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Polarizability tensor and Kramers-Heisenberg induction
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A general expression for the semiclassical, nonrelativistic linear polarizability of an arbitrary volume ele-
mentV has been derived in the long wavelength approximation. The derivation starts from the expectation
value of the dipole strength, as in the original Kramers-Heisenberg paper about optical scattering by atoms. The
main requirements underlying the present approach are a separate non-Hermitian part of the Hamiltonian and
a frequency dependent damping, which is zero for the static case. Resonant and antiresonant exponentials are
both found to be necessary to obtain a proper static response. It is concluded that even parity for the damping
has to be preferred from the theoretical point of view, although odd and asymmetric parity yield virtually the
same polarizability. The electromagnetic response can still be written in terms of a single complex frequency,
in agreement with the requirements of electrodynamics. The resulting expression is suited for the treatment of
nonisotropic systems.
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I. INTRODUCTION The ongoing discussion about the subject finds its origin

The basic and fundamental problem of the optical re/n the requirement from electromagnetism that the time de-
sponse of atoms to an externally applied electric field waendence has to be described by means of a real valued
treated by Kramers and Heisenberg in a classical pgijer C€osine. As a result, two complex exponentials, resonant and
as early as 1925. This treatment was improved and extendentiresonant, are necessary to link quantum mechanics and
by Dirac[2] and subsequently by Weiskopf and Wigiigf.  electrodynamics. The asymmetric treatment in quantum me-
The backbone of the Kramers-HeisenbéigH) paper con-  chanics of the resonant and antiresonant exponential prevents
sists of the classical Larmor expression for the total intensitya sSmooth connection from being made, since electromagne-
scattered by the dipole strength induced in the atom by thgsm requires a symmetric treatment. Therefore, in this paper
applied field and the calculation of this dipole strength bythe two exponentials necessary in the quantum mechanical
what is called now first order linear time dependent pertur-description will be contracted into a single one complying
bation theory. The surprising aspect of the paper is that, awith the electrodynamic demands. As only external electro-
though definitely the induced dipole strength depends in @agnetic field§KH: “Der Einflu auRerer Bestrahlungare
linear fashion upon the amplitude of the electric field, thetaken into account, a finite voluméis implied. As a result,
paper does not even discuss why this dependency has nelectrodynamic potentials can be used, without having to
been used to define properly a corresponding polarizabilitycope with gauge transform problems. The definition of the
This deficiency prevents the induction studied in the paperpolarizability itself requires that has to be small enough for
from being applied in an easy and direct way to problems oft long wavelength approximation to be allowed. In the origi-
electrodynamics. A number of later papers presented polariz?al KH paper only isotropic types of response were treated.
ability expressions classified as Kramers-Heisenberg, but dd-his restriction is not necessary and some elementary tensor
spite the, at first glance, simple character of the derivationfules[11] suffice to extend the treatment to arbitrary aniso-
there is still no consensus about the precise formulation, a$opic cases.
can be inferred from recent publicatiof¢é—6]. This holds Along these lines, an expression for the polarizability of
particularly for the frequency dependent parity of the damp-an arbitrary volume element will be derived, which can be
ing. To investigate this parity issue, the general expressionsed for quantitative descriptions and is suited to handle ar-
for the semiclassical nonrelativistic polarizability of an arbi- bitrary polarization dependent behavior. This expression will
trary volume element of subwavelength dimensions will be be highly useful for problems where the emphasis is on the
(re)derived in this paper, as in the original KH paper, startingmaterial aspect of the light-matter interaction and copes with
from the dipole strength. A separate, dissipative, time andhe frequency dependent parity aspects of the corresponding
frequency dependent part of the Hamiltonian in the singledamping.
electron picture will be used for the quantum mechanical part
of the derivation. This is equivalent to the use of complex
self-energies in methods of condensed matter physics, like [I. TIME DEPENDENT PERTURBATION THEORY
the GW or Bethe-Salpeter equations methptis This dissi-
pative part will determine directly the damping of the polar- The classical derivation of the Kramers-Heisenberg ex-
izability, but only as far as material energy losses are conpression is based upon first order linear perturbation theory.
cerned. The energy stored in the electromagnetic field is noAccordingly, the present treatment will start from the as-
part of the Hamiltonian. As a result the radiative self- sumption that the system is described by the time dependent
damping cannot follow from this descriptig8—210. Schrddinger equation
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This result is multiplied byg " (r) and is next integrated

