A New Martingale Approach to Kalman Filtering

ARUNABHA BAGCHI

Department of Applied Mathematics, Twente University of Technology, Enschede, Postbus 217, The Netherlands

Communicated by Karl-Johan Astrom

ABSTRACT

A new derivation of continuous-time Kalman Filter equations is presented. The underlying idea has been previously used to derive the smoothing equations. A unified approach to filtering and smoothing problems has thus been achieved.

I. INTRODUCTION

Recently many rigorous derivations of continuous-time Kalman Filter equations have been obtained [1,2,3]. The most general nonlinear problem has been studied in [3] but its specialization to the linear case obscures the simplicity of the linear problem. An elegant proof in the linear case has been proposed in [1] which exploits a result on the estimation of one martingale from another. As pointed out in [4], the "state martingale" used in [1] does not yield the smoothing equations and a different martingale has, therefore, been proposed. This paper shows that the same martingale can be used to derive the filtering equations also, thus unifying the martingale technique initiated in [1] to derive both the filtering and smoothing equations.

2. PROBLEM FORMULATION

Let us consider the linear stochastic equations (continuous version)

$$x(t;\omega) = \int_{0}^{t} A(\sigma) \ x(\sigma;\omega) \ d\sigma + \int_{0}^{t} B(\sigma) \ dW(\sigma;\omega) \ (2\cdot 1)$$

$$y(t;\omega) = \int_0^t C(\sigma) \ x \ (\sigma;\omega) \ d\sigma + \int_0^t D(\sigma) \ dW(\sigma;\omega) \ (2\cdot 2)$$

for $0 \le t \le T$ where $x(t;\omega)$ and $y(t;\omega)$ take values in n- and m-dimensional Euclidean spaces R^n and R^m , respectively, $W(t;\omega)$ is a p-dimensional Wiener process, and A(t), B(t), C(t), and D(t) are appropriate dimensional matrix-valued functions. Assume that these coefficient functions are all continuous and $D(t)D(t)^*>0$ on the interval [0,T] of interest, where * stands for the transpose.

© American Elsevier Publishing Company, Inc., 1976

188 ARUNABHA BAGCHI

Let $\beta(s)$ be the smallest σ -algebra generated by the process $y(\sigma; \omega)$, $0 \le \sigma \le s$ completed with respect to sets of measure 0 and $\beta(s-)$ the smallest σ -algebra generated by the process $y(\sigma; \omega)$, $0 \le \sigma < s$ completed with respect to sets of measure 0. Then since $y(t; \omega)$ is continuous in t with probability one, $\beta(s) = \beta(s-)$.

Let $\hat{x}(t \mid s) = E[x(t) \mid \beta(s)]$. Then it is well known [5, p. 44] that $\hat{x}(t) = \hat{x}(t \mid t)$ is the best minimum variance estimate of x(t) based on the observation $y(\sigma;\omega)$, $0 \le \sigma \le t$ and is called the filtered estimate of x(t). Since $\hat{x}(t \mid s)$ is a martingale in s for fixed t we have from [6, p. 121]

$$\hat{x}(t\mid s) = \int_{0}^{s} \gamma_{12}(\tau) dZ_{0}(\tau;\omega) \tag{2.3}$$

where $Z_o(t;\omega)$, the so-called innovation process, is defined as

$$Z_{o}(t;\omega) = y(t;\omega) - \int_{0}^{t} C(\sigma) \hat{x}(\sigma;\omega) d\sigma$$

and

$$\gamma_{12}(\tau) = P_{12}(\tau) P_{22}(\tau)^{-1}$$

where

$$P_{12}(\tau) = \lim_{\Delta \to o} \frac{1}{\Delta} E\left[(\hat{x}(t \mid \tau + \Delta) - \hat{x}(t \mid \tau))(Z_o(\tau + \Delta) - Z_o(\tau))^* \mid \beta(\tau) \right],$$

$$P_{22}(\tau) = \lim_{\Delta \to o} \frac{1}{\Delta} E\left[\left(\int_{\tau}^{\tau + \Delta} dZ_{o}(\sigma;\omega) \right) \left(\int_{\tau}^{\tau + \Delta} dZ_{o}(\sigma;\omega) \right) * \mid \beta(\tau) \right].$$

