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Small-Angle Neutron-Scattering Study of Stickiness and the 

Structure Factor 

C. G. de Kruif,*it P. W. ROUW,~ W. J. Briels,i M. H. G. Duits,t A. Vrij,t and 
R. P. Mays 

Van't Hoff Laboratory, University of Utrecht, Padualaan 8, De Uithof, 3584 CH Utrecht, 
The Netherlands 

Received May 25, 1988. I n  Final Form: October 12, 1988 

Small-angle neutron-scattering structure factor measurements were made on sterically stabilized silica 
spheres dispersed in benzene up to volume fractions of 0.30. Benzene is only a marginal solvent for the 
stabilizing layer on the surface of the particles. The particles are made attractive by lowering temperature. 
This attraction is modeled by a square well potential, the depth of which varies with temperature. At  
the highest temperature studied, our experimental system behaved effectively as an assembly of hard spheres, 
whereas at the lowest temperature the system approaches a spinodal. Using Baxter's theory we were able 
to evaluate the interaction parameters and to calculate the structure factor. Experimental structure factors 
were satisfactorily reproduced over the entire temperature range studied. 

I. Introduction 

The macroscopic properties of (dense) dispersions, i.e., 
both their equilibrium as well as their transport properties, 
are determined largely by the particle interaction potential 
and by the average microstructure of the dispersion. For 
instance, colloidal crystalline structures are observed in 
dilute systems of latex in water that have been highly 
deionized. These systems even possess an elastic modu- 
1us.1*2 On the other hand, dilute dispersions of colloidal 
silica, sterically stabilized by aliphatic chains and dispersed 
in linear alkanes, form gels that are volume fillinga3 This 
gelation occurs even a t  a particle concentration as low as 
3% (v/v). Therefore, in both systems there is long-range 
order, but the origin of the order is different. In the 
colloidal crystal the structure formation is caused by 
long-range repulsion. The gel formation is brought about 
by an attraction between the particles; this type of at- 
traction occurs in many everyday systems which are weakly 
flocculated, such as yogurt and paint. These two examples 
demonstrate the influence of the (pair) potential on the 
(micro) structure of the colloidal dispersion. 

A colloidal system can be considered as a supramolecular 
fluid4v5 of particles in a continuous background. With this 
approach the statistical mechanical theories developed for 
simple fluids can be used to describe the equilibrium 
properties and structures. The microstructure is described 
with the pair distribution function, which gives the prob- 
ability of finding another particle a t  a center-to-center 
distance r from a central particle. The Fourier transform 
of the pair distribution function gives the experimentally 
accessible function called the structure factor, S(K), where 
K is the length of the wave vector. One particular theory 
and description, the so-called hard-sphere theory, is well 
developed and is used very often. In this theory and in 
the computer simulations based on this model, the 
spherical particles interact only at  closest approach 
through an infinitely high repulsive potential. Thus there 
is only an excluded volume effect. Since equal spheres 
exclude a volume 4 times their own volume, the second 
virial coefficient in such a system has the value of 4VHs, 
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where VHs is the volume of a hard sphere. The hard- 
sphere approach is also highly successfu16~' in systems 
where the potential rises more gradually, as does, for in- 
stance, a Yukawa type potential. In those cases one adjusts 
(at each density) the effective hard-sphere radius or 
equivalently the hard-sphere volume fraction. With this 
adjusted density, the equilibrium structure and thermo- 
dynamic properties can be calculated reliably from the 
hard-sphere model. 