f(t) =, ey

whereH, is the Hermitean ground state Hamiltonian of the
material system. The time dependent perturbatid(m)f(t) over all space. For that step it is easiest to assume that the

stems from sources exter.nal to the system and W'" be d?lévels of the pail, k are nondegenerate. Degenerate levels
scribed at the star'E by a single complex exponential of POSIzan only be treated however, if they are properly orthogonal-
tive frequencyw. Hp(w) is the dissipative non-Hermitian jzed (e.g., by Schmidt's procedurdf so, the orthonormality
part of the Hamiltonian, and is zero far=0 [3,8], the case f the Setd).(l) can be used to obtain

of a time independent perturbation. In this paper, the caret

will be used to indicate that a quantity is compléky(w)
can also be identified as the interaction of the electron with
the bath or reservoir in the effective one-electron description )
[12]. For the ground state it is assumed that the complete and +¢(Hf(te B t”‘(I|W(r)||>. (6)
orthonormal set of eigensolutiord’”, ¢.(r) in the inde- S _ _ o
pendent particle treatment of the problem, is known. For thd "€ implicit assumption made in the KH derivation is the
perturbed HamiltoniarH,+ |:|D(w) a different set of ortho- linearity W'.th r_espect o the perturba_mW(r)_. In this paper
A L i only electrlc; dipole type .of. perturbations wﬂl be con5|d_ered,
normal solution€E,”, ¢, (r) has to be taken. This set has the 5 treated in more detail in the next section. In Exj) it
same solutions for the occupied states, but has slightly difwill be shown that the external perturbatiti scales with
ferent ones for unoccupied or excited states, the more prghe momentum operatqr and the external vector potential
nounced difference being the nonzero imaginary part of they, . This vector potential will be assumed to be constant over
(quas)energies. For these states it will be used that that part of space where the wave function has most of its
probability. Then the spatial parity of the perturbatidfir)
(V|Ho + |:|D(w)|¢|(1)> = El(l) =EY - ifiyw). (2) s the same as the spatial parity of the momentum opepator
antisymmetric. If the states i have also a defined spatial
it then holds that

= d )
ihe™= (1) = GO0 S (W )

SinceHy, is a function ofw,  should also be a function of Pa;

frequency,y(w).
To start, only a single pair of levels, involving an occu- Jdr SV (W) P(r) = 0. (7)
pied state&k and an unoccupied staltewill be considered, for

which the following energy differences will be used: ) ) ] )
This leaves only one term in the right-hand side of Hj.

E.=EQ-EO =%, Now one time integration step suffices to obtain the expres-
== K tk sion for the coefficient;(t) of the excited state:

.. . t o
Ey = El(l) - Ef(l) ~ EI(O) - Ef(o) = ifhy(w) ¢t = iﬁf dt’ g @rrort (I |W(I')|k>
~ . |
= fion =l oy~ i y(w) ]. ) °

The dampingy depends upon the indicdk. This depen- 2 (8)

dence, however, will not be shown in the derivation to keep

the expressions more transparent. The corresponding ansatie integration to obtain the expectation value of the pertur-
for the wave function, as perturbed By(r)f(t), is in the pair  pation (I|WIk) can be limited to the volum¥, if it is as-

_ <||W(r)|k>v[ dilancralt _ 1}

&)|k+w

approximation: sumed that the part of the wave function outsiddean be
o . neglected.

W(r,t) = c(t) ¢(k1>(r)e—iEk Uh 4 cl(t)qsfl)(r)e—iEu Uh - (4) For an electromagnetic wave taken as a perturbafia,
is given by

The dampingy(w), contained here ié,(l), has to be positive, 1
because of the dissipative character of the perturbed Hamil- f(t) = f,(t) + f_(t) = [ + 7] = coq wt). 9)
tonianHy+Hp(w). To denote the damping of the probability/ 2

intensityl" is mostly us"eq, related 9 by I'=2y. By means  pgor the Schrédinger equatiord) has been solved fdr,(t)
of ansatz(4), the Schrédinger equation can be solved up toandf (t) separately, the two solution,(r ,t), ¥_(r ,t) can
- . ~(1 1 . . - ’ +U s, EA ]

first order with the se€,”, ¢,"(r) being a solution oHy e addedas in KH). This approximation is valid if the con-