3. FILTERING EQUATIONS

Let us consider (2.3) for s < t. From [6, p. 127], for any $\tau > 0$

$$P_{22}(\tau) = D(\tau)D(\tau)^*$$

while for $\tau < t$

$$P_{12}(\tau) = \lim_{\Delta \to o} \frac{1}{\Delta} E\left[(\hat{x}(t \mid \tau + \Delta) - \hat{x}(t \mid \tau)(Z_o(\tau + \Delta) - Z_o(\tau))^* \mid \beta(\tau) \right]$$

where τ and $\tau + \Delta$ are both less than t. Now

$$x(t) = \Phi(t, \tau + \Delta) x (\tau + \Delta) + \int_{\tau + \Delta}^{t} \Phi(t, \sigma) dW(\sigma)$$

where $\Phi(t,\tau)$ is the fundamental matrix of dimension $n \times n$ satisfying

$$\frac{d\Phi(t,\tau)}{dt} = A(t)\Phi(t,\tau) \qquad \Phi(\tau,\tau) = I.$$

Hence

$$E[x(t) \mid \beta(\tau + \Delta)] = \Phi(t, \tau + \Delta) \hat{x}(\tau + \Delta)$$

and

$$E[x(t) \mid \beta(\tau)] = \Phi(t, \tau) \hat{x}(\tau).$$

With this, we have

$$\begin{split} P_{1\,2}(\tau) &= \lim_{\Delta \to o} \frac{1}{\Delta} E\left[(\Phi(t,\tau+\Delta) \, \hat{x}(\tau+\Delta) \\ &- \Phi(t,\tau) \hat{x}(\tau) (Z_o(\tau+\Delta) - Z_o(\tau))^* \mid \beta(\tau) \right] \\ &= \Phi(t,\tau) \lim_{\Delta \to o} \frac{1}{\Delta} E\left[(\Phi(\tau,\tau+\Delta) \hat{x}(\tau+\Delta) - \hat{x}(\tau)) (Z_o(\tau+\Delta) - Z_o(\tau))^* \mid \beta(\tau) \right] \\ &= \Phi(t,\tau) \lim_{\Delta \to o} \frac{1}{\Delta} E\left[\left. \left\{ (\Phi(\tau,\tau+\Delta) - I) \hat{x}(\tau+\Delta) + \hat{x}(\tau+\Delta) - \hat{x}(\tau) \right\} \right. \\ &\left. \left\{ Z_o(\tau+\Delta) - Z_o(\tau) \right\} \right. \right. \\ &\left. \left\{ Z_o(\tau+\Delta) - Z_o(\tau) \right\} \right. \\ &\left. \left\{ E\left[\hat{x}(\tau+\Delta) (Z_o(\tau+\Delta) - Z_o(\tau))^* \mid \beta(\tau) \right] \right. \\ &\left. \left\{ E\left[\hat{x}(\tau+\Delta) - \hat{x}(\tau) (Z_o(\tau+\Delta) - Z_o(\tau))^* \mid \beta(\tau) \right] \right. \\ &\left. \left\{ E\left[\hat{x}(\tau+\Delta) - \hat{x}(\tau) (Z_o(\tau+\Delta) - Z_o(\tau))^* \mid \beta(\tau) \right] \right. \\ &\left. \left. \left\{ E\left[\hat{x}(\tau+\Delta) - \hat{x}(\tau) (Z_o(\tau+\Delta) - Z_o(\tau))^* \mid \beta(\tau) \right] \right. \\ &\left. \left\{ E\left[\hat{x}(\tau+\Delta) - \hat{x}(\tau) (Z_o(\tau+\Delta) - Z_o(\tau))^* \mid \beta(\tau) \right] \right. \\ &\left. \left\{ E\left[\hat{x}(\tau+\Delta) - \hat{x}(\tau) (Z_o(\tau+\Delta) - Z_o(\tau))^* \mid \beta(\tau) \right] \right. \\ &\left. \left\{ E\left[\hat{x}(\tau+\Delta) - \hat{x}(\tau) (Z_o(\tau+\Delta) - Z_o(\tau))^* \mid \beta(\tau) \right] \right. \\ &\left. \left\{ E\left[\hat{x}(\tau+\Delta) - \hat{x}(\tau) (Z_o(\tau+\Delta) - Z_o(\tau))^* \mid \beta(\tau) \right] \right. \\ &\left. \left\{ E\left[\hat{x}(\tau+\Delta) - \hat{x}(\tau) (Z_o(\tau+\Delta) - Z_o(\tau))^* \mid \beta(\tau) \right] \right. \\ &\left. \left\{ E\left[\hat{x}(\tau+\Delta) - \hat{x}(\tau) (Z_o(\tau+\Delta) - Z_o(\tau))^* \mid \beta(\tau) \right] \right. \\ &\left. \left\{ E\left[\hat{x}(\tau+\Delta) - \hat{x}(\tau) (Z_o(\tau+\Delta) - Z_o(\tau))^* \mid \beta(\tau) \right] \right. \\ &\left. \left\{ E\left[\hat{x}(\tau+\Delta) - \hat{x}(\tau) (Z_o(\tau+\Delta) - Z_o(\tau))^* \mid \beta(\tau) \right] \right. \\ &\left. \left\{ E\left[\hat{x}(\tau+\Delta) - \hat{x}(\tau) (Z_o(\tau+\Delta) - Z_o(\tau))^* \mid \beta(\tau) \right] \right. \\ &\left. \left\{ E\left[\hat{x}(\tau+\Delta) - \hat{x}(\tau) (Z_o(\tau+\Delta) - Z_o(\tau))^* \mid \beta(\tau) \right] \right. \\ &\left. \left\{ E\left[\hat{x}(\tau+\Delta) - \hat{x}(\tau) (Z_o(\tau+\Delta) - Z_o(\tau))^* \mid \beta(\tau) \right] \right. \\ \\ &\left. \left\{ E\left[\hat{x}(\tau+\Delta) - \hat{x}(\tau) (Z_o(\tau+\Delta) - Z_o(\tau))^* \mid \beta(\tau) \right] \right. \\ \\ &\left. \left\{ E\left[\hat{x}(\tau+\Delta) - \hat{x}(\tau) (Z_o(\tau+\Delta) - Z_o(\tau))^* \mid \beta(\tau) \right] \right. \\ \\ &\left. \left\{ E\left[\hat{x}(\tau+\Delta) - \hat{x}(\tau) (Z_o(\tau+\Delta) - Z_o(\tau))^* \mid \beta(\tau) \right] \right. \\ \\ &\left. \left\{ E\left[\hat{x}(\tau+\Delta) - \hat{x}(\tau) (Z_o(\tau+\Delta) - Z_o(\tau))^* \mid \beta(\tau) \right] \right. \\ \\ &\left. \left\{ E\left[\hat{x}(\tau+\Delta) - \hat{x}(\tau) (Z_o(\tau+\Delta) - Z_o(\tau))^* \mid \beta(\tau) \right] \right. \\ \\ &\left. \left\{ E\left[\hat{x}(\tau+\Delta) - \hat{x}(\tau) (Z_o(\tau+\Delta) - Z_o(\tau) \right] \right\} \right\} \right. \\ \\ &\left. \left\{ E\left[\hat{x}(\tau+\Delta) - \hat{x}(\tau) (Z_o(\tau+\Delta) - Z_o(\tau) \right] \right\} \right. \\ \\ &\left. \left\{ E\left[\hat{x}(\tau+\Delta) - \hat{x}(\tau) (Z_o(\tau+\Delta) - Z_o(\tau) \right] \right] \right\} \right. \\ \\ \\ &\left. \left\{ E\left[\hat{x}(\tau+\Delta) - \hat{x}(\tau+\Delta) - \hat{x}(\tau) (Z_o(\tau+\Delta) - Z_o(\tau) \right] \right\} \right. \\ \\ \\ \left. \left\{ E\left[\hat{x}(\tau+\Delta) - \hat{x}(\tau) (Z$$