A completely different situation arises when the steeply 
repulsive part of the particle potential is preceded by an 
attractive part. The potential can be described by a square 
well or by a more triangular form such as a Lennard-Jones 
potential. This distinction introduces only slight quan- 
titative differences in our situation. Qualitatively one can 
say that the distance at closest approach is still governed 
by the ("physical") steeply repulsive part of the potential. 
Therefore, at medium to high densities the structure factor 
will not change very much, except for K - 0. The value 
of S(K=O) is equal to the isothermal (osmotic) compres- 
sibility of the system. For sufficiently strong attractions, 
the system will show a phase transition of the gas-liquid 
type. Therefore, the compressibility must go to high or 
even infinite values when the spinodal line is passed. This 
behavior is indeed observed for colloidal systems. For 
instance, De Hek and Vrij,8 Vincent et a1.,9 and Sperry et 
a l . ' O  describe so-called depletion flocculation experiments. 
Adding polymer molecules to an otherwise stable disper- 
sion gives rise to an effective attraction between the par- 
ticles. The systems described by Jansen et al." and Ed- 
wards et a1.12 consist of sterically stabilized colloidal par- 
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ticles dispersed in a marginal solvent. In these systems 
the effective attraction is thought to originate from the 
difference between the interaction of solvent with chain 
and chain with chain. The same system was recently used 
by Rouw and de Kruif13 to study the behavior of the 
collective diffusion coefficient in an adhesive hard-sphere 
dispersion. They found that a square well pair potential 
of varying depth (depth varying with temperature) is ad- 
equate for describing the reduced diffusion in an adhesive 
hard-sphere system. 

and independently Kranendonk and Frenkel,16 were able 
to do Monte Carlo (MC) computer simulations on adhesive 
hard-sphere systems. Results compare favorably in most 
respects with the theory developed by Baxter” for adhesive 
hard spheres. The theory and the MC simulations give 
among other things the compressibility and the “structure” 
of the system as a function of the stickiness parameter 7. 

In this study we will compare Baxter’s theory with ex- 
perimental neutron-scattering data on the structure factor 
and compressibility of adhesive hard spheres. We used 
dispersions of sterically stabilized silica in benzene. In 
good solvents (e.g., cyclohexane) these particles were shown 
to behave like hard spheres.lam In marginal solvents like 
benzene, the interaction can be described as being of the 
hard-sphere type at high temperatures, whereas a t  lower 
temperatures an attraction O C C U ~ S . ~  

This paper is organized as follows. In section I1 we give 
the relevant equations and connect the interaction model 
we use for our adhesive spheres with Baxter’s model. After 
describing the experiments in section I11 we discuss the 
obtained results and compare them with theory in section 
IV. 

11. Theory 
Pair Potential of Sterically Stabilized Silica Par- 

ticles. The stabilization of colloidal dispersions against 
flocculation as a result of the adsorption or grafting of 
polymer chains onto the particle surfaces is described by 
Napper21 and Hesselink, Vrij, and Overbeek.22 From 
calculations on the dispersion forces between the particles 
we find that even a thin layer of different material reduces 
to negligible values the contribution that the cores make 
to the dispersion forces. In other words, the interaction 
of the surface (polymeric) layer either with solvent mole- 
cules or with a layer of neighboring particles is dominant. 
In addition to this enthalpic contribution to the chain- 
chain and chain-solvent interaction, we also take entropic 
effects into account. We do this by applying a relation that 
is similar to the Flory-Huggins expre~sion.~ In this study 
we work with silica particles onto whose surfaces octadecyl 
chains are grafted. A schematic drawing is given in Figure 
1. Although the chains are only 18 carbon atoms long, 
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where V, is the volume per particle, p is the scattering 
length density of particles (and solvent), 4 is the volume 
fraction, and P ( K )  is the intraparticle interference factor. 
S(K)  is the above-mentioned structure factor accounting 
for interparticle interferences. For a polydisperse system 
this separation is not unique, but one can define an ex- 
perimental structure factor by 

de Kruif et al. 

where 4o is a low volume fraction for which S ( K )  = 1 at  
all K. For (polydisperse) hard spheres, S(K)  can be cal- 
culated in the so-called Percus-Yevick approximation. For 
other types of pair potentials, different approximations are 
made. A solution of the Percus-Yevick equation for an 
adhesive pair potential was obtained by Baxter." 

Baxter's Adhesive Hard-Sphere Potential. Baxter 
defined a pair potential by 

V(r)/kT = + m  0 < r < B 

= In [127A/(u + A)] 
= O  u + A < r  

u I r I u + A 

Here 7 is a measure of the stickiness and can be considered 
as a (reduced) temperature. After all thermodynamic 
quantities are calculated, the limit for A - 0 is taken. 

It has been shown by Kranendonk and Frenkel16 that 
Baxter's solution for the Ornstein-Zernike equation in the 
Percus-Yevick approximation correctly predicts the es- 
sential features of a sticky hard-sphere system. 

