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I. Introduction 

The performance of a sequence of estimators 
{ T, } of  a parameter  O can be measured by a local 
measure as the asymptotic  variance a2(8)  or by 
the inaccuracy rate, which is based on non-local 
behaviour. It  is well known that  in typical cases 
the local limit of the standardized inaccuracy rate 
equals (2o2(8)}  -1, i.e. 

- lim lim (ne2) - l  log P ( t T . - o t  > e )  
e - - + 0  n ~ o o  

= { 2 o 2 ( 0 ) }  - '  

= - lim lira c -2 log P ( I T , - O I  >cn-1/2), 
c ---~ o 0  n ----~ o 0  

(1.1) 

cf. Jur~kov& and KaUenberg (1987). 
A natural  question is whether for any sequence 

{e.} with l i m . ~  e . = O  and l i m . ~  ne 2 = oo it 

holds that 

lim (ne 2) l l o g p ( i T , _ 0 1  > e . )  
n ~ o o  

= { 2 o 2 ( 0 ) } - '  (1 .2)  

This direct intermediate approach  may be il- 
lustrated by Figure 1. To obtain a result like (1.2) 
we need moderate  and Cram6r-type large devia- 

. . . .  

Fig. 1. 

l o c a l  
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tion theorems. It is the purpose of this paper  to 
provide such results for broad classes of M-esti- 
mators. 

A second motivation for this study is the fol- 
lowing. Asymptotic normality of M-estimators is 
established under several sets of conditions. It  is 
worthwhile to know how far in the tails such a 
normal approximation remains valid, i.e. for which 
region of x ' s  it holds that, with an appropriate 
standardization by ~t, and o~, 

P( Tn-~nnl/2>x)on = { 1 - ~ ( x ) ) { 1 + O ( 1 ) )  

as n ~ ~ .  (By ~b we denote the standard normal 
distribution function.) In the situation where T, is 
a sum of independent random variables, these 
kind of theorems were initiated by Cramrr  (1938) 
and refined by Petrov (19541 1975), Book (1976) 
(in the large deviation case) and by Rubin and 
Sethuraman (1965) and Amosova (1972) (in the 
moderate deviation case). These results are sum- 
marized as a lemma in Section 4. In Section 2 
M-estimators with monotone +-functions are con- 
sidered. The obtained theorems include the classi- 
cal results for the sample mean, and also lead to 
similar results for sample quantiles. Section 3 is 
devoted to M-estimators with bounded and con- 
tinuous +-functions, while Section 4 contains the 
proofs. 

2. M-estimators with m o n o t o n e  ~ k - f u n c t i o n s  

Remark 2.1. An M-estimator can also be defined 
as 

T~*=inf  t: + ( X i, t ) <~ O 
i =  

or as any value between T,* and T,. For any 
measurable choice the results of this section hold 
true. 

We set the following conditions: 

(A1) X(t0) = 0 for some t o ~ R; 
(A2) ~, is differentiable at t = t o with ?¢(to) < 0; 
(A3) +(x,  t)  is continuous at t = t o for P-a.e. x; 
(m4) f e x p ( 8 + ( x ,  t 0 - 7/)) + exp{ - 8 + ( x ,  

t o + ,/)} d F ( x )  < oo for some 8, ~/> 0; 
(A5) f +2(x, t0) d F ( x )  > 0. 

The conditions (A1)-(A5) are rather mild. Note 
that (A4) holds for all bounded +-functions (which 
are usually applied for construction of robust 
estimators). The conditions ensure that 

nl/2(Tn - -  t o )~N(O,  o 2) (2.4) 

with 

02 = f +Z(x, to) dF(x) / (~ , ' ( to)}  2, (2.5) 

cf. Corollary III. 2.5 in Huber (1981). 
Our main results for M-estimators based on 

monotone +-functions are given in the following 
three theorems. 

