
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 25,418-435 (1982)

The Copying Power of One-State Tree Transducers

JOOST ENGELFRIET

Department of Computer Science, Twente University of Technology, Enschede, The Netherlands

AND

SVEN SKYUM

Department of Computer Science, Aarhus University, Aarhus, Denmark

Received October 1978; revised June 23, 1982

One-state deterministic top-down tree transducers (or, tree homomorphisms) cannot handle
“prime copying,” i.e., their class of output (string) languages is not closed under the operation
L --) {$(w%~‘“’ 1 w E L, f(n) > 11, where f is any integer function whose range contains
numbers with arbitrarily large prime factors (such as a polynomial). The exact amount of
nonclosure under these copying operations is established for several classes of input (tree)
languages. These results are relevant to the extended definable (or, restricted parallel level)
languages, to the syntax-directed translation of context-free languages, and to the tree
transducer hierarchy.

1. INTRODUCTION

To measure the copying power of tree transducers, we consider copying operations
cr on languages L defined by c,(L) = {$(w$y”) 1 w E L, f(n) > 1 }, where f is an
integer function such as f(n) = 2, f(n) = n, or f(n) = 2”. Such operations were
studied before in relation to parallel rewriting systems and tree transducers in
[5, 8, 161, among others. For instance, in [8, 161 it was proved that (nondeter-
ministic) top-down tree transducer languages are not closed under c2, and in [5] it
was shown that bounded copying top-down tree transducers cannot do any infinite
copying (i.e., any operation c, wherefhas an infinite positive range). In this paper we
investigate the copying power of one-state top-down tree transducers and (multi-state)
bottom-up tree transducers with respect to these copying operations. Our main result
is that deterministic one-state top-down tree transducers (or, tree homomorphisms)
cannot do “prime copying,” i.e., any operation c, such that the range off contains
numbers with arbitrarily large prime factors. Although these transducers are clearly
able to handle finite copying (cf, where f has a finite positive range) and “pure
exponential” copying (c,, where f(n) = ab” for positive integers a, b), it is a conse-
quence of the main result that they can do neither infinite polynomial copying (i.e.,
any operation cf such that f is a polynomial with an infinite positive range) nor
exponential copying in general (e.g., not cr with f(n) = 2” - 1). These results are also
true for arbitrary (multi-state, nondeterministic) bottom-up tree transducers. To
determine the copying power of nondeterministic one-state top-down tree transducers,

0022~OOOO/82/060418-18$02OO/O
Copyright 0 1982 by Academic Press, Inc.
All rights of reproduction in any form reserved.

418

ONE-STATETREETRANSDUCERS 419

we show that they cannot do finite “coloured” copying, i.e., the operation C;(L) =
(w%tt,IwEL}.

These results are made concrete in the following two cases: In the first part of the
paper (Section 3), we consider the class RPLL of “restricted parallel level” languages,
generated by the level grammars of [151, which are a special type of parallel
rewriting system. In [15] it is shown that RPLL equals the class of “extended
definable” languages of [131. More important, RPLL equals the class of bottom-up
tree transformation languages, i.e., all (string) languages produced by bottom-up tree
transducers (or equivalently, tree homomorphisms), when applied to derivation trees
of context-free grammars. By means of an intercalation theorem for RPLL, we show
that no prime copying can be done in RPLL, in particular no language of the form
c,(L) belongs to RPLL, where L is any infinite language and p is any polynomial
with infinite positive range. We note that, as far as tree transducers are concerned, in
this part of the paper we only discuss tree homomorphisms.

In the second part of the paper (Sections 4 and 5), we consider the (top-down) tree
transducer hierarchy of 151. We prove in Section 4 that, at each level of this
hierarchy, the class of deterministic one-state top-down tree transformation languages
is not closed under prime copying (and in particular not under infinite polynomial
copying). This result implies that, for every n, the class of (string) languages obtained
as output from a composition of n bottom-up tree transducers (applied to derivation
trees of context-free grammars) is not closed under infinite polynomial copying. We
also show in Section 4 that every class of deterministic (multi-state) top-down tree
transformation languages is closed under polynomial copying (under a few conditions
on the class of input tree languages). In Section 5, we reline the top-down tree
transducer hierarchy by showing that, at each of its levels, nondeterministic one-state
top-down tree transducers cannot do coloured copying (clearly multi-state
transducers can do this). In this section we also show the result from [20] that one-
state top-down tree transducers already give rise to a proper hierarchy (even with
respect to the classes of tree transformation languages).

From all these results together we may conclude that infinite polynomial copying
and coloured copying distinguish sharply the multi-state from the one-state top-down
tree transducers, and the top-down from the bottom-up transducers. For the relevance
of (one-state) top-down tree transducers to the syntax-directed translation of context-
free languages, we refer to [12, 191.

Sections 2 and 3 of this paper are self-contained, but Sections 4 and 5 are a
continuation of the first three sections of [5], and there we assume familiarity of the
reader with the notation and terminology of these sections of [51.

2. PRELIMINARIES

The reader is assumed to be familiar with the basic concepts of formal language
theory [10, 141. In this section we discuss some elementary notation, the concept of
tree homomorphism, and various copying operations.

420 ENGELFRIET AND SKYUM

2.1. Elementary Notation

For a string w, (w (denotes its length;] 1(= 0. If o is a symbol, then #,(w) denotes
the number of occurrences of o in w. We consider languages which differ only by A to
be identical.

Let x,, x,, xj ,... be special symbols. Let X, = {xi ,..., xk}. For strings w, ,..., wk and
a string w E (Z U X,J*, where C is some alphabet, we denote by w[w, ,..., wk] the
result of substituting wi for xi in w.

Let Z denote the set of integers and let N = { 1, 2, 3,...}. For A c Z, we denote by
DA the subset of Z consisting of all products of elements of A, i.e., n,4 =
{k, k, a-- k,] n > 1, ki E A } G Z. For a partial function f: B -+ Z, we denote as usual
by range(f) the set { y E L] f(x) = y for some x E Z}.