In order to relate the parameters in both models, we 
compare the resulting expressions for the second virial 
coefficient. Measurements essentially provide this quan- 
tity. In Baxter's approach B2 is given by 

Integrating our square well potential gives 

Baxter's 7 parameter is calculated from 
(7) 

which equals the y parameter used by Jansen.'l Batche- 
lor23 and Rouw et al.24 used an a! parameter where a = 2 7  
= 2/7. Rewriting eq 7 results in 

In (1 + u/12A~) = -L + L8/T (8) 

So from the measurement of 7 as a function of temperature 
one can determine L and 8. 

To use the above approach one needs to find the osmotic 
second virial coefficient, and the technique is probably only 
successful for dilute dispersions since for higher densities 
higher virial coefficients play a role as well. 

The theory as developed by Baxter permits yet another 
approach. The Fourier transform of the direct correlation 
function can be used to calculate S(K,@,7). The relevant 
equations can be found in Baxter's paper.17 The idea is 
to make use of all information contained in the experi- 
mentally determined structure factor that is related to the 
Fourier transform of the direct correlation function, c'(K), 
through 

(9) 

where n is the number density of the particles. Developing 
the Fourier transform of c(r) in series leads to 

F(K) = A + Bk? + t9(K4) 

B~/VHS = 4 - I/?' 

B2/VHS = 4 - 12(A/a)[exp(L(8/T - 1)) - 11 (6) 

l / s  = 12(A/u)[exp(L(@/T - 1)) - 13 

W) = ( S ( K )  - l)/(nS(K)) 
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where 

A = c'(K=O) = 4rSmc( r ) r2  dr 
0 

B = -2r/3Jmc(r)r4 dr 

The direct correlation function C(r) = rc(r) is given by 
Baxter (ref 17, eq 11) in terms of potential parameters and 
particle density. Performing the integration leads to the 
following set of equations: 

(10) 

(11) 

A / u ~  = -8c~ - 60 + 2X - 4(2a + X2) 

B / u ~  = u2(4a/5 + 2p/3 - X/3 + 4a/4 + 4X2/12) 

The functions cy and p are quadratic in X and are given by 
(ref 17, eq 17 and 18) 

(1 + (2 - A)# + X@2)2 

(1 - d4 
f f =  

6 = [-34(2 + $)2 + X4(2 - 24) X 

(1 + 74 + 42) - xwi  - m 2  + 4 ) i m i -  4141 
where uo = ra3/6 .  Finally, the interaction parameter X is 
given as a function of 7 and 4 by (ref 17, eq 21) 

7 = [(I + 4/2)/(1 - 4)21X-' - [ 4 / 0  - 411 + 4X/12 
(12) 

In Figure 2 we plot A / v o ,  B/vo, and 7 as a function of 
X for a series of volume fractions pertinent to the exper- 
iments described later. From the experimental structure 
factor we calculated c'(K). We plotted E(K) against IC2 at 
each 4 and temperature. Fitting these data at small K to 
a linear equation gives A and B. Then we read from parts 
a and b of Figure 2 the value of A and from Figure 2c the 
value of 7 .  Ideally r is independent of volume fraction. 
The two independent values of r ,  one value from the slope 
and one from the ordinate, should be equal if the applied 
model is appropriate for the experimental results at hand. 

Polydispersity is an important aspect of the problem, 
but it is not dealt with in this paper. There is a solution 
of the Percus-Yevick equation for polydisperse hard 
 sphere^,^^,^^ but we are not aware of an expression for the 
structure factor for polydisperse adhesive hard spheres. 
Another complicating factor may be that the stickiness of 
the spheres may vary, not only because of size polydis- 
persity but also because of topology of the surface. Pre- 
vious experiments, however, have shown that many of 
these effects are absorbed in the adjustable parameters. 