Let X 1, X 2 . . . . .  X~ be i.i.d, random variables 
each distributed according to the distribution 
function F. Let ~b be a function from R z to R 
such that 

+ (x ,  t)  is measurable in x, nonincreasing 

in t and attains both positive and nega- 

tive values. (2.1) 

Put 

h(t )  = f +(x, t) d F ( x ) .  (2.2) 

The M-estimator { T, } = { T~ +) } is defined by 

T , = s u p  t: Y' +(Xi, t)>~O . (2.3) 
i = 1  

Theorem 2.1. Under the conditions (A1)-(A5) we 
have, for each sequence { e n ) with limn ~ ~ e, = 0 

2 and l i m ~ n e ,  = oo, 

- lim (nt,2) - '  log P ( I T , - t 0 [  > e , )  
n ~ o o  

= (202) - '  (2.6) 

The proof of Theorem 2.1 is in Section 4. 
Applying the dominated convergence theorem, 

(A3) and (A4) imply 

E+2(X, to + e)= E+2( X, t 0 ) + o ( 1  ) a s e - - , 0 .  

(2.7) 

To obtain a valid normal approximation in the 
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tails we set condition 

(A6) 

EtpE( x ,  t o + e) = E~Z( x ,  to) + O(e) as e ~ 0; 

and we replace (A2) by 

(A2') 

A(to + e) = X(t 0) + e~'(to) + O(~ 2) as e ~ 0. 

T h e o r e m  2.2. Under the conditions (A1), (A2'), 
(A3)-(A6) we have 

P (  T " - t ° n l / 2 >  x )  = ( 1 - ~ b ( x ) } { l  + 

as n ~ ~ (2.8) 

uniformly in the range - c  <~ x <~ o(n 1/6) with c >~ O. 

The proof of Theorem 2.2 is in Section 4. 
For non-robust M-estimators (A4) may be not 

satisfied. However, still a moderate deviation the- 
orem may hold if sufficiently large moments of ~k 
exist. 

T h e o r e m  2.3. Suppose that (A1), (A2'), (A5) and 
(A6) hold. Further assume that there exists a posi- 
tive constant K such that for some q > 2 + c 2 ( c > O) 

T I ~ ( X  , t ) [  q d F ( x )  < K  

for all t in some neighbourhood of  t o . (2.9) 

Then 

P (  T " -  t °n ' /2  x ) =  { 1 - ( / ) ( x ) ) ( 1  + o ( 1 ) )  

as n ~ oo 

uniformly in the range - A  <~ x <~ c lvq- ~ n (A  >! 0). 

The proof of Theorem 2.3 is in Section 4. 
Next it will be shown that Theorem 2.1 can be 

applied to establish (1.2) for the location problem. 
Let Z 1 . . . . .  Z,  be i.i.d, random variables, where 
the common probability distribution Po on R is a 
shift family with Lebesgue densities 

f o ( x ) = f ( x - O ) ,  x ,  O c R .  

Let F be the distribution function of Z i when 
0 = 0 .  Further ~k(x, t) is replaced by q ~ ( x - t ) ,  
where q, now is a nondecreasing function from R 

to R. Assume the conditions (A1), (A2), (A4) and 
(A5) with t o = 0. (Note that monotonicity of 1/, 
implies that ~k is continuous for Lebesgue-a.e. x, 
and hence for P-a .e .x . )  

Since T, is translation equivariant, we have 

, , ~ ° ( n l / 2 ( T  n - - 0 ) [ O ) = £ £ ( n l / 2 T ~  1 0 = 0 )  

--) N(0, 0 2) (2.10) 

with 

o = f C ( x ) f ( x )  d x / {  Xt(0)} 2. 

Let { % ) be any sequence satisfying 

hm % = 0  and lirn n e 2=  
n ---~ O0 /1 -'-~ OO 

Theorem 2.1 and (2.10) now imply 

--n~_..% (n~2) -1 log eo( 1 7 . - 0 1  > %) 

= -  lim ( n ~ ) - l  log P o ( l T . l  > e . )  
n ~  o o  

= ( 2 0 2 )  -1  ' 

i.e. (1.2) holds true. 
For irregular cases there may be more than one 

maximum likelihood estimator with different ex- 
ponential rates, as is seen in the following exam- 
ple. 