+Hp(w): dition
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f.OW_(r,t) - f_ ()P, (r,t) =0 (10 HW(r,t)
: . : - : . 2 2
is satisfied. This restriction holds rigorously fe=0 and is [P ) a9 5 T 9 .
irrelevant forw at resonance. Therefore it is a good approxi- B {(Zm + () 2m(p A+ATD* 2mA vy,
mation. Beyond these restrictions, the use of the rotating (14)

wave approximation is required, but at the expense of a

much longer and less transparent derivation. Since most afthich will be used to specifyM(r). As has been stated in the

the discussion to come will focus upon the static behavior|ntroduction, the radiation field as such is not part of the

this extension is superfluous. Hamiltonian, since the derivation is semiclassical. We have
The coswt description (9) determines integrally the used the convention that a vector becomes transposed when

damping part of the HamiltoniaHp(w). Since the cosine is it has a superscrigl. If a transposed vector is followed by a
even ine. both b () and y(w) can only be even functions second vector the notation implies the scalar product. If a
of o obvi,ously. BDoth quantities have to be 0 for0. De- vector with superscrip has been preceded by a second

spite these restrictions op(e) by quantum mechanics, the vector the notation implies a direct product tensor. The nota-
: . X . ' tion is particularly usefuf11,14 when applied to triple prod-
parity of y(w) with respect tow will be left undefined, to lon is particularly useful 4w bl Plep

. __ucts, because of the associativity:
allow for an open analysis of the frequency dependent parity

issue. a(b"c) = (ab")c, (15)
wherea,b,c are arbitrary vectors. The vector poten#dlr ,t)
lll. ELECTRIC DIPOLE OPERATOR will be decomposed into the following components:

AND EXPECTATION VALUE
A(rlt):AO(r)+A|(rlt)+AX(r!t)l (16)
As stated in the Introduction, the dipole strength(t), ) ) )
the expectation value of the electric dipole operataover with aII_ static componepts oﬂr 1) belonging toA(r). The
the volumeV, is the main interface between quantum me-dynamic part ofA(r,t) is attributed toA(r,t) or Ax(r,t),
chanics and electrodynamics. To describe this electric dipoldePending on whether the electromagnetic sources causing

operator, the real space representation will be asdn the them are inside volum¥ or not. For this reason the vector
KH papey: potential partA(r,t) obeys the vacuum Maxwell equations

inside the volumeV. In conventional optics the static com-
d=qr (11 ponentAy(r) can be ignored. When the term containigis
neglected in the usual way and expresgib®) for A(r,t) is
substituted into Eq(14) , the different components ¢, as
Xefined in Eq(1), can be identified, giving

pZ

wherer is the spatial coordinate angl the charge of the
electron. This electromagnetic source term enters the M
well equations as an expectation valag,(t), given by

() = (W (r,)]d[P(r,t)y Ho= -+ ad(r),
=X (nldl g (r)y
+la®H M mldlg )y Fiow) = =5 HPTAI(r,D + AT(F,0P],
+ OO () e E
+6 OOV 0)]d| )y EEDw, W(Nf(H) = - %n[pTAx(r) +AYOPIFD. (1D

12
(12 The ground state Hamiltonidrd, and the dissipative part of

The first two terms can be neglected, because they are eith@{fe Hamiltonian |3|D(w) should also contain exchange-
too weak or almost statidc(t)| < |c.(t)], [c(t)[>+[c([*=1].  correlation contributions when the number of electrons con-

So, the approximate result is given by tributing to the response of the volume elem¥rexceeds 1.
io Such additions will not influence, however, the main findings
(d)v(t) = 2R ci(t)e™k(kd]Iy] of this paper. The polarizability is defined with respect to the

7 electrodynamic potentiald, ® and the electric fielct is
needed:

This expectation value describes the contribution to the di- 9

pole strength(d) of the volumeV, due to transitions from E(r,t)=- EA(M) - Vo, (18)
statek to statel. In the above reasoning, one exponential

containingay, has been omitted, since it is strongly dampedand this requires a closer examination of the use of gauge
and only the steady state response is needed. The furtheansforms for this case. It is a common assumption in
derivation depends entirely upon the general expression fajuantum mechanics that the scalar potentlalis time

the one-particle Hamiltoniahl [13]: independent:

w|k+(l)

2 got electric fieldE. Therefore the general relation between the
=--R (Kld[DWIWCr) [y | . (13)
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%(D(r,t)zo. (19 A(r):—iiE(r). (24

Actually this assumption is a special kind of eIectrodynamicThese two relations enable us to rewrite the matrix element
of W(r) in the form

gauge. It is the only gauge that will be used in this paper.
Since the contribution of the scalar potential to the electric q
field is now a static one, it can be neglected in the analysis of (WD) Ky = = — (B2 = EOY|r [KVA(r)

the dynamics of the problem. Next, as in the original KH i
paper, only the external field components will be taken into K T
account inW(r): =al (Ir[kyvE(r). (25)
af(t) Since the commutator is related to the ground state Hamil-
Ex(r,t) =g(tEx(r) =~ T Ax(r). (200 tonian, the frequencyy is a real quantity. It is at this stage

that the additional prefactor containing the reciprocal of the
frequencyw shows up, which is known to occur in deriva-
tions based upon electromagnetic potentfdls]. The KH
aper uses ai 'r-type of perturbation from the beginning,

ut in this paper the\ Tp-type will be preferred to treat the
optical response problem. If the classical relatipsrmr

were used, the prefactor would be just 1, as at resonance, for
w=w). So the origin of the prefactor is a quantum mechani-
cal one. At this stage the long wavelength approximation is
a1(0) used to bringA(r) outside the integral and the coordinate

VTEu(r,t)=- TVTAX(r) =0. (21) now only points to the center of volume elemé&ht

From the entire Hamiltoniakl only the external perturbation
WI(r) is needed to treat the electromagnetic source t{&hm
To give this perturbation the commonly used shape, require%
that the divergence of thexternal vector potential has to
vanish. Since this external electric ficlg, obeys the vacuum
Maxwell equations inside the volumé by definition, the
Poisson equation can be applied, yielding

For all dynamic cases the time derivati¥gt) is nonzero. IV. POLARIZABILITY TENSOR
Hence the Poisson equation acts like the traditional Coulomb

; - : The introduction of the polarizability tensor requires the
here. Th ly the foll . C iy . )
ﬁ?:&gﬁ ere. Then rigorously the following operator equatlor};\mplltude of the electric field to be specified. This tensor is

not an operator in the sense of quantum mechanics, unlike
ViIAy=V'Ay+ALV =A} V. (22)  the dipole operator. The first specification of the electric field
- amplitude uses a single complex exponential of positive
The commutation of vector potential and gradient is necesfrequency for its time dependence and is directly connected
sary. Ignoring this, it would not be possible to define a po-to the quantum mechanical treatment of the preceding two
larizability using its standard definition. For a single atom orsections:
volume element, the vector potentialAy is the external : (ot
field. When more atoms or volume elemeMseed to be E(r,t)=E(r)e. (26)
taken into account\y is nothing else but the traditional local The derived matrix elemerit|W(r)|k), can now be substi-
field. Often the fieldAy is also called the applied field, butin yteq into the expression for the dipole strengtB) to ob-

that sense it mostly comprises both cases. The assumptiQgin the single frequency spectral component contributed by
commonly made in this kind of derivations is that the appliedipe pairlk:

field Ay is constant over the volum¥, the so-called long

wavelength approximation. Also this assumption makes the (d)(t) = R @p(w)E(r)€'“"],
divergence disappear, but that is not needed at this place. The
perturbation can now be written as _ 202 [ wy \ [ (KIr [ r k)Y,
ap(w) =— 7<—) —]. (27)
o /\ o+ o-iyw)

__9 T __9 T
W) =~ mAX(r) pf(t) = miAX(r) Vi), @3 1his polarizability ar(w) represents a single frequency po-

larizability. Electromagnetism, however, requires a real val-
The subscripX can be omitted, since the only fields going to ued electric field to be applied to the system. To satisfy that
be used will be the applied onés(r)=Ay(r). The commu- condition, a cosine description will be used of the form
tator of Hy andr, according to Ehrenfest's theorem, can be

taken from textbook$13]. The vector potentiah(r) can be E(r,t) =E(r)coswt = l[eiwt + e E(r). (29
replaced by the electric fiel&(r), using Eq.(18) and the 2
exponential time dependence from Ed), giving Although an arbitrary electric field is described by @ots