111. Experimental Section 
Sample Characterization. The silica system, denoted by 

SP23 and dispersed in cyclohexane, used in previous SANS ex- 
p e r i m e n t ~ ~ ~  and for rheological measurements2' was dried under 
a mild nitrogen flow at  70 "C. Weighed amounts of the dry silica 
were dispersed in weighed amounts of benzene a t  50 "C. The 
specific volume of SP23 is taken as 0.63 cm3.g-', and the density 
of benzene is taken as 0.87 cm3.g-'. With this we calculated volume 
fractions 6 as given in Table I. The samples were stored a t  50 
"C to prevent phase separation. From the sample tube with 9 
= 0.096 we took a sample to  determine the cloud point temper- 
ature. The cloud point is found from the sharp increase in 
turbidity when the sample reaches the phase separation tem- 
perature. We also determined the diffusion coefficient of SP23 
dispersed in benzene by dynamic light scattering as a function 
of temperature. For details see ref 13. Static light-scattering 
intensities were measured in a SOFICA setup. The three ex- 
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Figure  2. (a, Top) Plot of A/Vo against X. (b, Middle) Plot of 
B/  V, against A. (c, Bottom) Plot of T against A. Volume fractions 
are 0.049, 0.096, 0.19, and 0.29. 

perimental results mentioned above gave us reliable data con- 
cerning the phase separation behavior of the colloidal system. 
From these data we calculated approximate values of the 9 tem- 
perature and the interaction parameter L. Using these values 
to calculate the temperature dependence of Bz, we could also 
calculate model structure factors according to Baxter's theory. 
On the basis of these model calculations we chose a series of 
temperatures a t  which to perform the SANS measurements. 

SANS Measurements. Use was made of the D11 spectrom- 
eter of the Institut Laue-Langevin a t  Grenoble (France) where 
we were allocated 24 h of beam time. In view of the predictions 
of Baxter's theory, the detector was placed near the maximum 
distance from the sample, i.e., a t  36.5 m. The end of the neutron 
guide ("collimation length") was set to 40.5 m. Although with 
sample path lengths of 1 mm, slight multiple scattering may occur, 
we nevertheless used this path length so as to obtain sufficient 
scattering into the detector. We assume that the possible con- 
tribution of multiple scattering to the scattering pattern can be 
neglected, in this case for several reasons. Multiple scattering 
is primarily seen in parts of the scattering curve where the in- 
tensity is low and which are close to higher intensities. So minima, 
for instance, in the particle structure factors are washed out. We 
showed that this effect is only slightly present with path lengths 
of 0.5 mm and is absent at 0.2 mm. In the present study we have 
very flat scattering curves, the K dependence of which is insen- 
sitive to multiple scattering. Multiple scattering may influence 
the intensity level of the scattering curves. For a detailed dis- 

2 6 , 4 2  -3 
0 

K /IO. nm2 

Figure 3. Guinier plot of scattering of silica particles in benzene. 
The data are obtained by averaging the results of measurements 
a t  40.1, 38.1, 35.7, 35.0, and 34.4 "C. The slope corresponds to 
an optical radius of 25.3 nm. 

cussion of the instrument D11 we refer to the thesis of Harrisz8 
and to ref 29 and 30. 

Sample Rack and  Tempera ture  Control. Temperature 
control of the samples is of extreme importance, as could be seen 
from model calculations. Since the usual sample racks available 
a t  D11 are not well suited for temperature control, we decided 
to construct a new rack in our laboratory. This rack has 10 cell 
positions. Both types of cuvette (type 121 and type 120 with 
special 1-mm quartz cells) as produced by Hellma fit in the rack. 
Temperature is measured a t  positions 3 and 8 with a platinum 
resistor. Temperature could be kept within 0.1 "C in the range 
0-50 "C by using a thermostatically controlled water bath. The 
rack is now available a t  Grenoble. 

Data  Reduction. The scattered intensities were averaged 
radially. Corrections were made for background, noise, trans- 
mission, and empty cell. Finally, the data were scaled to absolute 
intensities and corrected for detector sensitivity; as a reference 
we used the scattering of pure water at a shorter sample-detector 
distance (<36.5 m). The contribution of incoherent scattering 
can be neglected at  a 36.5-m detector distance. The necessary 
equations are given in ref 28 and 19. The data were treated by 
standard computer programs at  the ILL, stored on tape, and 
further processed on our laboratory computer. 