An alphabet Z is ranked if C = U (Z,, (n > O), where the Z, are (not necessarily
disjoint) subsets of .Y such that only finitely many of them are nonempty. If u E Z,,,
then we say that CJ has rank n. A tree over ,Z is either a symbol of rank 0 or a string
of the form u(t, -.a t,J, where c has rank n and ti is a tree over Z, 1 < i < n. The set
of all trees over Z is denoted T,. We shall use T, [X,] to denote T, uxk, where the
elements of X, are given rank 0. Since trees are special strings, t[t, ,..., tk] denotes the
result of substituting the trees ti for xi in the tree t; this may be called “tree
concatenation” (as it generalizes string concatenation). The yield of a tree t, denoted
by yield(t) or y(t) or even yt, is defined as usual by y(a(t, .-. t,)) = y(t,) a-. y(t,) and
y(o’)=u’ for aEZ, and a’EZ,. It is easy to show that for arbitrary trees
t, t 1 ,*-*, t, : y(t[t, ,***, tk]) = y(t)[y(t&, y(t,J]. If L is a tree language, then yL =
{ yt (t E L}, and if K is a class of tree languages, then yK = { yL 1 L E K). We also
employ the usual intuitive terminology concerning these labeled ordered trees. We
assume the reader to be familiar with the concepts of node, label, root, leaf, path, and
subtree (a node together with all its descendants).

2.2. Tree Homomorphisms

In this subsection we recall the definition of a tree homomorphism and show that it
has a property which is basic to the rest of the paper, viz., that the number of copies
of the translation made of a subtree by the tree homomorphism has only small prime
factors.

Let Z and A be ranked alphabets. A tree homomorphism H from TX to Td is a
mapping determined by a family (Hk}k>O of mappings Hk: C, + T, [X,] as follows:
For GE&,, H(a) = H,(o). For o E Z:, and t, ,..., t, E T,, H(a(t, as. t,J) =
H,(a)[H(t,),...,.H(t,)l.

The class of tree homomorphisms is denoted by HOM. It is easy to see that HOM
is closed under composition. If K is a class of tree languages, then HOM(K) =
{H(L)] HE HOM and L E K}. Clearly, the tree homomorphism is the generalization
to trees of the string concept of homomorphism. Each tree homomorphism H is
indeed a homomorphism with respect to tree concatenation, i.e., if t E r,[X,] and
t , ,***, t, E T, and H is extended (as we will always assume) to TX [X,] by defining

ONE-STATE TREETRANSDUCERS 421

H,(xi) = xi, then H(t[t I ,..., tk]) = H(t)[H(t,),..., H(fk)]. The straightforward proof of
this elementary fact is left to the reader.

Let s be a subtree of t and let t = u[s], where u E TX IX,] and u contains exactly
one occurrence of xi (thus u is the part of t “outside” s). Then, for a tree
homomorphism HI H(t) = H(u)[H(s)] an consequently the number of occurrences d
of H(s) in H(f) is equal to the number of occurrences of X, in H(u). This number will
be called the translation number of s with respect to t (and H), denoted by trn,,(s, t).

In the following lemma we state the basic property of these translation numbers:

LEMMA 2.1. For each H E HOM there is a constant N such that ifs is a subtree
oft, then trn,(s, t) E l7{n (0 < n < N}.

Proof It is easy to see that for t = c~(t, . . . tk)

trn,(s, t) = 1, if s = t,

= T@~~(HJu)) 9 tq,(s, fi), if s is a subtree of ti.

Hence trn,(s, t) is a product of numbers #,i(H,(u)), k > I, u E .Z,, 0 < i < k. Conse-
quently, if N is the maximum of these numbers, then trn,,(s, t) E ZZ(n] 0 ,< n < NJ. u

As a consequence of this lemma, the numbers trn,(s, t), for fixed H, have only
small (i.e., <N) prime factors, viz., the prime factors of all numbers #,,(H,(a)).

2.3. Copying Operations

Let f be a function from Z into itself. For each language L over the alphabet ,Z we
define

CAL) = {%(w%~(” (f(n) > 1 and w E L},

where $ is not in C.
If f(n) = k for all n, then we denote cf by ck; iff is the identity, then we denote c,

by c* . Thus c&C,) = {%(w$)” / w E L} and c,(L) = {%(w%)” [n > 1, w E L}. When
range(f) f7 N is finite (infinite), as in the case of ck (c,), we talk about finite
(infinite) copying. If f(n) = ab” for a, b E N, then we talk about pure exponential
copying. If f is a polynomial (with integer coefficients), then we talk about
polynomial copying. Finally, if range(f) n N contains numbers with arbitrarily large
prime factors, then we talk about prime copying.

We also consider finite “coloured” copying, i.e., copying over a different alphabet.
For each language L over the alphabet Z we define C;(L) = (w%W / w E L}. where
z= (C]uEZ) and $ is not in ZUF.

3. AN INTERCALATION THEOREM FOR LEVEL LANGUAGES

In this section we consider the extended definable languages of [131, using the
(restricted parallel) level grammars of [151 to generate them. This class of languages

422 ENGELFRIETAND SKYUM

will be denoted by RPLL. We first show that RPLL can be obtained from the
context-free languages by applying tree homomorphisms to their derivation trees (as
shown also in [12, 18]), and consequently RPLL also equals the class of bottom-up
tree transformation languages (cf. [3]). We consider a few closure properties of
RPLL, in particular finite and pure exponential copying. Then an intercalation
theorem for RPLL is presented and it is used to show that RPLL is not closed under
prime copying, in particular not under infinite polynomial copying. This result
implies that RPLL is not adequate to express the properties of declarations in block-
structured languages (as suggested in [131).

DEFINITION 3.1. A restricted level grammar is a construct G = (N, C, P, S),
where N is the nonterminal alphabet, Z is the terminal alphabet (Z n N = la), P is a
finite set of productions of the form A +owithAENandvE(NUZ)*,andSEN
is the start symbol. In other words, a restricted level grammar is the same as a
context-free grammar. The derivation relation, however, is defined differently. A
sentential form of G is an element of ((N x n\l) U Z)*. We define the derivation
relation 3 as follows (where wi E ((N x M) U Z)* and (A, n) E N X FJ):
w&4, n) w,(A, n) w2 ..+ (A, n) w, * w, ww, ww, ... ww, if and only if (A, n) does not
occur in wi (0 < i < m) and there is a production A -+ y,A i y, A Z yZ . .. A k yk in P with
AiEN and y,EZ* such that w=~&,,Tz+ l)y,(A,,n+ l)y,..*(A,,n+ 1)~~.
The relation & is defined as usual, and the language generated by G is L(G) =
w~*I(S,1AYJ.

The class of languages generated by restricted level grammars is denoted by RPLL
(the restricted parallel level languages). Level grammars were introduced in [151, in a
slightly different way; using [15, Proposition 31, it is easy to see that the above
definition is equivalent to the one in [151. It was shown in [15) that RPLL equals the
class ED of extended definable languages [131.

