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MEMBERSHIP-SET ESTIMATION USING RANDOM SCANNING
AND PRINCIPAL COMPONENT ANALYSIS

Karel KEESMAN
Department of Chemical Engineering, University of Twente, 7500 AE Enschede, Netherlands

A set-theoretic approach to parameter estimation based on the bounded-error concept is an appropriate
choice when incomplete knowledge of observation error statistics and unavoidable structural model error
invalidate the presuppositions of stochastic methods. Within this class the estimation of non-linear-in-the-
parameters models is examined. This situation frequently occurs in modelling natural systems. The output error
method proposed is based on overall random scanning with iterative reduction of the size of the scanned region.
In order to overcome the problem of computational inefficiency, which is particularly serious when there is
interaction between the parameter estimates, two modifications to the basic method are introduced. The first
involves the use of principal component transformations to provide a rotated parameter space in the random
scanning because large areas of the initial parameter space are thus excluded from further examination. The
second improvement involves the standardization of the parameters so as to obtain an initial space with equal
size extension in all directions. This proves to largely increase the computational robustness of the method. The
modified algorithm is demonstrated by application to a simple three-parameter model of diurnal dissolved
oxygen patterns in a lake.

1. Introduction

The problem of estimating model parameters is closely related to that of error structure
characterization {1,2]. It must be recognized that our results will be highly influenced by our
assumptions explicitly or implicitly made about the error structure. It is evident that correct
conclusions about the properties of the estimates require a correct error structure characteriza-
tion. Conventionally the errors are expressed in terms of stochastic uncertainty models. Due to
incomplete information and the presence of structural model errors resulted from aggregation
and obscurity of the process dynamics, a stochastic error approach is questionable, since many of
these model errors are inherently not stochastic [2]. In addition information about the reliability
of the estimates can only be deduced in an exact way if the error density function is Gaussian
and the model is linear.

Because of these limitations a set-theoretic way of modelling uncertainty has been proposed
using ellipsoidal-bounding [2-7] or orthotope-bounding algorithms [5,8-10]. The only assump-
tion is that the uncertainty is bounded. The ellipsoidal-bounding algorithms are characterized by
their (possibly recursive) solution of the intersection between a prior parameter set (§2,) and a

conditional parameter set (£2,,,), i.e.

2,=2,0Q,, (1)

where QP is the posterior parameter set. The orthotope-bounding formulation on the contrary
can be reduced to a linear programming problem. It is evident that estimation of the parameter

0378-4754 /90 /803.50 © 1990 - Elsevier Science Publishers B.V. (North-Holland)



536 K. Keesman / Membership-set estimation

outer bounds by means of ellipsoids or orthotopes will give too pessimistic results from the point
of view of parameter uncertainty. Recently, (exact) polytope-bounding algorithms have been
proposed in order to represent the parametric uncertainty in a more reliable way [11-16].
However, the above-mentioned algorithms are generally restricted to models linear in their
parameters, and an equation error model formulation. Only the algorithms presented in [8,10,15-
16] can deal with an output error model formulation (non-linear optimization problem) if the
signs of some unknown parameters are known in advance.

Within the class of set-theoretic estimation methods alternative (iterative) algorithms, based
on an output error model formulation and discrete approximation of the parameter space, are
also proposed (see [17-19]). These algorithms will result, by their use of random scanning
techniques, in a finite set of feasible parameter vectors (“likelihood set”), which reflects
parameter uncertainty in a consistent and discrete way.

In the majority of the literature random scanning algorithms have been used in optimization
problems to avoid the problem of finding a local optimum, but their use is certainly not
restricted to these applications. Fedra et al. [17] applied an overall random scanning method in
order to find a set of feasible parameter vectors, on the basis of predefined system behaviour
constraints. The main drawback of this method, however, is its computational inefficiency. In
previous publications we proposed some modifications, such as incorporation of information
from preceding data-analysis and fuzzy set-theoretic assumptions [19].