IV. Results and Discussion 
Form Factor. In previous experiments we showed that 

for our silica system the shape of the scattering curves up 
to volume fractions 6 = 0.02 is insensitive to (hard sphere) 
structure effects for our silica system. Ideally this will hold 
also for sticky hard spheres. In Figure 3 we plotted the 
average scattering intensities at different temperatures for 
the sample with 6 = 0.019. More detailed plots of the data 
showed that there is no systematic temperature depen- 
dence of the scattering intensity. We therefore averaged 
all those files to one file. The slight upward curvature a t  
small K values is attributed to the presence of a few 
doublets/multiplets in the dispersion. Leaving out the first 
four data points a t  low K,  we fitted the data to a Guinier 
plot I (K)  = I(0) exp(-PR,2/3). The slope of a plot of In 
( I (K))  vs P lets us obtain the radius of gyration Rg (Figure 
3). We found R, = 19.6 f 1 nm. In the previous s t ~ d y , ' ~  
where the same particles were dispersed in a good solvent 
(cyclohexane), we found R, = 20.3 f 0.3 nm. In that study, 
measurements were made over a large K range. By fitting 
the  full P(K) ,  we found amre = 22.5 nm.  Assuming a log- 
normal distribution, the standard deviation was found to 
be 0.12. Since the steric layer on the particles is invisible, 
we added 1.8 nm in order t o  find the hard-sphere inter- 

(28) Harris, N. Small Angle Neutron Scattering from Colloidal Sys- 
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Table I. Results of SANS Measurements on SP23 Dispersed in Benzene 
T ,  "C -2B,, cm3 g-l 4 AI  vo B l  vo ?A TB TO 

52.0 

40.1 

38.1 

36.4 

35.7 

35.0 

34.4 

32.6 

-7 0.049 
0.096 
0.19 
0.29 

-2 0.049 
0.096 
0.19 
0.29 

-1 0.049 
0.096 
0.19 
0.29 

2 0.049 
0.096 
0.19 
0.29 

4 0.049 
0.096 
0.19 
0.29 

6 0.049 
0.096 
0.19 
0.29 

9 0.049 
0.096 
0.19 
0.29 
0.049 
0.096 
0.19 
0.29 

-7.41 
-7.06 
-8.31 
-8.36 
-4.71 
-2.55 
-3.08 
-0.49 
-2.62 
-1.21 
-1.21 

1.49 
-0.38 
0.95 
0.73 
3.13 

-0.37 
1.75 
1.62 
2.36 
1.01 
3.07 
2.60 
2.62 
1.75 
3.91 
3.31 
3.22 
6.27 
3.32 

0.641 
0.637 
0.51 
0.35 
0.317 

-0.029 
-0.07 
-0.68 

-0.207 
-0.44 
-1.15 
-0.37 
-0.61 
-0.77 
-1.81 
-0.30 
-0.75 
-0.98 
-1.60 
-0.55 
-1.01 
-1.20 
-2.54 
-0.60 
-1.07 
-1.31 
-5.80 
-1.60 
-1.56 

0.128 

0.85 
0.85 
0.62 
0.41 
0.35 
0.32 
0.36 
0.14 
0.36 
0.27 
0.23 
0.12 
0.26 
0.24 
0.18 
0.09 
0.26 
0.18 
0.16 
0.11 
0.22 
0.16 
0.14 
0.10 
0.20 
0.14 
0.13 
0.09 
0.14 
0.15 

0.82 
0.85 
0.58 
0.40 
0.59 
0.38 
0.35 
0.17 
0.47 
0.32 
0.25 
0.12 
0.27 
0.23 
0.19 
0.10 
0.30 
0.20 
0.18 
0.08 
0.24 
0.17 
0.15 

0.23 
0.16 
0.14 

0.14 
0.15 

. 
a2 04 - VOLUME FRACTION 

Figure 4. In (Z(K=O)/4) against 4. The initial slope of these 
plots represents 2&. a, 52.0; A, 40.1; +, 38.1; 0, 36.4; *, 35.7; 
A, 35.0; 0, 34.4 "c. 
action diameter. The diameter of the particles is thus 
given by u = 2(22.5 + 1.8) = 48.6 nm. 