since

$$\lim_{\Delta \to o} \frac{\Phi(\tau, \tau + \Delta) - 1}{\Delta} = -A(\tau)$$

exists and

$$\lim_{\Delta \to o} E[\hat{x}(\tau + \Delta)(Z_o(\tau + \Delta) - Z_o(\tau))^* | \beta(\tau)] = 0$$

in L_1 sense.

190 ARUNABHA BAGCHI

Let us define the error $e(t) = x(t) - \hat{x}(t)$. Then

$$\hat{x}(\tau + \Delta) = x(\tau + \Delta) - e(\tau + \Delta)$$

$$= \int_{0}^{\tau + \Delta} A(\sigma)x(\sigma) d\sigma + \int_{0}^{\tau + \Delta} B(\sigma) dW(\sigma) - e(\tau + \Delta)$$

and so

$$\hat{x}(\tau + \Delta) - \hat{x}(\tau) = e(\tau) - e(\tau + \Delta) + \int_{\tau}^{\tau + \Delta} A(\sigma) x(\sigma) d\sigma + \int_{\tau}^{\tau + \Delta} B(\sigma) dW(\sigma).$$

Let
$$P(t;\tau) = E[e(t;\omega) e(\tau;\omega)^*]$$
. Then

$$P_{12}(\tau) = \lim_{\Delta \to 0} \frac{1}{\Delta} E[(e(\tau) - e(\tau + \Delta) +$$

$$\int_{\tau}^{\tau + \Delta} A(\sigma) x(\sigma) d\sigma + \int_{\tau}^{\tau + \Delta} B(\sigma) dW(\sigma) \times (Z_o(\tau + \Delta) - Z_o(\tau))^* |B(\tau)| .$$

Now for any $\Delta > 0$, $e(\tau + \Delta; \omega)$ is uncorrelated with $y(\sigma; \omega)$, $\sigma \leq \tau + \Delta$ and hence with $Z_o(\sigma; \omega)$, $\sigma \leq \tau + \Delta$. It is also uncorrelated with (and hence independent of) the random variables generating $\beta(\tau)$. Hence

$$E(e((\tau + \Delta); \omega)(\int_{\tau}^{\tau + \Delta} dZ_o(\sigma; \omega))^* \mid \beta(\tau)) = 0.$$