E x a m p l e  2.1. Let X 1 . . . . .  X. be i.i.d, uniform 
U(O - ½, O + ½). Both 

are maximum likelihood estimators, but they have 
different exponential rates. Note that in this case 
~k = 0 P-a.e., implying that condition (A2) is not 
fulfilled. 

Remark 2.2. (scale problem). Consider the model 
S 1, S 2 . . . .  , g ,  of i.i.d, positive random variables 
each distributed according to the distribution 
function F ( x  e-V). Then Y/= log X i has distribu- 
tion function F(e y-O) = G ( y  - 0), say, which is a 
location family. So the scale problem can also be 
handled by application of the above theory on 
Y = log X. Note that for the M-estimator of scale 
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S. we have 

__~X = 0  ~ Y ' . ~ b ( Y , - T . ) = 0 ,  (2.11) 
i i=1 

where + (x )  = x(eX), Y, = log X/, T, = log S~. For 
instance, if F is unimodal and S, is the maximum 
likelihood estimator of 0, then generally monoton- 
icity of ~ is obtained. 

If X~ is not necessarily positive, but symmetric 
about 0, we may replace X~ by I X~l and use the 
location problem with Y~ = l o g [ ~  [. Then effec- 
tively we restrict ourselves to functions X in (2.11) 
which are even, i.e. X(x)= X( -X) .  This is typi- 
cally done in defining M-estimators of scale. 

tween T,* and T,. Conditions (A1)-(A6) are 
satisfied. If, moreover, 

F( F - ' ( p )  + e) =p + EF'( F - ' ( p ) )  + O(e 2) 

as e ~ 0, (2.12) 

then also (A2') holds. It is easily seen that 

o 2 = p ( 1 - p ) (  F ' ( F - l ( p ) ) }  -2 

Hence we have proved 

Corollary 2.4. Let 0 < p < 1, I f  F is differentiable 
at F - l ( p )  with F ' (F - I (p ) )  > O, then 

(i) for each sequence ( e. } with lim~ ~ ~ e. = 0 
and lim~ ~ ~ ne~ = ~ ,  

This section concludes by showing that the 
above theorems include the classical results for the 
sample mean and, moreover, lead to similar results 
for sample quantiles. 

1. The choice ~k(x, t) = ~k(x - t) with ~p(x) = x 
gives M t ) = # - t ,  where # is the mean of F. 
Hence t o = # and 

i = l  

the sample mean. Conditions (A1)-(A3), (A5), 
(A6) and (A2') are satisfied if F has a finite and 
positive variance o 2. Condition (A4) reduces to 
Cram6r's condition E e hx' < ~ for all h ~ [ - 8 ,  3] 
for some 6 > 0, while (2.9) reduces to E [ X~ I q < ~ 
for some q > 2 + c 2. Hence, the classical results on 
moderate and large deviations for n l /2 (X , -  #) /o  
follow. 

2. For 0 < p < l  let F - l ( p ) = i n f ( x :  F(x)>l 
p } be the p-th quantile. Suppose that F is dif- 
ferentiable at F - l ( p )  and that F ' ( F - I ( p ) ) >  O. 
The choice q~(x, t) -- g,(x - t) with 

/  lp, x < o ,  

~ ( x )  = x = 0 ,  

p , x > 0 ,  

gives 

X(t)  =- (1 - p ) - ' (  p -  F ( t ) }  + F ( t )  - F ( t - ) .  

Hence t o = F-X(p)  and the p-th sample quantile 
F , l ( p )  is a measurable function with values be- 

-limo~ (neE) -1 log P(IF£- I (p ) -  F - l ( p ) [  > e , )  

= ( 2 o ~ ) - ' .  