At  higher volume fractions the 
scattered intensity is proportional to the structure factor, 
S(K) ,  as well. In order to find S(K=O), we made plots of 
In (S (K) )  vs h?. The initial slope of l/S(K=O) vs 4 is 2B2 
(see eq 3). Our data do not allow such a procedure since 
volume fractions should not exceed 5%. However, for hard 
spheres it is an empirical finding31 that a plot of In (S(K- 
=O)) vs 4 is virtually linear over the whole volume fraction 
range with a slope i= 2Bz. For adhesive hard spheres it 
follows from Baxter's theory that the linear dependence 
of In [S(K=O)] on 4 only holds for high values of T (7 1 
1). For smaller values of T the linear relation is restricted 
to small values of 4. Nevertheless, in Figure 4 we plotted 
In (R(K=O)/+) vs volume fraction for each temperature. 
Since the scattering of the lowest volume fraction sample 
is (taken) independent of the temperature, we assumed 

(31) Frenkel, D.; Vos, R. J.; de Kruif, C. G.; Vrij, A. J. Chem. Phys. 

Compressibility. 

1986, 4, 4625. 

0.80 

0.47 

0.40 

0.30 

0.29 

0.26 

0.24 

0.20 

0 2 4 6 
+ K2/10'3nm.2 

Figure 5. Representative plot of c'*(K) = c'(K)/Vo against 
4 = 0.096 and T = 40.1 "C (+) and 35.7 "C (0). 

for 

that S(K=O) = 1 for this sample. Therefore, all straight 
lines drawn in Figure 4 pivot around this first point. It 
is clearly visible that a t  high temperatures the slope is 
negative, corresponding to a positive B2, whereas at low 
temperatures B2 is strongly negative. The lines are drawn 
giving the low volume fraction data an increased weight. 
The slopes, i.e., B2, are given in Table I. B2 values de- 
termined in this way should only be treated in a qualitative 
way since they are based on a small number of data. 

X and 7 Parameters. In Figure 5 we have drawn rep- 
resentative plots of F * ( K )  = F(K)/V, against Icz for 4 = 
0.096 at two temperatures. After omission of the first few 
points the initial part of the plot was fitted to a linear 
equation. The slope and ordinate are given in Table I. 
From plots such as Figure 2 we read X and T values also 
given in Table I. From studying these data we conclude 
that, considering the error ranges, there is no really sys- 
tematic difference between values of T obtained from slope 
and intercept. It appears that T depends on volume 
fraction. In fact we could have treated both volume 
fraction and 7 as independently adjustable parameters in 
Baxter's theory, but this would have led to very unrealistic 
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Figure 6. In (1 + a/12Ar) vs 1/T according to eq 8. 
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B, = 4 - 12(A/a)[exp(L(O/T - 1)) - 11 

In Figure 7 we plot this function together with experi- 
mental points defiied as B2 = 4 - 117, Since T values were 
extrapolated to 4 = 0, these B2 values are the true second 
virial coefficients of the osmotic pressure. These T values 
account for the particle pair interaction as a function of 
temperature. In ref 24 we report on turbidity and dynamic 
light-scattering experiments on the same system as used 
here. Measurements were made at  relatively low volume 
fractions. The turbidity results can indeed be described 
very adequately by the values L = 32 and 0 = 346 K. 

Structure Factors. In Figures 8-11 the experimental 
results are plotted together with the calculated structure 
factors. Theoretical curves were obtained by using a 
Fortran computer program called SSPHERES.32 For each 
temperature and volume fraction, T was evaluated from 
T = T~ - 0.76. We comment on our results as follows. 

(32) Fortran computer program SSPHERES, courtesy of Winfrisd Kra- 
nendonk. 
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Figure 8. Structure factor against momentum transfer, 4 = 0.049. 
A, 52.0; Q40.1; +, 38.1; Q36.4; *, 35.7; A, 35.0; 0, 34.4; +, 32.6 
"C. The drawn lines are calculated; see text. 
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Figure 9. Structure factor against momentum transfer, 4 = 0.096. 
We divided the data into two seta of temperatures for clarity. Set 
k A, 52.0; +, 38.1; *, 35.7; 0, 34.4 "c. Set 11: 0, 40.1; 0, 36.4; 
A, 35.0 "C. The drawn lines are calculated, see text. 

