yj) + A fxy(Xi, yj) ) 

~- - ( fxy (xi, yj)Iogfxy(x~, yj)+ (1 + log fxy(x,, yj)) Afxy(X,, yj)) Ax Ay. (3.7) 
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The approximation of  /~0 by an expression linear in Af~y(x,, yj) is consistent with the second-order 
approximations we usually make, because the term quadratic in Afxy(Xi, yj), which is omitted, is propor- 
tional to Ax"Ay" with n + m = 4. 

We approximate the integrand of (3.4), as we did to calculate Po, by a second-order Taylor expansion 
in (xi, yj) 

1 
h ° ~ f f ( - f x y ( x ' ' y j ) l ° g f x ~ ( x ' ' y j )  2L~(x,,y~) 

c e l l ( i , j )  

x (--L,(x~,  yj)(x - x,) +-~-~yjZ,(x,, y~)(y - Ox~ dx dy 

- (1 + log fxy(xi, yj)) Afxy(Xi, yj) AX Ay. (3.8) 

We substitute (3.7) into (3.8) and integrate. The term dependent on Afxy(x,, yj) vanishes 

_fz,~ho+24f~y(x,,yj) (Ax)2+ (Ay) 2 AxAy. (3.9) \ ayj / 

Substitution of (3.9) into (3.3) and approximation of  the summation for all (xi, yj) by an integral over x 
and y leads to an approximation of E{0xy}: 

<x3 

- 2--~- 24fxy(x,y)\ \  Ox " (Ax)2+ (Ay) 2 dxdy. 
- o o  

(3.10) 

A similar expression can be derived for E{0x} 

¢o 

E,[Ox} = H _ I - 1 +  f 1 (~fx(X)~ 2 
2 N  24f~(x) \  ox / (ax)2dx" (3.11) 

- o o  

The bias caused by (b) depends on the cell sizes and deteriorates with increasing cell sizes. The integral 
expressions in (3.10) and (3.11) measure the smoothness of the pdfs. If these are smooth, the first derivatives 
are almost zero and the squared first derivatives hardly contribute to the result, so the bias reaches a 
minimum. Substitution o f  a normal distribution with arbitrary mean, variances o-~ and O-y and correlation 
coefficient p into (3.10) and (3.11) leads to 

E { ~ _ x } = H x _ I - l + l { A x ]  2 
2N 24\~r~1' (3.12) 

E{O~y}=Hxy ' J - 1  _ 1 ({Ax~ 2 (~yy)2) 
2 N  24(1-p2)\\o-x] + ' (3.13) 

2 N  24 (~ -  p 2 -t- ~yy )  ) .  (3.14) 

Note, in case of  normal distributions, the absolute values of both the R-bias and the N-bias are smaller 
in Zy than in 0~y. 
Signa l  P roces s ing  
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(a) Although the integration variables of (1.2) run from -co to o0, the histogram only covers a finite 
area. In case of a binormal distribution and a histogram with Ix-~l  < 3tr~ and ly-Yl < 3~y, this leads to 
a bias of Zy in absolute value smaller than 0.01lily +0.019lpl [12]. This error is small compared to the 
bias caused by (b) and (c). 

4. Variance 

To calculate the variance we use a method similar to the calculation of bias (c). We approximate the 
entropy contribution of every cell (i,j) by taking the first two terms of a Taylor expansion of (2.8) in 
k 0 =/qj, instead of the four terms of (3.1), and replace k 0 by _k 0 

n xy=~L j ^  -- l o g - ~ -  k - ~ / ~ J  ( 1 + N1 log-~ (ko-ko)+Ro(_ko)_ +log(Ax Ay). (4.1) 

The variance of an entropy estimator equals 

VAR{0xy} = E{0~y} - E{0xy} 2. (4.2) 

We substitute the Taylor expansion (4.1) into (4.2). Terms containing the first and last term on the 
right-hand side of (4.1) vanish, because the variance is independent of additional constants. All terms 
containing 2 Ro(_k o) lead to an approximation error of the order N -z 

/ 1  1 / q j \ . ( 1  + 1 ~ )  
VAR{Oxy}:~i,j ~m,n k-~-F--NlOg-~) \--~ " ~ l o g  " E{(_kij-kij)(_kmn-kmn)} 

o 1 

Substitution of (2.3) and (2.4) into (4.3) results in a variance approximation of the entropy On. Similarly, 
we approximate the variance of _/-)x and _Ixy 

VAR{/-Ix}=--~(~-~ o g - ~ - \ ,  NlOg--~)2)+O{~12 ~, (4.4) 
( N J  

VAR{/-Ixy}=--~(~/~' 2/~q (~/q~ - O ~ 1 ~ ,  (4.5) 