(ii) if moreover (2.12) holds, 

P( Fn-1(P) - F - l ( P ) n ' / 2 >  

--- {1 - ~ ( x ) }  (1 + o(1)} a s n + m  

uniformly in the range - c <~ x <~ o(n 1/6) with c >i 0, 
where 

0 2 = p ( 1  - l v ) ( F ' ( F - l ( p ) ) ) - 2  

3. M-estimators with bounded and continuous ~- 
functions 

Again let )(1, X 2 . . . . .  X, be i.i.d, random varia- 
bles each distributed according to the distribution 
function F. Let ~k be a function from R 2 to R 
such that 

q~ (x ,  t) is measurable in x, 

bounded and continuous in t. (3.1) 

Moreover 

X, = ~ ~k (Xi, t)  has at least one zero 
i ~ l  

for each n P-a.s. (3.2) 
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Put 

x(t) = f , ( x ,  t) dF(x). (3.3) 

The estimator { T, } = (T, (~) } is defined by 

T. = (tt~ w h e n t + - M " < ~ M " - t - '  (3.4) 
when t + - M. > M. - t - ,  

where 

t + = i n f ( t :  t>~M., k . ( t ) = O ) ,  

t - = s u p { t :  t<-NM,, ?t , ( / )  = 0 }  

and where M, = Xt,/21: . is the sample median. If 

{t: t >_. M., x . ( t ) = o }  

then t + = ~ and hence T. = t - ;  if 

{t: t<~M., X , , ( t ) - 0 }  = ~ ,  

then t - =  - o o  and*laence T~ = t +. 
We set the foUo,wing conditions: 

(B1) ~,(t0) = 0 for some t o ~ It; 
(B2) q~(x, t) is absolutely continuous in t with 

(a/at)~/(x, t) continuous in t = t o  uni- 
formly in x P-a.s., 

f ~ ( x ,  t) l,_,o dF(x) <O and 

f ¢ ( x ,  to) d F ( x )  > 0; 

(B3) f exp{8(a/at)q~(x, t)lt=,o ) d F ( x )  < oo for 
some 8 > 0; 

(B4) P ( X < t o - 8 ) <  ½ < P ( X < t o + 8  ) for all /~ 
>0 .  

Again the conditions are rather mild: they are 
satisfied for most common M-estimators of the 
median, cf. also Remark 3.2. Note that (B2) im- 
plies 

x'(t0) = t)I ,=t0 d F ( x )  < 0 .  

Further note that X may have more than one root. 
For the root t o mentioned in (B1), conditions 
(B2)-(B4) must hold, which implies e.g. that t o is 
the median of F (cf. also remark 3.1 and 3.2). By a 
slight modification of the proof of Theorem B in 
Serfling (1980, section 7.2.2) asymptotic normality 

is obtained, i.e. 

f l l / 2 ( T n  - -  to)ff~N(O, o 2) 

with 

(3.5) 

02= f¢2(x, to) dF(x) 

//J / Otd/(x, t)  lt=t0 d F ( x )  . (3.6) 

Our main results for M-estimators based on 
bounded and continuous ~k-functions are given in 
the following theorems. 

Theorem 3.1. Under the conditions (B1)-(B4) we 
have for each sequence (e ,}  with l im,_,~ e , = 0  
and t im. __,~ neE = ~ ,  

- lira (neE) -1 log P ( I T . - t o [  > e , )  
r/---~ OO 

= (202) -1 (3.7) 

The proof of Theorem 3.1 is in Section 4. 

Theorem 3.2. Under the conditions (B1)-(B4), (A2') 
and (A5) we have 

e( r'-t°n'/2>o x ) =  {1 - ~ ( x ) }  (1 + o(1)} 

(3.8) 

uniformly in the range - c  <~ x <~ o(n 1/6) with c >~ O. 

The proof of Theorem 3.2 is in Section 4. 
Similarly as in Section 2 it can be shown that 

Theorem 3.1 implies that (1.2) holds true for this 
kind of M-estimators. So (1.2) is established for 
broad classes of M-estimators. 

Remark 3.1. In our definition of M-estimator we 
have taken the solution of X,( t )  = 0 nearest to the 
sample median M n. The sample median may be 
replaced by any other estimator M*  for which 
P(  I M*  - to I > e) tends to zero exponentially fas t  
without disturbing the results of Theorem 3.1 and 
3.2. In the latter case condition (B4) may be 
omitted. 