A restricted level grammar is a context-free grammar with level-numbers attached
to the nonterminals (indicating the depth of the nonterminal in the derivation tree).
The way in which the derivation relation is defined restricts the set of derivation trees
of the context-free grammar to those that have the following property (let the “label
sequence” of a node be the sequence of labels on the path from the root to the node):
if two nodes have the same label sequence, then they are at the root of identical
subtrees of the derivation tree; in other words, if two nodes have the same history,
then they have the same future. In particular (and equivalently), if A + uBvBw is a
production (with A, B E N and u, v, w E (ZU N)“), then both occurrences of B have
to derive the same string; it is exactly this property of level grammars which is
formalized in an “Algol-like” way in the definition of extended definable language in
[131, cf. the discussion at the end of [131. A formal proof of these remarks is left to
the reader.

EXAMPLES 3.2. Consider the restricted level grammar G = (N, 2, P, S) with
N= {.!?,A}, C= {a, b), and P= {S+bAbAbAb, A +aA, A-+1}. It is easy to see that
L(G) = {ba”ba”ba”b 1 n > O}.

ONE-STATETREETRANSDUCERS 423

The restricted level grammar (IS), (a}, P, S), where P consists of the rules S -+ SS
and S -+ a, generates the language {a”’ / n > O}.

In Lemma 3.3 we show how to remove I-productions and single productions from
level grammars.

LEMMA 3.3. Let G = (N, Z, P, S) be a restricted level grammar. Then there exists
an equivalent restricted level grammar G’ = (N, Z, P’, S) such that P’ contains no
productions of the form A + ,I or A -+ B with A, B E N.

Proof. First we construct a grammar without l-productions. The construction is a
straightforward variant of the one for context-free grammars. Let N, =
(AEN)A$~}.Construct~=(N,~,~,S)suchthatifA4w,A,w,A,...A,w,is
in P, with w, w, .I. w,E((NuC)-NJ* and A,EN, (l<i<m), then all
productions A --) woB, w, B, ..a B, w,, except possibly A + 1, are in F, where
Bi E {Ai, A) and Bi-= Bj if Ai = Aj. It is left to the reader to show that L(G) = L(c).

To obtain from G the required grammar G’ without productions A -+ B, exactly the
same construction as for context-free grammars can be used: if A % B in G and
B --t w in p (with w 65 N), then A + w is in P’. I

Let DCF denote the class of tree languages which are sets of derivation trees of a
context-free grammar. We now show that the application of tree homomorphisms to
DCF yields RPLL, cf. [12, 181.

THEOREM 3.4 [12,181. RPLL = yHOM(DCF).

Proof. To show that RPLL E yHOM(DCF), let G = (N, .?Y, P, S) be a restricted
level grammar, which has no I-productions. We define a context-free grammar G’ =
(N’, C’, P’, S’) and a tree homomorphism H as follows: Let A be the ranked alphabet
equal to P U (S’}, such that a production is in A, if its right-hand side contains k
different nonterminals (e.g., a production A -+ ABA has rank 2) and S’ E A,. Let R
be the ranked alphabet with Q,, = C and Q, = (c) for some new symbol c.
Homomorphism H is a tree homomorphism from Td to T,, and we set N’ = A - A,,
and C’ = A,. If r is a production and the (distinct) nonterminals A, ,..., A, (k > 1)
occur in its right-hand side v, then P’ contains all rules r + r, ... rk, where ri is a
production with left-hand side Ai, and Hk(r) is defined to be any tree t E T,, IX, 1
such that yield(t)[A, ,,.., AkJ = V. Finally, P’ contains all rules S’ -+ r, where r has
left-hand side S, and H,(S’) = x,. It is left to the reader to prove that L(G) = yH(D),
where D is the set of derivation trees of G’. Intuitively, whenever the restricted level
grammar produces two brother nodes with the same label, the context-free grammar
produces only one of them, and the tree homomorphism is used to produce its brother
together with a copy of its subtree.

To show that yHOM(DCF) C_ RPLL, let G = (N, 2, P, S) be a context-free
grammar and let H be a tree homomorphism from T* to T,, where A is the ranked
alphabet such that A,, = Z and A, is the set of all nonterminals which have a
production with right-hand side of length k. We may assume that no nonterminal

424 ENGELFRIETAND SKYUM

occurs more than once in the right-hand, side of a production (if A -+ uBvBw is a
production, then we introduce a new nonterminal B and a new production B-, B,
change the first production into A -+ #B&w, and define H,(B) = x,). We now define
the restricted level grammar G’ = (N, Q,, , P’, S) such that if A + a, ... ak is a
production in P with ai E NUZ, and H,(A) = t E To [Xk], then P’ contains the
production A + yield(t)[w, ,..., wk], where wi = ai if ai E N and wi = yield(HO(ai)) if
ai E Z. It is again left to the reader to show that L(G’) = yH(D), where D is the set
of derivation trees of G. I

Let REC denote the class of recognizable tree languages [191. It is well known that
DCF E REC and that each recognizable tree language can be obtained as a (deter-
ministic) relabeling of a tree language in DCF [191. Since HOM is closed under
composition, this shows that yHOM(DCF) = yHOM(REC). Let B denote the class
of bottom-up tree transductions; yHOM(REC) equals the class yB(REC) of bottom-
up tree transformation languages [3]. Thus we obtain

COROLLARY 3.5. RPLL = yHOM(REC) = yB(REC).

It follows from Corollary 3.5 (in particular RPLL = yB(REC)) that RPLL is
closed under intersection with regular languages, cf. [3] (this was not noticed in
[131). Of the other AFL operations, it was shown in [131 that RPLL is closed under
union, concatenation, Kleene star, and homomorphisms, but not under inverse
homomorphisms (or finite substitutions). The class RPLL is clearly closed under
finite copying [131 and pure exponential copying: if L is generated by the restricted
level grammar G = (N, Z, P, S), then the grammar with new start symbol S’ and
additional production S’ --) %S$S% generates c,(L), and the grammar with additional
productions S’ + iYi’$$, T-1 7ST and T-r S (where T is also new) generates
c,(L) with f(n) = 3 . 2” (an similarly for constants other than 2 and 3). d

To show that RPLL is not closed under prime copying, we now prove an inter-
calation theorem for RPLL.

THEOREM 3.6. Let L be a restricted parallel level language, i.e., L E RPLL, over
the alphabet 27. Then there exist positive integers A4 and N such that if w E L and
Jw(>M, then w=w,,vw1vw2..- VW, (with r > 1 and wi, v E Z*) and the following
hold:

(1) rEfl{pll Q PGNI;

(21 O<Ivl<M;

(3) v = vo UVI uv2 **a UV, (with s > 1 and vi, u E Z*) such that

(a) O<lul<lv(and
(b) ify,, is definedfir all n > 0 by y, = u and y,, , = v, y, v, y, v2 . .. y, vS,

then for all n > 0

wo Y” WI Y, wz **a y,w,E L.