All experimental data points and the calculated curves 
cross over between K = 0.05 and 0.07 nm-'. This means 
that in this K region the structure factor is insensitive to 
the value of T. We used this feature to calibrate the data 
on the calculated S ( K )  values. In order to do this we 
divided the experimental structure factor by 1.10. The 
majority of the curves run practically horizontal, and so 
this division only brings about a small shift and does not 
change essential features. In fact, the correction is com- 
pletely justified in the treatment of polydispersity effects 
in hard-sphere systems, where the division would indicate 
a polydispersity of 10%. Furthermore, if we take into 
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Figure 10. Structure factor against momentum transfer, 4 = 0.19. 
We divided the data into two sets of temperatures for clarity. Set 

A, 35.0 O C .  The drawn lines are calculated, see text. 
I: A, 52.0; +, 38.1; *, 35.7; 0, 34.4 "c. Set 11: 0,40.1; 0, 36.4; 

I 

Figure 11. Structure factor against momentum transfer, 4 = 0.29. 
We divided the data into two sets of temperatures for clarity. Set 

"C. The drawn lines are calculated, see text. 

account that all experimental uncertainties (e.g., multiple 
scattering, incoherent background, transmission, volume 
fractions, cell thickness, etc.) accumulate in S(K), this 10% 
shift is of the same order as these uncertainties together. 

As a whole, the experimental data are reproduced very 
satisfactorily, especially a t  4 = 0.19. This is probably 
because scattering data are the most accurate for this 
sample. First of all, temperature is best defined in the 
middle of the rack. Furthermore, an average, and thus 
&independent, T parameter would attain the value cor- 
responding to = 0.2. Conversely all these effects could 

I: A, 52.0; +, 38.1; *, 35.7 "c. Set 11: 0, 40.1; 0, 36.4; A, 35.0 
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Figure 12. Inverse osmotic compressibility as a function of X 
for 4 = 0.19 (dashed line) and 4 = 0.29 (solid line). 

and do explain why there are small discrepancies. Espe- 
cially at lower temperatures, B2 becomes a strong function 
of temperature. Therefore, a slight misreading of the 
temperature, say, by 0.2 "C, will change the curves sig- 
nificantly. 

There is a remarkable feature in Figure 11. If the tem- 
perature is lowered from 41.0 to 36.4 "C and then to 35.0 
"C, the osmotic compressibility rises at first but subse- 
quently decreases. 

The inverse osmotic compressibility can be found from 
Baxter's theory (ref 17, eq 31) and is found to be 

= 1 + 4(8a + 6/3 - 2X) + @(2a + A') 
1 6l-I 
kT up 
_ _  

In Figure 12 we plot the inverse osmotic compressibility 
as a function of X for 4 = 0.19 and 0.29. At the minimum 
value of the curves osmotic compressibility is infinite. 
Values of X > (1 + 24)/(4(1 - 4)) have to be discarded 
since for these values the pair distribution function is 
unbounded. The limiting values of X are the minima of 
the curves shown in Figure 12. At these points the system 
reaches a spinodal. Therefore, Baxter's theory predicts 
that osmotic compressibility will increase monotonically 
with temperature to the spinodal line. For the values of 
X that have to be discarded the system is in the two-phase 
region, and phase separation is expected to occur. 

From Figure 12 and 2c we determined the spinodal 
values of T. Using the values of L,  8, A, u, and 4 we cal- 
culate T for T = 35.0 "C. For 4 = 0.29 we found T to be 
smaller than the spinodal value. Therefore, for this situ- 
ation concentration fluctuations will occur that move the 
system toward the binodal line, thus decreasing osmotic 
compressibility. Although during the 15 min or so which 
the experiment takes no appreciable phase separation 
occurred, we think that the decrease in osmotic com- 
pressibility for the sample mentioned above is due to the 
fact that the system was in the two-phase region. This 
observation thus sustains the description used. 

V. Conclusions 
Low-angle structure factor measurements on colloidal 

silica dispersions allow the evaluation of attractive inter- 
action parameters. The applied square well model in 
combination with Baxter theory works satisfactorily. A t  
higher densities a slight volume fraction dependence is 
observed. Experimental data can be reproduced almost 
quantitatively. 
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