Remark 3.2. Conditions (B1) and (B4) state im- 
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plicitly that we are estimating the median. If h(t0) 
= 0 for some p-quantile of F and if we replace M~ 
by the p-th sample quantile, and (B4) by 

e ( X < t o - 8 ) < p < P ( X < t o + 8 )  f o r a l l S > 0 ,  

where 0 < p  < 1, then Theorems (3.1) and (3.2) 
still hold. 

as n---)oo, where h~( t )  is a power series in t 
convergent for all sufficiently small values of  t, 
uniformly for all n. 

Proof. (i) follows from Rubin and Sethuraman 
(1965), Amosova (1972). (ii) follows from Book 
(1976) and generalizes Theorem 2 of Chapter VIII 
in Petrov (1975). [] "~ 

4. Proofs 

A basic tool in our proofs are the following 
results on moderate and Cramrr-type large devia- 
tions for triangular arrays. 

Lemma 4.1. Let  { Y,~: l ~< i < n, l ~< n < oo ) be a 
triangular array of  row-wise independent random 
variables with a common distribution F, for 
Y,I . . . .  , Y, , .  Let  EYe1 = 0 and E Y  2 < oo for all n. 
Put 

• .2 = EY~ and S. = ~ Y.,. 
i = l  

Assume that lim inf.  ~ ~o %2 > O. 
(i) I f ,  for  some q > 2 + c 2 ( c > 0), 

lim supE I Y,1 I q < oo, (4.1) 
n ----boo 

then 

> x )  = (1 - (/)(x)} (1 + 0 ( 1 ) }  

as n -* ~ (4.2) 

uniformly in the range - A  ~ x <<. c l ~  n (A  >i 0). 
(ii) I f  there exist positive constants B, K ' ,  K "  

such that, for  all h ~ C, ] h ] < B, 

K'~< IE(ehr" ' ) l  <~K" f o r a l l n ,  (4.3) 

then for all sequences { z,: 1 <~ n < oo } o f  positive 
numbers such that z ,  ---) oo and n -  WZz, ---) 0 as n ---) 
O0 

= ( 2 * f f Z 2 )  - 1 / 2  

×exp(  -1~z.2 + n- 1/2Z2~n(n-l/2Zn) ) 

× { 1 +  (4.4) 

Proof of Theorem 2.1. Let { e, } be a sequence of 
real numbers satisfying 

lim e, = 0, lim ne 2 = oo. 
n ----) oo n ---~ oo 

We will only prove 

-°l m -1 log to > (2o2) -1 

(4.5) 

The rest of the proof of Theorem 2.1 is quite 
similar. Let { 8, ) be a sequence of positive real 
numbers satisfying lim, ~ ¢¢ 8 , / e ,  = 0. If 

~. + ( x , ,  t o+~ .  + 8 . ) > o  
i=l  

then T . - t  o>~%+B,  and hence T n - t  o>E . .  On 
the other hand, if 7". - t o > e. then by monotonic- 
ity 

~ ~b (X,, t 0 + e , )  >~0. 
i ~ l  

Therefore 

P +(x i ,  t o + ~ . + ~ . )  > 0  

<P(T. - to>e . )  

< P q, ( ~ ,  to + ~.) >t 0 . (4.6) 

(For proving (4.5) with > and e. replaced by < 
and - ~ . ,  respectively, use 

P * ( g  i , t o - - E . - - B . ) < O  
i 

< P(T. -  to < -e . )  

t <~P ~ ( X , ,  t o - e , ) < ~ O  .) 
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Writing 

Y~,=~(X, ,  t o + e . ) - E ~ ( X i ,  t 0 + e .  ) and 

S, = ~ Y~,, (4.7) 
i = l  

the conditions (A1), (A3)-(A5) imply that (4.3) 
hold, since 

IEehr" ' l~<ElehV"'  I < E e  Ihv-'l, h ~ C ,  (4.8) 

and, by dominated convergence 

lim E e h-r-, = 1. 
h,~0 
h.~C 

Moreover, by (A1), (A2) we have 

E~b(X/, t 0 + e.)  