ONE-STATETREETRANSDUCERS 425

Proof. Intuitively, the theorem says that in each sufficiently large string of L one
can find r nonoverlapping occurrences of a small substring such that r has only small
prime factors and the substring can be “pumped” (in a special way) without leaving
the language. Note that it follows from Condition (3)(a) that 1 yn+ , / > (y,l for all
n > 0.

By Theorem 3.4 there exist a context-free grammar G = (N, C, P, S) and a tree
homomorphism H such that L = yH(I)), where D is the set of derivation trees of G.
Moreover, by Lemma 3.3 and the construction used in Theorem 3.4 to show that
RPLL c yHOM(DCF), we may assume that H is nondeleting and expanding, i.e.,
Hk(u) contains at least one occurrence of each xi (1 < i < k) and yH, ((I) # x, ; conse-
quently 1 yH,Ju)(> 2. We will now apply H to the usual pumping lemma for context-
free languages.

Let M be the maximum of all (yH(t)l, where t is any subtree of a tree in D and t
has no path on which there are more than two occurrences of the same nonterminal.
Consider a string w E L with 1 WI > M. Then w = yH(t) for some tree t E D which
has a path with a repetition of a nonterminal. Consider a lowest pair of nodes (on the
same path) with the same label. Then (using x for x,) there are trees P E TA and
5, W E T* [(x}], where A is the ranked alphabet of D, such that t = w[fi[c]], @ and c
contain exactly one occurrence of x, and the roots of c[ti] and ti constitute the above
pair of nodes. Thus 1 yH(ff[zl])(< M, and @[0” [u]] E D, where V” [61 = U and
17’“[zT] = tT[U”[U]]. Let yH(G) = w,xw,xw, ... xw,, yH(z?) = L’~XU~XU~ ... xv,,
yH(@) = U, and yH(C[zi]) = v. Then u = yH(C)[yH(C)] = u0 UZI, uvz . . . uu, and M’ =
yH(E)[yH(v[ii])] = wOuw,vwz .-a uw,. Since H is nondeleting, both r and s are >l.
Let N be the number associated with H by Lemma 2.1. Then, by Lemma 2.1,
r=trn,(a[u],t~En{pIO~p~N} and so rEIZ{pl l<p<N}. Clearly Icl<M
and both u and u are nonempty. From the fact that H is nondeleting and expanding,
it follows that yH(6) # x and hence 1~1 < /u/. Finally, yH(b”(Cj) =
yH(6)” [yH(ti)] = y’, for all n > 0, and so yH(ti[C’[zi]]) = yH(G)(y,,/ =
wOynw, y,w* -*- yn w, is in L for all n > 0. This proves the theorem. I

We now show that RPLL cannot handle prime copying of infinite languages.

THEOREM 3.7. Let L, s c,(L), where L is an infinite language. Iffor each z E L
and k E N there exists $(z$)~ EL, such that n has a prime factor >k, then
L, & RPLL.

ProoJ Assume that L, E RPLL and let M and N be the constants of the inter-
calation theorem for L,. Consider a string w = %(z$)” E L, with z E L such that
(21 > M2 + M and m has a prime factor > max(N, M’}. We will use Theorem 3.6 to
derive a contradiction. By Theorem 3.6, %(z%)” = wOow, vwz +.. uw, such that
(l)- (3) hold. In particular v = vO~vl~uz ... uu, with 0 < Iu(< Iu(GM. Since
j v j < M and) zI > M, u contains either zero or one $. Let w’ =
M'o Y2Wl Y2 w2 . . * y, w, = $(z’$y E Lo for some 2’ and m’, where
y* = uovv, uv2 .** vu,. Note that I u / < I y, (< M2. We now consider two cases.

571!2'3 II

426 ENGELFRIET AND SKYUM

Case 1. #s(y2) = #s(v). Then m’ = m. Compute the difference in length between
w’ and w:(w’I--(wJ=r(ly,I-Ivl)=m(lz’j-lzl). Since]y,I-(v]<M’ and m has
a prime factor larger than both M* and N, it follows from the last equality that r has
a prime factor larger than N, which contradicts Theorem 3.6(l).

Case 2. (Note that #s(u) = 0 iff #&) = 0.) Here #s(v) = 1 and #s(yZ) > 2.
Since #s(vZ) > 2, Iz’] <] y, [< M*. Hence z’ # z and so #s(wi) < 1 for all i,
0 < i < r. If #s(w,,) = #s(w,) = 0, then w0 = w, = d and so u = %, which contradicts
Condition (3)(a) of Theorem 3.6. Hence either #s(w,) = 1 or #s(w,) = 1. Assume that
#s(w,,) = 1 (and the other case is symmetric). Then w0 begins with $. Since
(z (> M* + Zt4, (u] GM, and wOu contains two occurrences of %, we have that (wO] =
(wOv/ - Iv] > /z(+ 2 -M>M2 + 2. Consideration of w’ then shows that Iz’] >
] wOI - 1 > M2 + 1, which contradicts (z’] < M2.

This proves the theorem. 1

The most intuitively obvious case is in fact the subcase of Case 1 where #s(u) = 0.
In that situation, it is clear that u has to occur the same number of times, say k, in
each occurrence of z in w. Hence r = km and so r would have a large prime factor.
The case #s(u) = 1 has been handled above by length arguments.

This theorem implies that c,(L) is not in RPLL for every infinite language and
every function f such that range(f) A N contains numbers with arbitrarily large
prime factors. Obvious examples of such functions are j(n) = n, f(n) is the nth prime,
and f(n) is the nth nonprime. A more surprising example is f(n) = 2” - 1: by
Fermat’s theorem, p is a factor of 2p-’ - 1 for each prime p, see, e.g., (2). This
example shows that RPLL can handle only pure exponential copying (e.g.,
f(n) = 2’7, but not exponential copying in general. We now consider a large class of
functions having the “prime property,” viz., all infinite polynomials.

LEMMA 3.8. Let f be a polynomial with integer coeficients. If the set
range(f) f~ N is infinite, then it contains numbers with arbitrarily large prime factors.

ProoJ: For some k E H and some polynomial g with integer coefficients, f(n) =
n . g(n) + k. If k = 0, h t e result is clearly true. If k is positive, then consider the
polynomial f ‘(n) = n . g(kn) + 1. If range(f ‘) n N contains numbers with arbitrarily
large prime factors, then so does range(f) n n\l (because f(kn) = kng(kn) + k =
k(ng(kn) + 1) = k. f’(n) and hence {k . f’(n) (f’(n) E RJ} c range(R\l). If k is
negative, then the same statement is true for f’(n) = n . g(-kn) - 1: f(-kn) =
- k . f’(n).