VAR{Ly}:--~()~/~ 2 /qjN (~ /q ,  /qiN~2~ +O[~1-~. (4.6) 
. , , s '~ log  ~- \ , . sNlOg~.~ . s /  ] [N J 

These results lead to the following observations: 
(1) Replacing the expected number of samples /qj by the observed number of samples k 0 results in a 

variance estimator independent of the distribution. 
(2) Approximating the summation by an integration leads to 

VAR{H-xy}~'l(f_~f_~fxy(x,y)log2fxy(x,y)dxdy 

- ( f~ool ;  fxy(X,y) l°gf~r(x,y)dxdy)2) • (4.7) 
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(3) We can use a short notation for the entropy according to (1.2) 

Hxy -- E{-log f~y (_x, _y)}. 

Similarly, we can rewrite the variance approximations (4.4)-(4.7) 

information: 

of the 

(4.8) 

entropy and the mutual 

. 1 
VAR{/-/x } ~ - -  VAR{-Iog fx(_X)}, (4.9) 

N 

. 1 
VAR{ Hxy } ~ -~ VAR{-log f~y (x, y)}, (4.10) 

1 f Ly(_x, y) ) 
VAR{Ly} = ~ VAR/log f - ~ f y  (_y)~. (4.11) 

(4) Remarkably, the variance is approximately independent of the cell sizes. Only in extreme cases like 
I = J = 1 and I = J + o0 will the variance both theoretically and in practice be zero. 

(5) In the case of binormally distributed random variables the variances of  entropy and mutual 

information are independent of the mean and the variance 

VAR{ _/-Ix} ~½N -1, (4.12) 

VAR{ _/q~y} = N -1, (4.13) 

VAR{f~} ~ o2N - ' .  (4.14) 

(6) In theory, the first-order variance approximation will be zero in the case of  uniform distributions 
with the edges coinciding with the grid, therefore a uniform distribution is an excellent choice to study 
second-order effects. A more thorough investigation of (4.4)-(4.6) leads to the astonishing conclusion that 
the variance of  such uniform distributions must be of the order N -2 instead of N -~. 

(7) We compare for a normal distribution VAR{Ly} with VAR{_~}. The variance of  the maximum 
likelihood estimator of the correlation coefficients p for large N equals [6] 

VAR{_~} = (1 - p2)2/N. (4.15) 

Using the relation between p and Ixy in the case of a binormal distribution 

lxv = -½ log(1 - 02), (4.16) 

we can demonstrate by error propagation, for large N, that the variances of both estimators ~ and ~?xy are 
equivalent; in this respect there is no preference to determine Ixy via p or directly. 

Determination of the optimal cell sizes is difficult because a priori knowledge of the distributions is 
needed. Because the number of cells, the sizes of these cells, and the area of the xy-plane covered by the 
histogram are related by 6trx = I Ax and 6try = JAy,  a 0-dependent grid can be found with the R-bias (b) 
and the N-bias (c) compensating each other (3.14). This grid is the optimal grid with a minimum mean 
square error, because the variances are almost independent of  the cell sizes. For mutual information 
estimation in the case of  a binormal distribution this optimal grid as a function of p is given in Fig. 2. 
Of course, for O = 0 the optimal grid will have one cell, because then under all circumstances x and y in 
the histogram are guaranteed to be statistically independent. If the pdf  becomes peaked, which is the case 
if p -+ 1, the optimal number of cells increases reducing the smoothing caused by finite resolution. 

Signal Processing 
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Fig. 2. The optimal number of cells I = J to estimate the mutual information in the case of a normal distribution as function of p 
for N =64, 128, 256, 512 and 1024. 

5. Exact N-bias  calculation 

In Section 3 we approximated the N-bias of the entropy estimator, contenting ourselves with four terms 
of the Taylor expansion (3.1). However, central moments of the multinomially distributed k0's are functions 
of  the N and the pu's, which can be calculated using the moment-generating function [4]. We can, for 
the N-bias and also for the variance, derive higher order approximations. If convergence is assured, this 
strategy seems to be attractive to calculate the exact N-bias. First we point out that this strategy is 
condemned to fail and can only be used for low order approximations. Then we determine the exact 
N-bias by a straightforward calculation of the expectation of the entropy estimator using the multinomial 
distribution. 