= ) ~ ( t o + e , ) = e n h ' ( t o ) + O ( e , )  asn--- ,oo,  

(4.10) 

and, again applying the dominated convergence 
theorem, (A1), (A3) and (A4) imply 

%2 = Var 6(X,, to+e,) 

= E~2(X,, to) + o(1) as n ---, oo. (4.11) 

Hence 

z .=  - t0+E.) 
i=l 

/ { .  v a t  x , ,  to + 

= n'/Ztno-'(1 + o(1)) (4.12) 

as n ~ m, and by (4.4) 

- tim (ne2~)-'logP ~b(Xi, to+t,)>~O ' 

=- , l im(nez ' ) - l l °gP(_ .  ~ % ?/1/2 Sn ~ Zn ) 

= (202) - ' -  (4.13) 

Since 

tim ( t ,  + 8,)  = 0, lim n(t ,  + 8,) 2 = oo, 

and moreover 

lira (t.  + 8 . ) 2 C  2 = 1, 

another application of Lemma 4.1 (ii) yields 

- l i m  ( n e 2 )  -1  
n ..-+ o o  

= -  lim ( t " + 8 " ) 2  1 

X l o g P  , ( X i ,  t 0 + e . + 8 . ) > O  
i 

= (202) -1 (4.14) 

Combination of (4.6), (4.13) and (4.14) yields (4.5). 
[] 

Proof of Theorem 2.2. Let { x .  ) be a sequence of 
real numbers satisfying lim. ~ ~ x .  ~ R. Then (2.8) 
with x -- x .  follows from (2.4). Therefore without 
loss of generality assume l i m . ~ o  x.  = oo and 
lim. ~ oo n-1/6x.  = 0. Define Y.i, S. and z. as in 
(4.7) and (4.12) with e. = n-1/2xna; then, by (A2') 
and (A6), 

z,,=x,(1 +O(, ' / :xn))  (4.15) 

and hence, by (4.4), 

P( ~¢(Xi't°+e")>~O)`=, 

= {1 - ( / ) ( x . ) }  {1 + o ( 1 ) }  

as n ~ oo. Proceeding as in the proof of Theorem 
2.1 (with 8. = O(t,2)) the required result is ob- 
tained. [] 

Proof of Theorem 2.3. Let { x ,  } be a sequence of 
real numbers satisfying 

- A  <~ xn <~ c l ~  n . 

Define Yni, Sn and z, as in (4.7) and (4.12) with 
e, = n-1/2x,a; then, by (A2') and (A6), 

z . =  x . (1  + O(n-1/2x.)) 
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and hence, for sufficiently large n, 

- A - l <~ z . <~ C l l ~  n 

for some c~ > 0 such that 2 + c~ < q. We have 

EIY, , lq<~2q-a{E[~p(X~,  t 0 + % ) l  q 

+ J X ( t 0 + % ) l q } ,  

implying that (4.1) holds. Proceeding as in the 
proof of Theorem 2.2 (with (4.4) replaced by (4.2)) 
the required result is obtained. [] 

Proof of Theorem 3.1. Let (%)  be a sequence of 
real numbers satisfying 

lim % = 0 ,  lim ne E = ~ .  

In view of (B2) there exists a set N with P(X, 
N )  = 0 such that 

r ( u )  =sup  Ot 

- - - ~ p ( x ,  t)lt=to : x ~ N  --*0 

as u ~ 0. Choose 7/> 0 such that 

e=sup{r(u): lul ~n} 

< t ) l t = t o d F ( x ) .  (4.16) 

Now we have, for all x , , . . . ,  x ,  ~ N and for all 

lul~n, 

n-a)(~(to) < - c  ~ n-lh'~(t0 + u) < 0. 