. +¢), only a time translation suffices to reduce the description
[r.H ]zﬁp to the proposed one. The electric figl@8) introduces an
ST inseparable positive and negative frequency exponential, as
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discussed before, and, according to Et), gives rise to the T(w)= [wﬁ( + 0’ + Y(— 0)Y0)[Y(- ©) + Y(v)]
following direct description of the dipole strength:
i I o + 200 Y= ©) = Y(w)]. (34

(d)(t) = q—<%)Re{< € - - € - ) This expression for the monochromatic polarizability will be

h\ ok~ w-iY-0) oxto-iye) the final one to analyze the influence of the frequency depen-
dence of the damping(w) upon the electromagnetic re-

XCKIr DA |r|k>\T/E(f)} : (290 sponse.

In this paper it will be assumed that the matrix elements

(KIr|I)y will be real, as is the case in conventional optics. At V. NUMERICAL EXAMPLES

first, the special resonant casew® w will be considered, On the basis of some numerical examples, the conse-

with only the first exponential inside the square brackets conguences of a particular choice for(w) will be investi-

tributing: gated. The frequency dependence for the damping will be

_ _ Neriotl—pd S it like y(-w), since the quantum mechanics of the problem

(dv(h) = Red(~ w)e ™ [=Re ar(~ w)E(re™], filters out the negative frequency. All polarizabilities intro-
) 1 duced in the last section, will be written generically as
- w
aR(w)=-%(J){+—_i()]<klfl|>v<||f|k>$ o ;
o/ ogto-iye 0 a(w) = %(k|r|l)v<l|r|k>vf(w) (35)

30

with o the positive frequency of the cosine form Bf This
resonant polarizabilityallows the direct resul29) to be re-

with the differences between the polarizabilities only arising
from the frequency dependent functidtw). First, mono-
chromatic frequency dependent functidii®) for commonly

written as used types of damping(w) will be considered. The(w)
(d)y(t) = R{d(- w)e ' + d(w)e ] assumes for defined parit(-w)=1*(w) the form
=R (ar(- w)e ' + Gr(w)e“HE(r)]  (31) (w”(){ T(w) +iT(w)
flw)=|— 2 _ 2 2 2 '
with E(r) denoting now a real quantity. Here, it should be o /[ [wj= 0® = Y(- ) + 40 (- 0)
emphasized that
T(w) = 20[wf — 0® = (- 0)]. (36)

R d(w)e“'] = Red" (w)e Y. (32
The defined parity reduces only the real pgfw). A change

This mathematical remark is crucial for the later discussiorsf parity, on the other hand, affects only the imaginary part
about causality. Such “reset” enables now the introduction off, () and leaves the following choices:

a complex description in agreement with the electromagnetic
convention(as used for the Larmor intensity [d], but here Tei(®) = 29(- w)[wf + 0 + (- 0)],
with negative exponentigl
(dlt) = Re iy (0)E( )™, Toi() = 4™ w), 57

with the subscripE referring to the even and the subsci@t
(33) to the odd parity fory(w). Notice that for both paritie¥;(w)

is even. Apart from the even/odd parities, covering the body
The complex polarizabilityay, will be referred to as the of the present sign discussion, there is also a propoditi6h
monochromatic polarizabilitylmplicitly it also implies that to use an asymmetric choidg(w), putting (w)=0 for »
in spite of the fact that only a single exponential has been>0. For completeness this option will be investigated as
used in the description, the amplitude of the real cosine-typavell:

ay(w) = Jr(- 0) + dg(w).

