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Reactions of enamines with electron-deficient acetylenes described hitherto 
proceed almost exclusively via (2+2)-cycloaddition followed by isomerization of 
the resulting cyclobutene to a 1,3-dienaminel. This (2+2)-cycloaddition reaction 
has been employed frequently in organic synthesis as it provides a method of ring 
enlargement of cyclic ketones by two carbon atoms 1,2 . It is the key-step in the 
synthesis of several natural products such as steganacin3 and macrocyclic musksl. 
It should be emphasized that such reactions are usually performed in apolar non- 
protic solvents. 

We have recently reported that the reaction between 3-(l-pyrrolidinyl)thio- 
phenes and the strongly electron-deficient dimethyl acetylenedicarboxylate (DMAD) 

5 also proceeds via (2+2)-cycloaddition in apolar solvents . However, when the re- 
action is carried out in polar solvents such as methanol and acetonitrile the 

compounds react via a COmPletelY different pathway to yield 6,7,7a,8_tetrahydro- 
SH-thieno [3,2-b]pyrrolizines6. 

In this communication we report the first results of an investigation of the 
influence of the solvent on the reaction of enamines of cyclic and acyclic keto- 
nes with DMAD. We have found that the enamines (A) reacted with DMAD in apolar 
solvents such as toluene or diethyl ether at ambient temperature to give a 1,3- 
dienamine (2) formed by (2+2)-cycloaddition and subsequent isomerization. 

In methanol equimolar amounts of J and DMAD reacted at temperature of 0-5OC 
in two different ways to yield mixtures of the 1,3-dienamines (3) and the pyrrol- 
izines 2. The results are given in the table 1. 
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Table 1 

I Reaction products from enamines s and DMAD in methanol 

X m.p. (OC) yield (%) m.p. (OC) yield (%I 
2," SC6HS 130 - 132 30 3a 132.5-134 52 
2 0CgH5 115 - 116 20 3b 106 -108 45 
2c 'gH5 127 - 128 35 3c 94 -95 23 

I 

The pyrrolidino enamines 2 and2 of cyclopentanone and a-tetralone also exhibi- 
ted these two different modes of reaction. In toluene or diethyl ether they reac- 
ted with DMAD to give 67 and2 (m.p. 112.5-114.5°C) respectively. The same reagents 
in methanol afforded the corresponding pyrrolizines 2 and 2 in yields of 30 and 
70% respectively. 

The structures of the new pyrrolizines were confirmed by elemental analysis 
and mass.spectrometry, both revealing that 1:l adducts had been formed. The rele- 
vant data of the 'H-NMR and 13 C-NMR spectra of 2, 3 and 2 were compared with those 
of the 5B-thieno[3,2-b]pyrrolizines whose structure had unequivocally been estab- 
lished by an X-ray structure determination6. Particularly the absorption of the 
tertiary protons Ha at 4.6-4.8 ppm (dd, J=6+1 and lO&lHz) and of the methoxycar- 
bonylmethyl group (AB-system, J=17+1Hz) are very characteristic. The 13 C-NMR spec- 
tra revealed the presence of two sp3 -hybridized carbon atoms corresponding to the 
original acetylene moiety (see Table 2). 

Table 2 

Characteristic 'H- and 13 C-NMR absorptions of compounds 2, ,? and 9 in CDC13. 
6H a 6H(CH,E) K(C-Ha) GC(C-E) GC(CH,E) 
4.72 
4.68 
4.64 
4.65 

/ L 

3.62 2.59 69.95 57.48 37.88 
3.50 2.77 67.86 55.51 36.63 
3.35 2.76 69.67 59.43 38.31 
3.21 2.53 70.92 

58.17 
4.72 3.49 2.66 70.54 65.71 37.56 



No. 15 1353 

Pyrrolizine rings are present in various alkaloids and in mitomycins, which 
are potent anti-tumor and anti-bacterial agents 8 . Although several syntheses of 
pyrrolizines exist' our method represents a very simple and direct route to these 
heterocycles. 

So far, we have not cleared the mechanism of the pyrrolizine formation but a 
possible explanation is given in the scheme below. 
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We assur;;e that initially a nucleophilic addition of the enamine to the acety- 
lene triple bond takes place to give a dipolar intermediate (3). The second step 
comprises the intramolecular abstraction of one of the a-methylene protons of the 
pyrrolidinium group by the carbanionic centre, resulting in the formation of a 
1,3-dipole, an azomethine ylid C&b,. By a second proton transfer& is converted 
into its tautomeric form 5 in which the 1,3-dipole is extended to a 1,5-dipole. 
In this intermediate a symmetry-allowed disrotatory 1,5-dipolar cyclization may 
occur to give the pyrrolizine. Analogies of all three proposed steps can be found 
in the literature. Dipolar intermediates of type 2 have been postulated before in 
(2+2)-cycloaddition reactions of enamines with electron-deficient acetylenes or 
olefins, because a concerted (2+2)-cycloaddition would violate the Woodward-Hoff- 
mann rulesl'. Furthermore, various groups have proposed that benzthiasoles react 
with DMAD in anhydrous methanol via a 1,4-dipolar addition of a similar interme- 
diate'l. The feasibility of intramolecular proton transfer in such 1,4-dipolar 

12 species has been shown in reactions of 3-carboxy-1,4_dihydropyridine and DMAD , 
Finallya number of 1,5-dipolar cyclisations to yield 5-membered heterocycles have 
been reported after this reaction type had been identified as such by Reimlin- 

13 qer . 
This mechanism would also account for the observed difference of reaction 

pathways in polar and apolar solvents. Polar solvents will favour the generation 
of charge-separated intermediates like 2 in which there is sufficient mobility to 
allow a conformation in which the hydrogen abstraction can occur. In apolar sol- 
vents the development of such dipolar species will be disfavoured and the forma- 
tion of two carbon-carbon bonds may proceed in a "concerted" mode via a highly 
polarized transition state. This would be in conflict with the prediction by 
Woodward and Hoffmann that concerted [n2s+n2s] cycloadditions are thermally for- 

10 bidden and are consequently high-energy processes . However recently Epiotis et 
al. have stated that (2+2)-cycloadditions of electron-rich and electron-deficient 
n-systems may well proceed in a concerted [n2s+n2s] mode14. 

Our results are different from those obtained with electron-deficient olefins 
(tetracyanoethylene) and electron-rich olefins (vinyl ethers) by Huisqen et al.15 
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The formation of the cyclobutane in these reactions is fast and virtually quanti- 
tative. Huisgen et al. have postulated a 1,4-dipolar intermediate for this (2+2)- 
cycloaddition and they have presented evidence that in methanol this intermediate 
is intercepted by reaction with the solvent. 
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