Instead of  using the first four terms of the Taylor expansion of  (2.8), as in (3.1) we calculate an improved 
N-bias approximation by taking any odd number 2L + 1 (L > 1) of terms into account. Note that if N ~ oo 
both the 2Lth and 2L+  1st term contribute to an additional term of  O{N-L}. The 2 L + 2 n d  term is in the 
same order as the remainder. As in Appendix B, the remainder R 2/'+2 is bounded as follows ~ q  

1   )2L+2 / 
( 2 L + I ) N  z ff 2-£7i / ~< E{R2L+2(-ko)} <~0- (5.1) 

• - / j  . ,  

2 For large N, _k 0 follows approximately a normal distribution with mean /q~--Npo and variance tr~-- 
Npo(1-p~). The even central moments of  that normal distribution are given by [2] 

E{(_k0 _/~j)2L+2} = 1" 3" 5 " . . . "  (2L+ 1)~r~ L+z. (5.2) 

If the remainder converges to zero, convergence is assured for increasing L; this is not the case. For large 
L the central moments of  the normal distribution increase rapidly, so there exists only a pq-dependent 
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maximum order M(pij) with the expectation of the remainder converging as long as L ~ M(p•). Therefore 
only low order approximations are useful. 

If we take L = 2 we find a second-order N-bias approximation after taking the expectation of the first 
five terms of the Taylor expansion of (2.8) and substituting (2.4)-(2.5) 

N_BiAS{flftxy}=~(_l-p,j+ 1 ( 1 ' ~ + O  1 
- 2 N  

1 • ) + O ~  1 _ ~ .  (5 .3)  
2N 12N \ i,j ~ IN  J 

Both the first- and the second-order N-bias approximations are in agreement with the earlier work of 
Miller [11]. It is likely Miller was not aware of the multinomial distribution of all _ki~, otherwise he would 
not have used the argument: "the entropy estimator is approximately chi-squared distributed", to calculate 
the N-bias. 

The second strategy to determine the exact N-bias is to calculate the expectation of the entropy estimator 
using the multinomial distribution. We calculate 

ko ko 
E { ~ y } = ~  E{_hij}, with _h~j = - N l O g  - (5.4) 

- ~,j - - N A x  Ay" 

For one cell the multinomial distribution reduces to a binomial distribution: a sample is observed inside 
or outside a cell. We calculate the N-bias of the entropy estimator 

- /~ u 
N-BIAS{h_u}=~lOgN-k~=oP(klpo)(klogk). (5.5) 

Substitution of the binomial distribution leads to the exact N-bias for cell (i,j) 

N N 
N_BIAS{~_o}=pologpq-k~=o(k)pk(a N k [ k  -p , j ) -  k - ~ l o g k ) .  (5.6) 

In Table 1 we present the contribution to the N-bias for every cell. The N-bias contribution is always 
negative and reaches, in absolute value, a maximum in the neighbourhood of p~ = 1/N. For N = 256 we 

also present the first- and second-order N-bias approximation. If p,j is large, a first-order approximation 
is sufficient, but in the neighbourhood of the extremum a second-order approximation is desirable. 

6. S i m u l a t i o n s  

To verify our theory we generate 100 sequences of N = 256 binormally distributed samples. We estimated 
f~y using different cell sizes. The averaged results over the sequences are presented in Fig. 3. Ideally the 

estimator I_~ as a function of the true value l~y is a straight line. Characteristically, I~y is overestimated 
due to cause (c); this overestimation increases with the number of cells. However, if lxy is large, Ixy is 
underestimated, due to the domination of cause (b). This underestimation decreases with the number of 
cells, or in other words with an increasing resolution. After full bias correction (3.14) we obtain the 
improved graphs of Fig. 4. The large deviations for I -  J = 4 and lxy large are probably caused by the 
approximation of the summation by an integration in the calculation of the R-bias (b); it cannot be 
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Table 1 

N-bias contribution of every cell (i,j) as a function of Pij and N. Presented is -N-BIAS{_h~i} in 
10 -3  nats. The left-hand columns are exact N-bias calculations according to (5.6), and the 
right-hand columns are the first- and second-order approximations for N = 256 based on (5.3) 