wave can still be used. Sey, can now explicitly be written .
e M plicitly f(w)z(%>[2w(a}|k—w)—yz(—co)+|(w|k+w)y(—w)}
! e (ot (o= A-w)] ]
- W
() = %(f) (39)
) with the subscrip® referring to this asymmetric choice. All
x Ti(w) +iTi(w) these monochromatic options should be compared to the
[(w — ©) + Y(— o) ][ (w0 + ©)? + ()] resonant type, denoted by the subscRpt
XKD [k, (w.k>[ o= 0+ iy(- o) ]
frlw)=|— : (39
., A o /[ (g = )+ Y(- w)
Ti(w) = 200}~ ) ~ @l V(- 0) = ()] the reference situation, but with @npriori already limited
- o[ Y(- w) + Y (w)], range of applicability.
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i Y (o) examination. The external electric fiely applied to the
E volume elemenV, is given for any frequencw by
I Ex(r,t) = Ex(r,w)cod wt). (40)
(0]
A Two mutually excluding descriptions are needed to derive

this electric field from the electrodynamic potentiél®) as
Ex(r) == V®&y(r),

d .
FIG. 1. “Constant’y(w) profile. Modulus|y|=0.1 or 0.001. Ex(r,o) =~ EAX(r’w)Sm(wt)

To determine which of the options proposed has to be =— wA(r,w)coq wt). (41)
preferred, the following four discriminating criteria will be L . .
used: The expression dfw) should be free from singular SINCE the electric fielx(r, w) is external, it can have any
behavior; the expression should yield a positive absorbanc&N@P€ as a function @. However, for a proper examination

the symmetry with respect t@ should be correct; and cau- of the spectral behavior of the optical response a constant
sality should not be violated. The first round of investigation@MPlitude Ex(r , ) should be taken. Therefore, the second

concemns the “constant’” dampingw) profiles shown in Fig. de_scription i_n Eq(41)_(also respon_sible for the prefactqr and
1, which cover most of the current descriptions. In Figs. 20€ing undefined fow=0), should yield the same result in the

and 3 are shown the functiorig(w) [Eq. (39)] for the reso- IMit @—0 as is produced by the firgstatig description in
nant typefe o(w) [Eq. (37)] for the even and odd parity, and Eqg. (41). So this limit is the gradient of the scalar potential.

() [Eq.(38)] for the asymmetric choice. Fas, the value It is incorrect to add it as a special static contribution in the
1AwiII be taken and for the damping mod.ulpyélkthe Values  Static scalar potential gauge chosen. For very low frequen-

0.1 and 0.001. The latter value of 0.001 yields results closef <> and starting from=0 there will be a time interval in

to experiment. The former value of 0.1 is taken to highlightwhlch coswt will be virtually indistinguishable from 1. The

the details of and differences between the polarizabilities. siz€ .Of this interval wil Increase 'for decreasmg It is un-
' physical to assume that in this interval the dipole strength
Near the resonance frequeney wy, none of the cases is

singular, provided thay(—ay) # 0. A similar nonzeroy(0) (d)y(t) will be different for a slowly oscillating field of fre-

makes that all cases, except for the odd parity one, becomgeugggé‘g(a?;jhzssigtg:ef'c%ﬂti(r)fuzogsvﬂl;g'r Tkleore;\osrz ﬁuﬁ?
singular in the real or imaginary part &6fw) for ®=0. In the P @ w="1

odd parity case the imaginary part then becomes discontinjl® Polarizabilitya(w) and the frequency dependent function
ous. For the resonant type the singularity is even beyond(®) have to be continuous for all frequencies

repair, because only a single pole arises from the prefactor For the “constant’(w) profile only the real parts of the
for @=0. As will be discussed later, in all other cases the€ven and odd frequency dependent functions have a proper

singularity can be made to disappearyi0)=0 is assumed Static limit:

for a further smoothy(w). Near the resonance frequency . 20 wh = YP)

there is hardly any difference between the separate cases. For lim Re{ fg o(w)] = W2+ (42)
vy=0.1, a pronounced difference occurs between the real 00 @ik

parts offg(w) and the other cases treated. Yet for truly static fieldsEy the total Hamiltonian has to be

Because of the singularities occurring @t0 for this  Hermitian, all(quasjenergies will be real and only=0 is
“constant” y(w) profile, the near static region needs closerpossible. Therefore, there can be but one static velue

lk | | | “’I['R("’)] I"“" ] | ' I lm[lf'uA (o))]'_
Re[feo(0)] — m[fe(@ ]
8r n‘['A("’)] """" l Im [Io(w)] J—