From the above argument it follows that it suffices to prove the lemma for
polynomials of the form f(n) = n . g(n) f 1. Assume now that p, ,..., pS are all the
prime factors of numbers in range(f) n N. For any m E Z, take n = m . p, . pZ . v. pS
and consider f(n) = n . g(n) f 1. Then, if f(n) E N, the assumption implies that there
is some pi which divides both f(n) and n . g(n). This is a contradiction. Note that,
depending on the sign of the leading coefficient of f, lim, em f (n) = +co or

ONE-STATETREE TRANSDUCERS 421

lim ~ --oo f(n) = +co. Hence taking m sufficiently large (positive or negative, respec-
tively) will result in a positive f(n). 1

This shows that RPLL cannot handle infinite polynomial copying.

COROLLARY 3.9. Let L be an infinite language. If p is a polynomial with integer
coeflcients such that range(p) n N is infinite, then c,(L) e RPLL. In particular
c,(L) G RPLL.

ProoJ: This result follows directly from Theorem 3.7 and Lemma 3.8. I

Thus, e.g., the language {%(am$)2n+’] m > 1, n > 0) is not in RPLL. From this it
follows that the properties of declarations in a block-structured Algal-like language
cannot be expressed in RPLL. Suppose that such a language is in RPLL. Then the
intersection of this language with the regular language begin integer
a*(; a * := a* + I)* end is also in RPLL. But this is the language {begin integer
a”(; am := a”’ + 1)” end] m > 1, n > 0) because all identifiers have to be declared.
Now application of the homomorphism h with h(begin) = A, h(integer) = $, h(;) = %,
h(:=) = %, h(+) = 1, h(1) = 13. and h(end) = % yields the language
{$(am$)2n+’ 1 m > 1, n > 0} = c,(a+) with p(n) = 2n $ 1. By Corollary 3.9 this
language is not in RPLL. This is a contradiction.

We finally note that the infinity requirement on L in Corollary 3.9 is essential: if L
is finite then c,(L) is regular and hence in RPLL.

4. POLYNOMIAL COPYING IN THE TREE TRANSDUCER HIERARCHY

In this section and the next, the reader is assumed to be familiar with the notation
and terminology of the first three sections of IS]. With respect to the previous
sections, we wish to remark the following: In [5] there is a special symbol e of rank 0
with yield(e) = A; although we do not have such a symbol here, addition of it would
make no difference with respect to all classes of languages discussed. We will use c,,~
to denote cr with f(n) = 2”. The operations cl, c* , and c,,~ are slightly different in
[S], but that has no influence on our results. A tree homomorphism is the same as a
one-state deterministic top-down tree transducer. The translation number of a subtree
(with respect to some tree homomorphism) is the length of its derivation sequence.
The intercalation theorem of Section 3 may be viewed as the one-state case of the
intercalation theorem for deterministic top-down tree transducers of [111 as expressed
in [6, Theorem 3.2.41, with the additional statement concerning the prime factors of
the number of occurrences of the substring to be pumped (using a finite state
relabeling, it is easy to see that yDT,,,(REC) = yHOM(REC), in the notation of
[61). We recall that a tree trio is a class of tree languages closed under finite state
relabeling (i.e., finite tree automata which relabel the nodes of the tree) and regular
insertion (i.e., the insertion of a regular monadic language above each node of the
tree).

428 ENGELFRIET AND SKYUM

In this section we investigate the class yHOM(K) for classes K of input tree
languages other than REC. For a tree trio K, yHOM(K) is closed under finite and
pure exponential copying ([5, Lemma 2.61). Our main result in this section is that if
K = T(K’) for some K’ and yDT(K’) $ yT(K’), then y HOM(K) is not closed under
prime copying, and hence not closed under infinite polynomial copying (whereas
yDT(K) is). This holds in particular for yHOM(T”(REC)) = yBnt ‘(REC), where B
is the class of bottom-up tree transductions [1, 31, and consequently bottom-up tree
transducers cannot do infinite polynomial copying (note that the case n = 0 was
treated in Section 3).

The main result of this section is stated in the next theorem.

THEOREM 4.1. Let K be a tree trio and L a language. Let L, c c,(L) have the
property that for each w E L and k E N there exists %(w%)” E L, such that n has a
prime factor >k. Zf L, E yHOM(T(K)), then L E yDT(K).

Proof: The proof is similar to that of [5, Theorem 3.91. Let L, = yH(M(L,))
with L, E K, ME T, and HE HOM. We will construct M’ E T such that
yH(M;,(L,)) contains some $(w%)” for each w E L. Recall that “un” means that only
uniform derivations are considered (see the definition of uniform in 151). By [5,
Lemma 3.51 and the closure of DT(K) under HOM [4], this implies that
yH(M,$(L,)) E yDT(K) and hence, since yDT(K) is closed under deterministic gsm
mappings [4], L E yDT(K) which will complete the proof.

As in the proofs of [5, Theorems 3.9 and 3.161, M’ is equivalent to M but keeps
the following information in its finite control: when arriving at the root of an input
subtree s in state q, M’ will predict whether, for the tree s’ such that q(s) z+, s’,
yH(s’) contains 0, 1, or > 2 occurrences of $. Since this property of s’ is
recognizable, M’ can do this by simulating a top-down finite tree automaton on its
output tree [5, Lemma 2.21. It is left to the reader to provide the details. The states of
M’ are of the form (q, d), where q is a state of M and d = 0, 1, or 2 with the above
meaning. Thus L, = yH(M’(L,)). We now want to show that yH(M:,(L,)) contains
some %(w%)” for each w E L.

Consider %(w%)” in L, such that n has a prime factor larger than N, where N is the
number associated with H by Lemma 2.1. Let qO(t,) z t, be a derivation in M’ such
that yZZ(t,) = %(w%)“. W e want to change this derivation into a uniform derivation
q&,) s t; such that yH(t;) = %(w%)~I for some n,. Let s be an arbitrary subtree oft,
and let (q, d) occur in the state sequence of s. Let us try to make the derivation
uniform (at the root of s) with respect to this state (q, d) (i.e., we want all rules
starting with (q, d) in the rule sequence of s to have the same right-hand side). Let
(a d)(s) s s, and (q, d)(s) z s2 occur in the derivation sequence of s. We want to
replace one of these derivations by the other. Note that if either yH(s,) or yH(s,) does
not occur in yH(t,), i.e., trn,(s,, t,) = 0 or trn,(s,, tz) = 0, then this replacement can
easily be done. Assuming that this is not so, we consider three cases.