In this paper we discuss an additional and powerful method to improve the computational
efficiency in the frequently observed situation that the elements of the estimated parameter
vectors are correlated or fuzzily linearly interactive, when speaking in fuzzy set-theoretic terms
(see [20]). Interaction of parameter estimates is a particularly threatening condition for the
efficiency of overall random scanning methods, because large areas of the parameter space do
not contribute to the likelihood set. Our purpose is to demonstrate that the incorporation of
principal component analysis in iterative parameter estimation methods using random scanning
and bounded-error approach largely improves the situation. The algorithm is illustrated on the
basis of a simple water quality model with bounded noise.

2. Problem formulation

Consider the following class of models represented by a general first-order ordinary differen-
tial equation:

x(p. 1) =flx(p. 1), u(r)], (2)

where x(-) = state vector, u(-) = input vector, p = parameter vector (dim( p) =n), f= vector
function.
Output error methods are not restricted to this class of models. We adopted this class for the
purpose of demonstration only. Extension to models of distributed systems is straightforward.
Because lack of information about detailed error structure characteristics and the presence of
structural model errors (restrictions encountered in many practical problems of identification),
the uncertainty is expressed in terms of bounds.
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This uncertainty will affect each observation ( y, ), so that the N observations are modelled as

yk=g[x(p,tk)]+ek5 k=17--'9N, (3)

where e, is the observation error at the kth time instant (¢,) and g is a vector function.
The observation error will be expressed now in terms of a set, i.e. e, € §.(k), where

Qe(k)={ekER2€k<ek$§k}, k=1,...,N, (4)

where ¢, and é, are the lower and upper bound on the kth observation error.
In this context also the observations belong to a set, the so-called “behaviour space” (Qy),
which is defined as

9y={yERN3 yk—éksyksyk_gk;k=1,---aN}- (5)
Let the prior parameter space be defined as
2,={peR": p<p<p}, (6)

where p and p are the vectors of lower and upper bounds on p. _
The ultimate aim is then to identify the posterior parameter space ({2,), where

pr= {pEIR”: vi—glx(p, )] =e; PER,, e, €2.(k), k=1,...,N} (7)

such that all pe Qp are possible estimates of the parameter vector, which together express the
associated posterior parameter uncertainty.
If the estimation problem is solved satisfactorily then the model response space,

@,={5eR": jo=glx(p, )] pEQ,, k=1,...,N}, (8)

i.e. a space containing all acceptable model outputs, is a subspace of the behaviour space.

The method that Fedra et al. [17] proposed to solve this problem can be summarized as
follows:

(1) definition of system behaviour in terms of constraints in the observation space ({2,),

(2) definition of a prior parameter space ({2,),

(3) Monte Carlo simulation of the model on the basis of uniformly sampled parameter vectors
resulting in a set of model responses,

(4) classification of the parameter vectors as feasible or non-feasible, which will result in the
discrete parameter space £2,,.

However, the main drawback of this method is its computational inefficiency, especially when
parameter estimate interactions are present. The problem then is how to identify Qp in a more
effective way without loosing its nice property of computational robustness.

3. Parameter space adjustment algorithm

A method to identify Qp in a more effective way will make use of sequential updates of the
parameter space in the space domain. Herein two kinds of transformations can be dis-
tinghuished, namely an affine transformation along the axes (expansion and/or translation), and
a linear transformation by means of a parameter space rotation.
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Analyses of the parameter space are performed in a standardized space (£2,) on the basis of a
priori parametric transformations of the original parameters, i.e.

0j=2*(Pj“£j)/(i7j__Pj)"1’ j=1,...,n. (9)

This particular transformation is selected, because it has the attractive property that the centre of
the prior parameter set £, equals 0 and its dispersion matrix is proportional to the unit matrix, if
all possibilistic (instead of probabilistic) variables p, are uniformly distributed and non-interac-
tive. The dispersion matrix X is defined as,
1 M
2= M )D (0:'0:'T)’ (10)
i=1
where 8, is a centralized parameter vector, and M is the cardinality of the finite set flp. After a
predefined number of simulations the set of feasible parameter vectors, containing information
about the parameter space .Qp, can be evaluated. First, information can be obtained about
parameter space expansion and/or translation for a new initial parameter space [21]. But it is
also clear that the position of the posterior parameter space may have been rotated with regard
to the initial space (see [17-19]) due to multiple “collinearity”. From eigenvalue decomposition
of the dispersion matrix of the likelihood set (10) it is possible to deduce information about the
rotation and to use it for the definition of a subsequent initial parameter space.