01
110

FIG. 2. Constant frequency dependent damp-
ing: response functionf w) for resonant, asym-
metric, odd, and even cases. Frequercyand
damping y in units of wy. Strong dampingy
{14 =0.1 fg static limit.
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1 T T T T T T T T T T 3
* 100 J « 100
0 L r m[te,eol@] — |
-1} + 12
ol FIG. 3. Frequency dependent response func-
tions f(w) as in Fig. 2, but with weak damping
¥=0.001.
-3r T 11
4l Re[fa(w) | — 1
R‘['A,s,o("’)] — ¥ =0.001
fg  weeee-
-5 =
1 2 3 1 2 3
o ©
2 practice this means that the frequency dependent function
fs= w_lk (43) has to be free from poles in the upper half plane. First, the

frequency dependent functidp(),

As a result, a discontinuity for this “constanf{w) profile is

left. Although the discontinuity is smathot visible, e.g., in R 1

Figs. 2 and 3 it remains unphysical. frlw) = ——, (47)
For the investigation of the absorbangeof energy by k= @

the dipole from the field, Poynting’s theorem yields that this

absorbance is given by

will be analyzed. The prefactor will be suppressed, since it
will turn out that its pole contributions can be ignored for the
® - O monochromatic cases. Equati¢tb) for f(w) is correct only
A= EIm(EA p) = EEA (Imag)En. (44) i the following contour integral, using foi{w) the particular
form of fg(w) given in Eq.(47):
For ordinary dissipative systems, as treated here, this quan-

tity has to be positive in order not to violate conservation of f fR(a’,) ( 1 ){ do’ do’ ]
do’ = f + f
r r r

energy. It suffices to investigate isotropic polarizabilities.

o' - o' -w

Then it is immediately clear that the imaginary part of the @~ @ @ @

polarizability has to be positive. All cases considered are in do’

full agreement with this positive absorbance property of the =frlw) | —— (48)
[ wWg—w

electromagnetic energy conservation law.

Electromagnetism demands that the real part of the polar- ) ) )
izability has to be even and the imaginary part odd, as #ecomes zero. Then, the functiép complies with the KK
function of frequency. This arises directly from the electro-transforms. This happens only whep, has a negative

magnetic requirement that imaginary part. Taking causality and fulfillment of the KK
_ » transform to be equivalenfg(w) can be causal only ify,
a(-w)=a () (45 has a negative imaginary part.

for any polarizability «. It is clear from Eq.(33) that this Two classes of poles have to be distinguished in the fre-

demand is obeyed by all monochromatic cases, regardless gpency dependent functions belonging to #fte) profiles of

the frequency dependence gfw). Only the resonant type is Fig. 1. First, there are the poles occurring at the origin, be-
not in agreement with this demand cause of the prefactor. These poles are located on the inte-

The last issue to be investigated concerns causality. T ration contourl” and violate therefore the KK transform,

that end the polarizabilities, or rather the frequency depen_ecau.se in practice they still contri_bute half of their residue.
dent functions, have to obey the Kramers-KrogHgK ) trans- For this reason the resonant functioiggw) are not causal.

form. For that analysis it is better to use the direct precursof OF the remaining optiont(w), fo(w), andfa(«w), there is a
of the KK transform: double pole forw=0. If y(w) is continuous and differentiable

at w=0 andy(0)=0, as for the “variable™(w) to be treated
21 o, fe) next, the residues of these poles cancel. These poles will be
fw) = ;Pf_x do 0 -o (46) ignored here.

The remaining poles are all related to the choiceogf
whereP stands for the principal value. Mathematically, the The discussion will now focus upon the following two de-
KK transform requires the frequency dependent function tascriptions of the dipole strength and their corresponding fre-
be analytical in the upper part of the compléxplane. In  quency dependent functions:
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(] 4 0)|

Ex ,)\ [Of
_$ % o
\o"'-:.
En- 17
Antiresonant Resonant
branch branch

FIG. 4. Behavior frequency dependent functions in the complex
plane. Resonant and antiresonant branches. Dash-dotted curves,
“walking pole” trajectories; open circles, poles.

Monochromatic
Case

FIG. 5. Behavior frequency dependent functions in the complex

_ - Loty © ot plane. Monochromatic case. Dash-dotted curves, “walking pole”
(d)(t) = Rel(ar(~ w)e™* + ap(w)e“)E(r)], trajectories; open circles, poles.