From now on let n >/no, where n o is so large that 
% < ½ 7  for a l l n > i n  o . If 

I T . - t 0 1  > %, X . ( t 0 -  %) > 0, 

h , ( t o + e n ) < O  and h ' ~ ( t 0 + u ) < 0  

on (-71, ~1), then I M. - t o I >/¼TI; hence we ob- 
tain 

P ( I T , - t o l  > e , )  

P ( h . ( t  o -  %)  <~ 0 o r  h . ( ,  o+ %)  >~ O) 

+ P( l M . -  to[ >~ ~1) 

+ P ( n - l h ' ( t o )  >1 - c )  (4.17) 

In view of (B4), (4.16) and (B3) it is seen that the 

last two terms at the right-hand side of (4.17) are 
exponentially small. Application of Lemma 4.1 (ii) 
yields 

lim sup (ne~) -a log P (  IT, - / o l  > %) 
. ---* OO 

~< - ( 2 0 2 )  - ' .  (4.18) 

On the other hand 

P ( I T , - t o l  > % )  

>1 P ( X , ( t o  - % - 6,) <~ 0 

or X.( t  o + e  n + 6 . ) > ~ 0 )  

-e ( , - 'x ' ( ,o )  -c),  
where ( 6, } is a sequence of positive real numbers 
satisfying l im. ~ ~ 8 . /% = O. In a similar way as 
above it follows that 

lim inf(ne2)  -1 log P (  IT~ - t01 > %) 

>t - ( 2 o 2 )  - '  . (4.19) 

Combination of (4.18) and (4.19) yields the de- 
sired result. [] 

Proof of Theorem 3.2. Without loss of generality 
assume 

lim x,  = o~ and lim n - 1 / 6 x  n -~0. 
. ----~ ~ O  . --~ O 0  

Writing e, = n-1/2x,o and using the same nota- 
tion as in the proof of Theorem 3.1 we have, for 
n >~ no, 

<~ P ( h , ( t  o + %)  >i O) + P(T ,  > t o + TI) 

+ P(  n - ' X "  ( to) >t - c )  (4.20) 

and, for each sequence of positive real numbers 
{8.)  with % + 8 .  <~ ,  

P(  T n -  t°nl/2 > Xn) ~ P ( h n ( t °  W en + ~$n) >~ 

- P ( T . < t o - ~  ) 

- l , ( . - 'x'(0)  >_. - c )  
(4.21) 
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The last two terms on the f ight-hand side of (4.20) 
and (4.21) are exponentially small. The rest of  the 
p roof  is similar to the proof  of Theorem 2.2. [] 

Remark  4.1. Assume that F is symmetr ic  about  t 0. 
Fur ther  suppose that 

)~ ( t  o + e) = eX ' ( t  o) + O(e 3), (4.22) 

E ~ z ( ~ ;  t o + e ) = E ~ p 2 ( X ~ ;  t0) + O(e2) ,  (4.23) 

E~p3(X,; t o + e) = O(e) ,  (4.24) 

as e ---, 0, which conditions are usually satisfied in 
the location problem with ~p anti-symmetric about  
t o . Then we have under  the conditions of  Theorem 
2.2, 2.3 or 3.2 

P (  T " - t ° n l / 2 >  x )  = { 1 - d p ( x ) } ( l  

(4.25) 

uniformly in the range - A  ~<x~< o(n 1/4) with 
A >t 0, thus obtaining the natural  range in the 
symmetric case, cf. Petrov (1975, p. 229). The 
key-point  in the proof  of  (4.25) is that  the con- 
stant term in the power series occurr ing in (4.4) 
equals O(en). We omit the details of  the proof  of 
(4.25). 

Remark  4.2. It is easily seen that if X is differen- 
tiable in some neighbourhood of  to with )~'(t) 

Lipschitz-continuous for all t in that neighbour- 
hbod  of  t 0, condit ion (A2 ' )  holds. Moreover,  if 
the Lipschitz continuity of  h' is replaced by the 
requirement that h '  is Lipschitz of  order a (0 < a 
~< 1), the conclusion of Theorem 2.2 still holds in 
the reduced range - A  <~ x <~ o(na/(4+2a)). (In 
Theorem 2.3 condit ion (A2 ' )  may  be replaced by 
the condit ion that ~' is Lipschitz-continuous of  
order  a for  some a > 0.) 
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