It is well known that principal component transformation is simply a rotation of the original
axes of the coordinate system. So by determination of the principal axes a better initial
parameter space can be specified. The principal axes @,,..., ®,, or eigenvectors of matrix 2, are
found by solving the characteristic equation

|Z2-A1|=0, j=1,...,n, (11)
for the eigenvalues A, and then

(E—Ajl)tbj:o. (12)
Since the dispersion matrix is symmetrical these principal axes are orthogonal to each other or, in

other words, they correspond to linearly independent directions which simplifies further analysis.
The parameter space rotation is performed according to

T =6"®, (13)
where 7 is the parameter vector in rotated axes system, and @ is the matrix containing the
normalized eigenvectors of 2 (ie. @ =[®,,...,P,], where |||, =1 for j=1,...,n).

The normalized components of the columns of @ are also the direction cosines of the
transformed axes relative to the original axes, so that it is clear that the principal components
transformation causes only a rotation.

In this rotated coordinate system new parameter ranges must be specified on the basis of
available information from the preceding simulations. Because of the random sampling, the set
of feasible parameter vectors will not reflect the potential parameter ranges. With this in mind
the outer bounds of the new parameter space after rotation are expanded according to

Th =T+ B(T—1.),

th=1,-B(T—1),

(14)
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Fig. 1. Geometrical representation of the transformed parameter spaces.

where 7= max{[7®]"}, and 7,=min{[§"®]"} are the upper and lower values of the projec-
tions on the principal axes of all available feasible parameter vectors at the ith iteration, and
T, 1+, T..1» contain the new bounds of £.*' for the next iteration. At this point we only have to
choose a proper expression for the expansion factor 8. From experiences we suggest

B=1/M, M>n+1. (15)

Note that the second iteration can only start when at least (n + 1) feasible parameter vectors
have been found. It is recommended to specify the number of simulations for each iteration
larger than say 10 times the number of parameters.

To increase the computational efficiency subsequent realizations of the parameter vector will
be sampled from £2:*'. The initial physically interpretable parameter ranges remain unchanged,
ie.

P =pl, P1=Dp", (16)

where p* and p* are vectors containing the potential lower and upper parameter bounds in the
original space. The aforementioned procedure can be represented geometrically in the following
way (see in Fig. 1).

Formally the parameter space adjustment algorithm proposed can be summarized in the
following steps:

(1) center and scale the original parameter ranges obtained from literature, experimentation
etc., which will result in £, (see (9)).

(2) identify feasible parameter vectors on the basis of a predefined number of simulations and
a priori information from preceding iteration. In the first iteration, the likelihood set can be
found using space delimitation [22] and fuzzy set-theoretic information [19].

(3) rotate the standardized coordinate system on the basis of principal components analysis of
the feasible parameter vectors. The posterior parameter space in the rotated coordinate system
(£2') is then aligned to the principal axes.

(4) extend the appearing parameter bounds in the rotated coordinate system, according to
(14), to avoid losses of information.

(5) if M is sufficiently large, then stop else continue with step (2).
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Parameter vectors for subsequent simulations are sampled now from £2:*!, followed by a reverse
transformation using the inverse form of (13) and (9), to produce original parameter vectors. In
order to obtain a more uniform sampling pattern, the Monte Carlo sampling scheme has been
replaced by the so-called Latin hypercube sampling scheme [23].