Case 1. (d = 0, i.e., yH(s,) and yH(s,) do not contain $). All occurrences of
yH(s,) in $(w%)” can be replaced by yH(s,) without leaving the language L,. Assume

ONE-STATE TREETRANSDUCERS 429

that yH(s,) # yH(s,). Then yH(s,) has to occur the same number of times, say k, in
each occurrence of w. Hence yH(s,) occurs kn times in yH(t,). By Lemma 2.1,
kn E n{ p] 0 < p < N}. This contradicts the fact that n has a prime factor >N. Hence
yH(s,) = yH(s,). Consequently the derivation (q, d)(s) % s, can be replaced by
(q, d)(s) 4 s2 without changing yH(t,) = %(w!Qn.

Case 2 (d= 1, i.e., yH(s,) and yH(s,) contain exactly one occurrence of
$). Replacement of yH(s,) by yH(s,) results in a string with the same number of
occurrences of $ but a possibly different w. Suppose that there is an occurrence of
%w$ which does not overlap with the occurrences of yH(s,). Then the resulting string
is again %(w%)“, and hence yH(s,) = yH(s,); similarly for yH(s,). Now suppose that
yH(s,) overlaps with all occurrences of SW%, and similarly for OH. Then yN(s,)
contains the first % in %(w%)” and yH(s,) the second (or vice versa). Thus
yH(s,) E SC* (where Z is the alphabet of L) and so also yH(s,) E SE*. But then
clearly yH(s,) = yH(sJ. Hence in this case we also have yH(s,) = yiY(s,) and
(q, d)(s) % s, can be replaced by (q, d)(s % s, without changing yH(t>) = %(w$)“.)

Case 3 (d = 2, i.e., both yH(s,) and yH(s,) contain at least two occurrences of S).
Then yH(s,) contains an occurrence of %w$ and hence replacement of yH(s,) by
yH(s,) in $(w%)” yields a string $(w$)“l for some n, .

We now know how to make the derivation uniform (at a node) with respect to one
state. Let us try to make the whole derivation uniform. We cannot do this by making
the derivation uniform at the root and then at its sons, et cetera (as discussed in the
proof of [S, Theorem 3.9]), because in Case 3 we change n, whereas Case 1 depends
on the fact that n has a large prime factor. Instead we proceed as follows: First, we
make the derivation uniform with respect to all states (q, d) with d = 0 or 1 by
processing all nodes of t, in the usual top-down fashion. This does not change
qww, cf. Cases 1 and 2. Then we make the resulting derivation uniform with
respect to all states (q, 2), also in the usual top-down fashion (note that Case 3 does
not depend on n having a large prime factor). This changes %(w%)” into some
$(w%)“l. Although this process also changes rule sequences of nodes below the one
processed, it is easy to see that such a change to a rule sequence does not introduce
new rules, it only replaces certain subderivations by others. Hence the final derivation
is still uniform with respect to states (q, 0) and (q, l), and consequently it is
uniform. fl

COROLLARY 4.2. Let K be a tree trio such that yDT(K)s yT(K). If p is a
polynomial with integer coeflcients such that range(p) n N is infinite, then
yHOM(T(K)) is not closed under cp (in particular, not under c,).

ProoJ Let L E yT(K) - yDT(K). Clearly L E yHOM(T(K)). By Lemma 3.8,
L, = c,(L) satisfies the conditions of Theorem 4.1. Hence, by Theorem 4.1.
c,(L) 65 yHOM(T(K)). I

By 15, Theorems 3.12 and 3.141, this corollary holds in particular for

430 ENGELFRIETAND SKYUM

yHOM(T”(REC)) = yB”+‘(REC), n > 1, and hence (including the results of
Section 3) for n > 1, yB”(REC) is not closed under infinite polynomial copying.

We now show that deterministic top-down tree transducers can do polynomial
copying. Consequently infinite polynomial copying distinguishes multi-state from
one-state (deterministic) top-down tree transducers.

We need a lemma. Let EDTOL denote yDT(REG), where REG is viewed as a
class of monadic tree languages, cf. [5, Sect. 41.

LEMMA 4.3. If p is a polynomial with integer coeflcients, then
lap(“)] p(n) > 1 } E EDTOL.

Proof. It is shown in [171 that any polynomial f(n) (with integer coefficients)
which is positive and nondecreasing for n > 0, is the growth function of some DOL
system (see [9, Sect. 15.3]), and hence (8”) 1 n > 0) E EDTOL. It is easy to see that,
for an arbitrary polynomial p with integer coefficients, {ap(“)] p(n) > 1 } is the union
of (at most) two such sets and a finite set, and consequently it is in EDTOL. 1

THEOREM 4.4. Let K be a tree trio. If p is a polynomial with integer coeflcients,
then yDT(K) is closed under c,.

Poof Let L = yM(L,) with L, E K and ME DT. We have to show that
c,(L) E yDT(K). It is easy to see, using Lemma 4.3, that
{$(a$)pcn)] p(n) > 1) E EDTOL and hence it is yN(L,) for some regular monadic tree
language L, and some N E DT. We may assume that C, n Z, = 0 for the alphabet ,Y
of L, and that the alphabets of L, and L, are’ disjoint. Let L, be the result of
inserting the regular language L, above the roots of the trees of L, . Let M’ be the
deterministic top-down tree transducer which contains the rules of A4, and also
contains the rules of N modified as follows: left-hand sides q(u) are changed into
q(o(x,)); each occurrence of a symbol a in any right-hand side is changed into q,,(x,),
where q,, is the initial state of M. Finally M’ has all rules qO(o(x,)) -+ q,,(x,) for
symbols u in the alphabet of L,. The initial state of M’ is the one of N.

Then yM’(L,) = c,(L). Intuitively, a monadic tree UX, with u E L, is translated by
M’ into a tree with yield $(q,,(x,)$) pfn) for some n; and hence a tree u(t) with u E L,
and t E L, is translated into $(w$)~(‘), where w = y&f(t). fl

We conclude this section by summarizing the results on infinite polynomial
copying for the tree transducer hierarchy, cf. [5, Theorems 3.12 and 3.141.

COROLLARY 4.5. Let p be a polynomial with integer coeflcients such that
range(p) n IN is infinite. Let K, denote T”(K,) for some tree trio K,, n > 1. If
L E yK, - yDT(K,-,), then cJL> E yDT(K,), but cp(L) 65 yHOM(K,) and
c,(L) 65 YDTJK,>.

Proof. This follows directly from Theorem 4.4, the proof of Corollary 4.2, and
[5, Theorem 3.91. I

ONE-STATETREETRANSDUCERS 431

Note that, by [5, Theorem 3.121, languages in yK, - yDT(K, _ ,) exists if
yDTfc(K,,) $ yT(K,), in particular if K, = REC.