First Second 
approxi- approxi- 

Exact N-bias mation mation 

p~j N = 64 128 256 512 256 256 

0.0001 0.51 0.44 0.37 0.30 1.95 14.67 
0.0002 0.87 0.74 0.60 0.47 1.95 8.31 
0.0005 1.73 1.40 1.07 0.77 1.95 4.50 
0.001 2.79 2.14 1.28 0.99 1.95 3.22 
0.002 4.28 3.06 1.98 1.12 1.95 2.58 
0.005 6.72 4.18 2.26 1.08 1.94 2.20 
0.01 8.33 4.50 2.15 1.01 1.93 2.06 
0.02 8.93 4.27 2.00 0.97 1.91 1.98 
0.05 8.09 3.84 1.88 0.93 1.86 1.88 
0.1 7.28 3.57 1.77 0.88 1.76 1.77 
0.2 6.36 3.15 1.57 0.78 1.56 1.57 
0.5 3.94 1.96 0.98 0.49 0.98 0.98 
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Fig. 3. The averaged (over 100 sequences) mutual information estimates [~, (in nats) for N = 256 binormally distributed samples 
function of I , , .  For an ideal estimator these curves coincide with the line I',, as a L,. 
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Fig. 4. As in Fig. 3: the mutual information estimates corrected for R-bias (b) and for the part (I - 1 ) ( J -  1)/2N of N-bias (c). 
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Fig. 5. As in Fig. 3: the mutual information estimates only corrected for the part ( I -  l ) ( J -  1)/2N of N-bias (c). 
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justif ied to replace a summat ion  over  4 cells o f  size air by an integrat ion.  I f  we only correct  the dis t r ibut ion 

independen t  part  o f  N-b i a s  (c), we obtain  the graphs of  Fig. 5. 

Accord ing  to the graphs o f  Figs. 3-5 E{Ly} is a m ono tonous ly  increasing funct ion o f  !~y. This shows 

that  the m a x i m u m  of  Ixy, as a funct ion o f  ~-, does not  depend  on the bias. This is a strong a rgument  not  

to change the grid for es t imat ions  involving different z. We expect  a non-op t ima l  grid will not  change the 

delay estimate.  

The es t imated s tandard  devia t ion  obta ined  f rom 100 sequences  is given in Table  2 for different values 

o f  N. The  average s tandard  devia t ion  ca lcula ted  using our  var iance  es t imator  (4.6) is presented  in Table  

3. We see a good  agreement  be tween  these tables and the var iance  approx ima t ion  o f  (4.14) (Table 4), 

except  for Table  4 and p = 0; which results cannot  be realistic. 

Table 2 

Standard deviation of Ly (in nats) experimentally obtained from 100 sequences 

~ 0.00 0.30 0.45 0.70 0.85 0.95 
0.00 0.05 0.11 0.34 0.64 1.16 

128 6 0.020 0.037 0.035 0.054 0.061 0.075 
8 0.037 0.035 0.042 0.062 0.065 0.084 

256 6 0.014 0.018 0.024 0.037 0.047 0.060 
8 0.019 0.021 0.027 0.042 0.049 0.063 

512 6 0.007 0.013 0.019 0.027 0.031 0.041 
8 0.009 0.013 0.021 0.029 0.032 0.042 

Table 3 

Estimated standard deviation of Zy, estimated using (4.6), averaged 

~ 0.00 0.30 0.45 0.70 0.85 0.95 

128 6 0.030 0.036 0.042 0.056 0.065 0.079 
8 0.039 0.043 0.048 0.060 0.068 0,077 

256 6 0.016 0.023 0.027 0.039 0.046 0.056 
8 0.022 0.026 0.031 0.041 0.048 0.055 

512 6 0.009 0.014 0.018 0.027 0.033 0.040 
8 0.012 0.016 0.020 0.029 0.034 0.038 

Table 4 

Approximate standard deviation of L~ according to (4.14) 

N~,,xp 0.00 0.30 0.45 0.70 

128 0.000 0.027 0.035 0.062 
256 0.000 0.019 0.028 0.044 
512 0.000 0.013 0.020 0.031 

0.85 

0.075 
0.053 
0.038 

0.95 

0.084 
0.059 
0.042 
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7. Discussion 
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Our bias and variance calculations agree with the simulation results. Further improvements can be 

achieved by more accurate calculations. We can, for example, take an exact sum instead of  an approximation 

by an integral. We doubt whether such extensions to improve the estimate justify the effort. For bias (c) 

an exact expression is derived by a straightforward calculation of the expectation of the entropy estimator. 
Including the dependence of subsequent sample pairs by trying to estimate the mutual information of  

a pair of  samples ( x (t), x ( t + A t)) of  the x - and a pair of  samples (y ( t - ~'), y ( t + A t - • )) of  the y - signal 

leads to a histogram of  12 x j2 cells. For an EEG the number of  cells obtained in this way exceeds the 

number of  samples for which the EEGs can be considered to be stationary. The only solution of this 
problem is the reduction of  the number of degrees of  freedom by additional assumptions, such as the 

signals are normally distributed. 
Comparing our histogram results with the kernel results of  Mars et al. [8], we conclude his mutual 