4. Application

The algorithm proposed will be applied to the estimation of parameters of a simple water
quality model, that describes the diurnal dissolved oxygen variation in a well mixed lake. The
data ( Fig. 2) have been obtained from lake “De Poel en ’t Zwet”, a lake situated in the western
part of the Netherlands, for the period 21-30 April 1983.

The rate of change of dissolved oxygen is determined by re-aeration exchange with the
atmosphere, by photosynthetic production from algae and water plants, and by consumption due
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Fig. 2. Input and output data for Lake “De Poel en 't Zwet” (21-30 April 1983).
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to respiration, biodegradation and sediment processes, i.e.

(1) =K,[Cs(t) —c(t)] +al(t) - R, (17)

where ¢(-) = dissolved oxygen concentration (g/m*), Cs(-) = saturation concentration (g/m’),
I(-) = radiation (W,/m?), K, = re-aeration coefficient (1/d), a = photosynthetic rate coefficient
(g/mdW), R = sink term (g/m’d).

From preceding investigations of this model and associated data (see [19]) the following initial
information is available:

(1) observation error is assumed to belong to a set (4), where ¢, = —1.5 g/m’; ¢, =1.5 g/m’
for k=1,...,196.
(2) observation at k = 169 is unreliable, i.e. ¢, = —o0; €, = oo for k = 169.

(3) initial parameter space:

K,€[0.5,1.8],
a €[0.03, 0.07],
Re[09,3.5].

Q:

p

(18)

On the basis of this information three successive iterations (125 simulations) are performed. For
each iteration the parameter vector are sampled randomly from uniform membership functions
in the stepwise adjustable parameter space. The result is that from the first and second iteration
only 5 and 19 parameter vectors out of 50 simulations are accepted, while in the last run 21
vectors are accepted.

In Fig. 3 the positions of all feasible parameter vectors with respect to the initial parameter
space (18) are presented graphically. Each separate plot represents a projection of these
parameter vectors onto one of the faces of the three-dimensional box. In these plots the

0.07
a
0.03
35 y = 35 e >
. a .
AL 8
°. oo o - .-'lu ._.
R ° -~ R {owm oo
- R ¥y
0.9 0.9
0.5 1.8 0.03 0.07

Fig. 3. Geometrical projection of the 45 feasible parameter vectors and the initial space for the last iteration onto the
faces of the initial space.
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deformation of the predefined parameter space induced by the procedure, is also reflected.
Without application of parameter space translation and/or rotation the whole set of sampled
parameter vectors would be situated randomly in the initial parameter space, which is evidently
not the case here. It is therefore worth noting that the percentage of feasible vectors increased
from 10% for the first iteration to 84% for the last iteration, reflecting the improved computa-
tional efficiency. Note that in the K,~a and K,~R planes the translation played a major role in
the sampling of parameter vectors, while in the a—R plane the effect of space rotation is most
visible. It appears that the a posteriori identified interaction between the parameter estimates
(see Fig. 3) is consistent with the linearly dependency of the mutual parameters from preceding
data-analysis i.e. R = —0.07K, + 51.5a — 0.17 (see [19]).

Although the principal axes in the standardized and rotated coordinate system are orthogonal,
this orthogonality is lost in the original coordinate system after inverse transformation according
to (9). So this transformation causes deformation of the orthotopes in the original coordinate
system (see Fig. 3), which also means that physical interpretation of the parameter combinations
in this coordinate system determining the principal directions is not straightforward.

To emphasize the advantage of a set-theoretic way of modelling uncertainty, it must be noted
that the number of available observations in the example could have been reduced without
violating assumptions with respect to the uncertainties. Therefore, a membership-set estimation
method, unlike a least-squares or maximum likelihood method, allows still the evaluation of the
posterior parametric uncertainty in a reliable way from a small number of observations.

5. Conclusions

Within the context of set-theoretic uncertainty modelling the iterative method using random
scanning appears to be simple and efficient. Incorporation of information from principal
component analysis improves the computational efficiency significantly if parameter interactions
are present. Inclusion of a transformation to scale the original parameter space avoids numerical
problems when dealing with parameter ranges of different magnitudes.
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