Corollary 4.5 also holds if cP is replaced by cr, wheref(n) is the nth nonprime, or
c,, where g(n) = 2” - 1 (cf. the comments following Theorem 3.7).

5. COLOURED COPYING IN THE TREE TRANSDUCER HIERARCHY

In this section we want to determine the place of the (nondeterministic) one-state
top-down tree transducers in the tree transducer hierarchy, and to show that they
form a proper hierarchy themselves. For related work see [20, Sect. 41. Let NHOM
(for “nondeterministic tree homomorphisms”) denote the class of nondeterministic
one-state top-down tree transducers. These transducers generalize the finite
substitutions on strings.

Throughout this section, let K, be a tree trio such that yDT,,(K,) $ yT(K,), for
instance K, = REC. Let K, denote T”(K,) and let L, be a language in
yT(K,-,) - yDT(K,,-,), cf. [5, Theorem 3.121; recall that we may assume that
L n+l = rub(c,,,(L,)) or also that L,, 1 = rub(c,(L,)). We want to show the
correctness of Fig. 1 for n > 1 (for n = 0 and K, = REC, correctness was established
in [6]). The correctness of this diagram with yNHOM(K,) omitted was shown in
[5, Theorem 3.121. It remains to show that yNHOM(K,) - yDT(K,) # 0 and
yLU’,,(K,) - yNHOM(K,) # 0. These facts will be stated in Corollaries 5.2 and 5.5.
respectively.

We need a technical lemma on closure properties of y HOM(K) and y NHOM(K)
for certain classes K. Recall the notion of regular insertion from [5, Sect. 2.31. We
say that K is closed under regular insertion “at roots” if a regular monadic tree
language can be inserted above the root of a tree (and nothing is inserted at nodes
other than the root). We say that K is closed under insertion of #* “below leaves,” if
each leaf u (of a tree in some tree language in K) may be replaced by the monadic
tree language a#* (where # is not in the alphabet of the language). It is
straightforward to show that every tree trio is closed under regular insertion at roots
and insertion of #* below leaves.

yT(K,)

/ \
yNHOM(K”) yDT(Kn)

\/- \
yHOM(Kn) yDTfc(K,)

\/

YK”

FIGURE 1

432 ENGELFRIETAND SKYUM

LEMMA 5.1. Let K be a class of tree languages closed under regular insertion at
roots and insertion of #* below leaves.

(1) IfL E yHOM(K), then c,,,(L) E yHOM(K) and c,(L) E yNHOM(K).
(2) y NHOM(K) is closed under rub.

Proof The proof of (1) is similar to that of [5, Lemma 2.61. Let L = yH(L,) with
H E HOM and L i E K. Insert +#* at the roots of the input trees. Extend H by
ff*($) = $($x, $1 and H,(#) = #(x,%x,). Then yH(d#*(L,)) = c,,,(yH(L,)) =
c,,,(L). Define a top-down tree transducer M with one state q and the following
rules: q(~(xJ>- CMxJV~ q(#(xJ -, #Mx,) $q(xJ), d#(x,)) -, q(xA and (to
simulate H) all rules q(o(x, a-e xJ) -+ ~&)[q(x,),..., q(x,Jl. Then yM(W*(L,)) =
C*(YH(L,)) = c*(L).

To prove that yNHOM(K) is closed under rub, let L = yM(L,) with A4 E NHOM
and L, E K. Let L, be the result of inserting #* below leaves of trees in L I. We now
define M’ E NHOM such that M’ simulates M and uses the tails of #‘s to produce
arbitrary sequences of $‘s in the output of M. Then M’ has the following rules: First,
it has all rules of M. Second, if q(u) -+ t is a rule of M (a has rank 0), then
q(a(x,)) -+ t’ is a rule of M’, where t’ is the result of replacing in t each leaf 6 by
$(q(x,) Wx,)) or $(dq(x,)). Finally ~4’ has the rules q(#(x,))+ #(%q(x,)),
q(#(x,)) + q(x, >, and q(#) -+ S. Then yM’(L,) = rub(yM(L,)) = rub(L). I

Note that, by this lemma, NHOM has some infinite polynomial copying power,
viz., c* on input languages from yHOM(K).

COROLLARY 5.2. yNHOM(K,) - yDT(K,) # 0.

Proof Since L, E yK, - yDT(K,-,) and L,, , = rub(c,,,(L,)), Lemma 5.1
implies that L,, 1 E y NHOM(K,). Hence L, + 1 E yNHOM(K,) - yDT(K,). The
same holds in case L,, I = rub(c,(L,)). l

We now show that the one-state top-down tree transducers form a proper hierarchy
of classes of tree transformation languages. In [20] it is shown that {NHOM”(REC)}
is a proper hierarchy.

THEOREM 5.3. { yNHOM”(REC)},>, is a proper hierarchy.

Proof: Since yNHOM”(REC) G yT”(REC), it suffices to prove that
L, E yNHOM”(REC), for n > 0, where we can take L, = {a} and L,,+, =
rub(c,,,(L,)), cf. [5, proofs of Theorems 3.12 and 3.141. This follows from
Lemma 5.1 if NHOM”(REC) satisfies the closure properties mentioned there. For
REC this is obvious. Moreover, NHOM preserves these closure properties: for
regular insertion at roots this is easy to prove and for insertion of #* below leaves,
the proof is similar to that of Lemma 5.1(2).

We note here that the closure properties in Lemma 5.1 were chosen such that they

ONE-STATETREETRANSDUCERS 433

would be preserved under NHOM (preservation of regular insertion in general is not
clear). I

The incomparability of yHOM(K,) with yDT(K,) was proved in [5] as a conse-
quence of the fact that yHOM(K,) is not closed under rub. Thus, by Lemma 5.1(2),
the same argument cannot be used to show that yDTfJK,) - yNHOM(K,) # 0. To
prove this, we will show that yNHOM(K,) is not closed under coloured copying (see
Section 2.3).

A “relabeling” is a one-state top-down tree transducer such that each rule has the
form q(a(x, .I. xk)) -+ t(q(x,) .. . q(xk)), where r is an output symbol.

THEOREM 5.4. Let K be a class of tree languages closed under relabeling and let
L be a language. If F?(L) E yNHOM(T(K)), then F,(L) E yHOM(DT(K)). In
particular, if F,(L) E yNHOM(NHOM(K)), then C,(L) E yHOM(K).

