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ABSTRACT 

A new derivation of continuous-time Kalman Filter equations is presented. The underly- 
ing idea has been previously used to derive the smoothing equations. A unified approach to 
filtering and smoothing problems has thus been achieved. 

I. INTRODUCTION 

Recently many rigorous derivations of continuous-time Kalman Filter equa- 
tions have been obtained [ 1,2,3] . The most general nonlinear problem has been 
studied in [3] but its specialization to the linear case obscures the simplicity of 
the linear problem. An elegant proof in the linear case has been proposed in [l] 
which exploits a result on the estimation of one martingale from another. As 
pointed out in [4] , the “state martingale” used in [l] does not yield the 
smoothing equations and a different martingale has, therefore, been proposed. 
This paper shows that the same martingale can be used to derive the filtering 
equations also, thus unifying the martingale technique initiated in [l] to derive 
both the filtering and smoothing equations. 

2. PROBLEM FORMULATION 

Let us consider the linear stochastic equations (continuous version) 

x(t;o) = J; A(o) x (u;w) do + J,’ B(u) dW(u;w) (2 * 1) 

J$t;w) = ,j C(0) X (u;o) do t Jj D(u) dW(u;w) (2 .2) 

for 0 < r < T where x (t ; w) and y (t ;w) take values in n- and m-dimensional 
Euclidean spaces R” and R m, respectively, W(r ;w) is a p-dimensional Wiener 
process, and A(f), B(t), C(f), and D(t) are appropriate dimensional matrix- 
valued functions. Assume that these coefficient functions are all continuous and 
D(t)D(r)* > 0 on the interval [O.T] of interest, where * stands for the transpose. 
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Let p(s) be the smallest u-algebra generated by the pracessy(o; o), 0 G u B s 
completed with respect to sets of measure 0 and P (s-) the smallest u-algebra 
generated by the process y(o;o), 0 tsZ u <s completed with respect to sets of 
measure 0. Then since y(t ;w) is continuous in c with probability one, 4 (s) = 

INS-). 
Let $(r I s) = E [x(t) I P(s)] . Then it is well known [S, p. 441 that 3(t) = 

3 (r I t) is the best ~nirn~ variance estimate of x(r) based on the observation 
y(o;w), 0 Q u < t and is called the fihered estimate of x(t)_ Since x^(t 1 s) is a 
martingale in s for f=ed t we have from [6, p, 1213 

where Z,(t ;w), the so-called innovation process, is defined as 

Z,(t;o) =y(t;o) -Ji C(u)it(u;0)du 

and 

Y12 Cd = p12 (7) p2 2 W’ 

where 

Pg2(7)= lim A -+ o 2 E[(x (r 1.1. + A) - k(t i r))(Zo(r + A) -z&))* I /3(r)] , 

Pz2(7)= lim A+o$ E'(';+Adzo(o;‘d))(,-;+A dz&;‘d))* 1 p(T)] . 

3. FILTERING IQUATIONS 

Let us consider (2.3) for s < t. From 16, p. 1271, for any r > 0 

while for 7 < f 

P,z(~)=Al,mg+E[(~(t lr+A)-k:(t lr)(ZJr+A)-Z&9)* l@(r)] 

where r and T + A are both less than t. Now 

x(r)=@(r,r+A)x (r+A)tI:+A#(f,u)dW(u) 

where cP(r, 7) is the fundamental matrix of dimension n X n ~tisf~g 
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@p =A(t)@((t,7) (P(T,T) = I. 

Hence 

and 

E[x(t) lP(~fd)] =Q(t,7+A,Ji@+A) 

With this, we have 

E [x(t) 1 P(T)] = @(f, 7) R(7). 

Y,z(~)=~ti~, j- E[(@(t,T+A)2(TtA) 

- (a( (~)(2& + A> - Z&j)* 1 P(r)] 

= @P(~,T) A’i-“c, $ E [ ](@(TJ + A) - I)2 (T f A) f .f (7 + A) - 2 (7) 1 

jZ&+AbZgt~)/ * IP(d 

= (a(t,~) lim dt(r,~ + A) -I 
A-o A 

E [a (T + A)(ZJT j- A) -Z,(7))* I 0 (T)] 

lim 
+%d A+0 A 

1 E [(R (7 + A) - R(T))(Z~(T + A) - .Zo(7))* I P(T)] 

= @(r, T) Aliio -+ E [(a (7 + A) - 2 (T))(.$,(T + A) - Z&))* I P (T)] 

since 

Q(r,7tA)- I 
a’-“0 A 

= -A (T) 

exists and 

Alima E [i (T + A)(Zo(r + A) - Zo(7))* I P (T)] = 0 
-+ 

in L1 sense. 
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Let us define the error e(t) = x(t) - .i? (r). Then 

n(T+A)=x(T+A)-e(TtA) 

=,.;+A A (u)x(u) da + j,7 + a B(a) dW(u) - ~$7 + A) 

and so 

Let P(t;r) = E[e(t;w) e(r;~)*] . Then 

P12(7)= lim LE[(~(T)-~(T+A)+ 
A+o A 

JJ + A -WXGWJ+J~ T + a B(u) dW(u)) X (ZJT + A) - Z&))* 1 NT)] . 

Now for any A > 0, e(7 t A;w) is uncorrelated with~(u;~), u < 7 + A and 
hence with ZO(o;o), o < 7 t A. It is also uncorrelated with (and hence inde. 
pendent of) the random variables generating p (7). Hence 

E(e((T + A); a>($ + A dZo(u;~))* I P(T)) = 0. 

Furthermore, we have the following 16, p_ 1291: 

E(e(T)(J’,7 + A dZ,(u;w))* I P(T)) = JT + a P(T,u) C(u)* do, 

E ((.J; + ‘B(u) dW(cw))(~; + A dZJu;w))* 1 P (7)) = J7’ + a B(u)D(o)* 

da t 0 (A3/*). 

so 

PI 2 (7) = P(T) c(7)* + B(T) D(T)* 

where 
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P(7)=P(7,7). 

Thus we finally get, for s < t, 

191 

P (t I s) = I,s cp (t,7) [P(T) c(T)* + B(T)D(T)*l(o(T)o(T)*)-’ q)(7). (3.1) 

Now ,?(t I s) being a ~a~ing~e in s for fixed b, we have from Doob [7, Theorem 
4.3, p. 3553 

lim x(t 1 s) = E [x(t) 1 p (t-)] = E [x(t) I P (t)] =x!(t). 
s+t- 

Hence taking limit in (3.1) ass + t-, we get 

a(t) = j--% (t,T) [P(T) c(T)* + B(T)D(T)*] (D(T)o(T)*)-l dz&), 

or, writing 

K(t) = [P(t) C(t)* + B(t)D(t)*] (D(t) D(t)*)-’ ) 

Ji (t) is the solution of the stochastic integral equation 

-s(t)=~~~x^(s)~st~~ly(s)[~~(s)-c(s)z(s)ds] (3.2) 

and P(t), the error covariance matrix that appears in K(t), satisfies the well- 
known matrix Ricatti equation [6, Corollary 2, p. 1371 

$ P(t) = A (t) P(t) + P(t) A(t)* + l?(t) B(t)* 

- [P(t)c(t)* + B(t)D(t)*l @(@I(t)*)-’ [c(t)P(t) + D(r)B(t)*l (3 . 3) 

with P(0) = 0. 

4. CONCLUSION 

A new derivation of linear recursive filtering equations is presented. This, 
with an earlier paper [4], enables us to give a unified rigorous approach to 
linear filtering and smoot~ng problems in continuous-time dynamical systems. 
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