Furthermore, we have the following [6, p. 129]:

$$E(e(\tau)(\int_{\tau}^{\tau+\Delta} dZ_{o}(\sigma;\omega))^{*} \mid \beta(\tau)) = \int_{\tau}^{\tau+\Delta} P(\tau,\sigma) C(\sigma)^{*} d\sigma,$$

$$|E\left((\int_{\tau}^{\tau+\Delta}A(\sigma)x(\sigma)\,d\sigma)(\int_{\tau}^{\tau+\Delta}dZ_{o}(\sigma;\omega))^{*}|=O\left(|\Delta|^{3/2}\right),$$

$$E\left(\left(\int_{\tau}^{\tau+\Delta}B(\sigma)\,dW(\sigma;\omega)\right)\left(\int_{\tau}^{\tau+\Delta}dZ_{o}(\sigma;\omega)\right)^{*}\mid\beta(\tau)\right)=\int_{\tau}^{\tau+\Delta}B(\sigma)D(\sigma)^{*}$$

 $d\sigma + O(\Delta^{3/2}).$

$$P_{1,2}(\tau) = P(\tau) C(\tau)^* + B(\tau) D(\tau)^*$$

where

So

$$P(\tau) = P(\tau, \tau)$$
.

Thus we finally get, for s < t,

$$\hat{x}(t \mid s) = \int_{0}^{s} \Phi(t, \tau) \left[P(\tau) C(\tau)^{*} + B(\tau) D(\tau)^{*} \right] \left(D(\tau) D(\tau)^{*} \right)^{-1} dZ_{0}(\tau). \tag{3.1}$$

Now $\hat{x}(t \mid s)$ being a Martingale in s for fixed t, we have from Doob [7, Theorem 4.3, p. 355]

$$\lim_{s \to t^{-}} x(t \mid s) = E[x(t) \mid \beta(t^{-})] = E[x(t) \mid \beta(t)] = \hat{x}(t).$$

Hence taking limit in (3.1) as $s \rightarrow t$ -, we get

$$\hat{x}(t) = \int_{0}^{t} \Phi(t,\tau) \left[P(\tau) C(\tau)^{*} + B(\tau) D(\tau)^{*} \right] (D(\tau) D(\tau)^{*})^{-1} dZ_{o}(\tau),$$

or, writing

$$K(t) = [P(t) C(t)^* + B(t) D(t)^*] (D(t) D(t)^*)^{-1},$$

 $\hat{x}(t)$ is the solution of the stochastic integral equation

$$\hat{x}(t) = \int_{0}^{t} A\hat{x}(s) ds + \int_{0}^{t} K(s) [dy(s) - C(s)\hat{x}(s) ds] (3 \cdot 2)$$

and P(t), the error covariance matrix that appears in K(t), satisfies the well-known matrix Ricatti equation [6, Corollary 2, p. 137]

$$\frac{d}{dt}P(t) = A(t)P(t) + P(t)A(t)^* + B(t)B(t)^*$$

$$-[P(t)C(t)^* + B(t)D(t)^*](D(t)D(t)^*)^{-1}[C(t)P(t) + D(t)B(t)^*] (3 \cdot 3)$$
with $P(O) = O$.

4. CONCLUSION

A new derivation of linear recursive filtering equations is presented. This, with an earlier paper [4], enables us to give a unified rigorous approach to linear filtering and smoothing problems in continuous-time dynamical systems.

192 ARUNABHA BAGCHI

REFERENCES

 A. V. Balakrishnan, A Martingale approach to linear recursive state estimation, SIAM J. Control 10, No. 4, 754-756 (1972).

- 2. T. Kailath, A note on least squares estimations by the innovation method, SIAM J. Control 10, No. 3, 477-486 (1972).
- 3. M. Fujisaki, G. Kallianpur, and H. Kunita, Stochastic differential equations for the nonlinear filtering problem, *Osaka J. Math.* 9, No. 1, 19-40 (1972).
- 4. A. Bagchi, A Martingale approach to continuous time linear smoothing, SIAM J. Appl. Math. 10, No. 2, 276-281 (1975).
- 5. R. S. Bucy and P. D. Joseph, Filtering for Stochastic Processes with Applications To Guidance, Wiley-Interscience, New York, 1968.
- 6. A. V. Balakrishnan, Stochastic Differential Systems 1, Lecture Notes in Economics and Mathematical Systems, No. 84, Springer-Verlag, Berlin, 1973.
- 7. J. L. Doob, Stochastic Processes, John Wiley, New York, 1953.

Received December, 1974