Proof. Clearly, if K is closed under relabeling, then so are T(K) and NHOM(K).
Let L G Z* and C,(L) E yNHOM(T(K)). It is easy to see that 15, Lemma 3.5]

also holds for classes closed under relabeling and that the construction preserves the
number of states. Hence the proof of [5, Theorem 3.61, which also applies to F,,
yields that C,(L) E y HOM(T(K)). Let S,(L) = yH(M(L ,)) with L, E K,
M = (Q, 2, d, q,,, R) in T, and H E HOM. By [5, Lemma 3.51, it suffices to show
that F*(L) = yH(M,,(L,)). Consider a derivation q,,(t) z t’ of M such that
yield(H(t’)) = w%tij with w E L, and let s be a subtree of t with derivation sequence
(q,(s) 5 s , ,..., qn(s) % s,). Suppose that qi = qj with i # j. Then all occurrences of
yH(si) in w$W may be replaced by yH(s,), and vice versa, without leaving the
language C,(L). Now if yH(si) E .Z *, then ~H(s,~) must also be in C* and so
yH(si) = yH(sj). Similarly for the case that yH(si) E 2”. If yH(s,) contains S. then
yH(sj) cannot occur in yH(t’). In all cases, the derivation q,j(s) s s,~ may be replaced
by qi(s) 2 si without changing yH(t’) = w$W. Hence q,,(t) 2 t’ can be changed into a
uniform derivation q,(t) g t” such that yH(t”) = w%G, in the way indicated in the
proof of [5, Theorem 3.61.

For the second statement of the theorem, we note that HOM is closed under
composition. 1

COROLLARY 5.5. yDT,,(K,) - yNHOM(K,) # 0.

Proof. Let L, be in yK, - yDT(K,_,). Clearly C,(L,) E yDT,,(K,). But
E,(L,) 6Z yNHOM(K,). Indeed, GL) E Y NHOWV, ,>> implies
F2(L) E yHOM(DT(K,_ 1)) = yDT(K,_ i), by Theorem 5.4 and closure of DT(K, ,)
under HOM [4]. But then L, E yDT(K,-,) because this class is obviously closed
under (string) homomorphisms. 1

This shows the correctness of Fig. 1.
The proof of Corollary 5.5 shows that yHOM(K,) is not closed under coloured

copying. Since it is easy to see that yDT(K,) is closed under coloured copying, this

434 ENGELFRIETAND SKYUM

property distinguishes again the multi-state from the one-state (deterministic) top-
down tree transducers.

We now show how to obtain 1,anguages outside the one-state hierarchy
{ yNHOM”(REC)}.

COROLLARY 5.6. rf C;(L) & RPLL, then F2(L) 6Z U,,yNHOM”(REC).

ProojI Assume that I?#,) E U, yNHOM”(REC). Iterated application of
Theorem 5.4 (in particular its last statement) yields that c&r,) E yHOM(REC), i.e.,
E;(L) E RPLL by Corollary 3.5. 1

It was shown in [16, Theorem 61 that if L is not regular, then C*(L) @ RPLL.

COROLLARY 5.7. yDT,,(REC) - U, yNHOM”(REC) # 0.

Proof: It follows from [16, Theorem 61 that L = (ambm$cmdm (m > 1 } & RPLL.
Hence, by Corollary 5.6, L & U, yNHOM”(REC). Clearly, L E yDT,,(REC). 1

This corollary and Theorem 5.3 together show that yNHOM”(REC) is a “small
hierarchy” in yF(REC), in the sense that languages which can be used to prove
properness of {yT”(REC)} can already be found in (yNHOM”(REC)}, and the
smallest class of { yT(REC)} already contains an element not in
U, yNHOM”(REC).

REFERENCES

1. B. S. BAKER, Tree Transductions and Families of Tree Languages, Ph. D. Thesis, Harvard
University, Cambridge, Mass., Report TR-9-73, 1973 (see also “Proceedings, 5th ACM Symposium
on Theory of Computing, pp. 200-206).

2. L. E. DICKSON, “Introduction to the Theory of Numbers,” Dover, New York, 1957.
3. J. ENGELFRIET, Bottom-up and top-down tree transformations-a comparison, Mufh. Systems

Theory 9 (1975), 198-231.
4. J. ENGELFRIET, Top-down tree transducers with regular look-ahead; Math. Systems Theory 10

(1977), 289-303.
5. J. ENGELFRIET, Three hierarchies of transducers, Math. Systems Theory 15 (1982) 95-125; see also

171.
6. J. ENGELFRIET, G. ROZENBERG, AND G. SLUTZKI, Tree transducers, L systems, and two-way

machines, J. Comput. System Sci. 20 (1980), 150-202.
7. J. ENGELFRIET, G. ROZENBERG, AND G. SLUTZKI, Tree transducers, L systems, and two-way

machines, in “Proceedings, 10 th ACM Symposium on Theory of Computing, San Diego, Calif.
May 1978,” pp. 66-74.

8. J. ENGELFRIET AND S. SKYUM, Copying theorems, Inform. Process. Left. 4 (1976), 157-16 1.
9. G. T. HERMAN AND G. ROZENBERG, “Developmental Systems and Languages,” North-Holland,

Amsterdam, 1975.
10. J. E. HOPCROFT AND J. D. ULLMAN, “Formal Languages and Their Relation to Automata,”

Addison-Wesley, Reading, Mass., 1969.
11. C. R. PERRAULT, Intercalation lemmas for tree transducer languages, J. Compuf. System Sci., 13

(1976), 246-277.

ONE-STATE TREE TRANSDUCERS 435

12. L. PETRONE, Syntax directed mappings of context-free languages, in “IEEE Conf. Record of 9th
Symposium on Switching and Automata Theory,” pp. 160-175, 1968.

13. G. F. ROSE, An extension of ALGOL-like languages, Comm. ACM 7 (1964). 52-6 I.
14. A. SALOMAA, “Formal Languages,” Academic Press, New York, 1973.
15. S. SKYUM, On extensions of ALGOL-like languages, Inform. and Control 26 (1974) 82-97.
16. S. SKYUM, Decomposition theorems for various kinds of languages parallel in nature, SIAM J.

Comput. 5 (1976), 284-296.
17. A. L. SZILARD, Growth Functions of Lindenmayer Systems, Technical Report No. 4, University of

Western Ontario, London, Ontario, Canada, 1971.
18. K. TANIGUCHI AND T. KASAMI, Macro expansions of context-free languages. Electron. Comm.

Japan, 53-C (7) (1970), 12&127.
19. .I. W. THATCHER, Tree automata: an informal survey, in “Currents in the Theory of Computing”

(A. V. Aho, Ed.), Prentice-Hall, Englewood Cliffs, N. .I.. 1973.
20. B. S. BAKER, Composition of top-down and bottom-up tree transductions. Inform. and Control 41

(1979). 186-213.