information estimates are affected by similar bias. This shows his iterative method to find the optimal 
kernel-width hardly improves the estimate. This conclusion is not surprising, because in the case of  a 
reasonable number of  cells, the entropy or mutual information estimates are hardly sensitive to small 

changes in the cell sizes. After further tests, also with real EEG data, we concluded both me thods - -Mars '  
and ours - - lead  to equivalent delay estimates. Our variance estimator enables us to judge the significance 

of a maximum in I~ .  The derivation of a covariance estimator of  I~y'S belonging to different Cs is a 

problem, because this estimator depends on the dependence between subsequent data samples of  our 
signals. Because of this dependence a priori knowledge about the correlation function of the mutual 
information is needed. 

Our calculations should be tested using different pdfs in order to obtain a better understanding of the 
validity of  our estimation procedure and of our corrections; such work is reported by Henning et al. [5]. 

To reduce the N-bias  (c) and the variance we consider equalizing the expected number  of  samples per 

cell by choosing a non-equidistant grid. 
Our methods can be applied to entropy and mutual information estimation of discrete systems, then 

only N-bias (c) and the variance are relevant. 
Presumably, the approach of splitting the bias into two components of  different origin: N-bias of  

statistical origin and R-bias due to insufficient representation can be used in other fields. 
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Appendix A. Notational convention 

For a stochastic variable _x we use the notational convention: x for a formal parameter,  _x for the 
stochastic variable, £ for the mean and x for an observation of that variable. We define the estimate of  
a quantity A by an estimation operation defined by the function ,4(Xl . . . . .  XN) of formal parameters 

A A 

x ~ , . . . ,  XN representing N observations. The stochastic es t imator  is defined by _A = A(_Xl,. . . ,  _XN) and 
the observation es t imate  by ,4 = ,4(x~ . . . . .  XN ). 

Signal Processing 



R. Moddemeijer / On entropy and mutual information 

Appendix B. The remainder of the Taylor expansion 

247 

In this appendix we determine the order of  the expectation of the remainder of the Taylor expansion 
(3.1) if N ~ o o .  We bound this remainder by a minorant function and a majorant function: R~-(ki~)<~ 

4 ~ 4 +  Ri i (ku)~  R~ (ku) with 0<~ ki~<~ N. Thereafter we take the expectation of both the minorant  and the 

majorant and determine their order. The order of  E{R~(_kij)} must be smaller than the largest order so 
obtained. 

To determine the majorant  we consider the remainder of  the Taylor expansion 

R4(k~) = (ko -ko.) 4 
12N(ku_  O(ko _ ko))- 3, (B,1) 

with 0 <~ 0 <~ 1. This remainder is negative for all 0, so we can take 

4 +  R,~ (ku) =0.  (B.2) 

To determine a minorant  we distinguish two situations:/q~ ~< k o <~ N and 0 ~ k 0 </q;. For the first interval 

we can determine a minorant  by taking the worst case, occurring if the denominator  reaches a minimum, 
4 i.e. if 0 = 1. We can use Rii(ko) with 0 = 1 as minorant on the first interval. To determine the minorant  

for the second interval we use the remaining terms of the full Taylor expansion 

, ( - 1 )  m-' (k , j -  - m 
ku) (B.3) 

g~i(kiJ) = =4 N m ( m  - 1) / ~ - l  , 

which converges for any k o on this interval. As the minorant of  this remainder we use 

1 (k,~ - /q j )"  (B.4) 
g ; - ( k ~ ) = - ~ = , N m ( m - 1 )  ~ ' 

because on this interval ](k o - kij)/kij[ ~ 1, SO we can replace every term of (B.3) by a fourth-order minorant  
of  that term. The sum of these minorants equals 

1 (k i j -k i j )  4 (B.5) 4 -  

R~/ (k/j)= 3 N  ~ ' 

which is smaller than the minorant proposed for /q~ ~ k U <~ N, so it can be used for the whole k o range 

O<-ko<~ N. 
We determine the order of  E{R4(k0)} if N ~ oo, with E{Ra-(ku)} ~< 4 _< 4-1- E{Ru(_k~j)} ~ E{Ri; (_k0)} by calculating 

the order of  E{R~-(_kii)}. We replace ko by _ko in (B.5), take the expectation and substitute (2.5); we find 
the order 

E{R~-(_k0)} = O{ N-2}. (B.6) 

Because both the majorant  and its expectation are zero it follows for the remainder of  the Taylor expansion 

O { N  -2} ~< E{R~(_k0) } ~< 0. (B.7) 
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