— < «* —iwt
(dw)(V) = Rel(ar(- @) + ag(w) e E(r)]. (49) tially with time, being unphysical. The even parity wave

The first line describes the response in its direct form giveunction has the correct damped behavior, but the necessary
by Eq. (31), whereas the second, the monochromatic onefeset exploits exphcn[y that the_lmaglnary part of the dipole
gives the response after the reset given by @B8g). For the ~ Stréngth has no physical meaning, according to(B@). Yet
direct description there are two different branches, the resd!® menochromatic description is not wrong and meets the
nant branch with its pole in the right half plane and thed€mands from electromagnetism, requiring a single exponen-
antiresonant branch with its poles in the left half plane. Thidia! description. The asymmetric choice will always violate
situation is depicted in Fig. 4. Since a cosine type of descripn€ KK transform. o _
tion has been chosen for the applied field, it suffices to con- /A remark of a different kind is more serious however. It
sider only positive frequencies, where a positive damping has been assumed that the dampj@) is a piecewise con-
¥(-w) will be taken for positivew. As can be seen from the stant function of frequency. Inevitably it has still to be main-
expression for the resonant polarizabilitg(w), Eq. (30) tained thaty(0) =0, because it results from the constraints for
there is only one relevant poke for the resonant branch, at Hp(w) and it cures the singularity problems fa=0 in all

. _ monochromatic cases. Thereforg(w) really has to be a

0=~ iY- o). (50)  function of w. This means that the poles cannot have a fixed

This pole is always in the lower half plane and this branch!ocatlon in the complex plane, but can at best be described as

therefore will always be causal. For the antiresonant branch\'\/a"('m“:l poles” in this picturg(Figs. 4, 5. On the basis of

three options can be distinguished for the location of thefull knowledge ofy(w), or Hp(w), complex analysis can be
pole: in the lower half plangodd parity, on the real axis done properly. This premise however, is beyond the scope of
(asymmetric choice and in the upper half plan@ven par-  this paper. . o

ity). From these three cases only the odd parity one is causal, N @ next rou_nd of Investigation, the consequences of a
because it is the only case with the pole undoubtedly outside/ariable” dampingy(w) profile will be shown. The model-
the contour. ing of this y(w) profile (Fig. 6) will be as follows:

The monochromatic description behaves differently. Now
there is a single frequency dependent function containing all
of the poles discussed for the direct form, but with the anti-
resonant even and odd poles revergeig). 5). This results Ye(w) = 7( ot
straight from the reset enabled by E®2) , because the
imaginary part of the dipole strength can actually be any-
thing. By this reset the antiresonant poles become their com- Y(®)
plex conjugates. From the Cauchy-Riemann conditions it is vaul
clear that either the function itself or its complex conjugate
can be analytic, but not both of them. This means that the — ..ee-==""
monochromatic description will always be at odds with the
direct one. Consider therefore the complex response, the _g -4 -2 ] 2 4
quantity between square brackets in E£P). The direct de- e O
scription follows straight from Schrodinger’s equation and is
causal only for odd parity. The monochromatic description is a1l =
causal for even parity, but violates Schrodinger’s equation.

The odd parity wave function, however, increases exponen- FIG. 6. “Variable” y(w) profile. Amplitudey=0.1.
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12
Re[fn((o)] f— Im[fM(O))] —_
mofte 0] — m[te@] |
Re[fo(@) ] i m[fo(@)] —
| P
18
| FIG. 7. Variable frequency dependent damp-
8 ing: response functionfw) as in Fig. 2 withy
=0.1. y(w) according to Eq(51).
e 14
2}
12
-4} ¥ =01
. i .
1 ® 2 1 @ 2 3
20w concern the frequency dependent behavior of the real and
Yolw) = -y _wz + ol (51) imaginary parts of the polarizabilitg(w). For the two op-
Ik

tions used for they(w) profile, constant and variable, the
symbols —, + indicate whether or not these polarizability
The asymmetric choice/a(w) follows yg(w) for negative  components become singular far approaching 0. The-
frequencies and is 0 otherwise. Also for the resonant typgsed four times in the table indicates that additional com-
¥e(w) is used. The sign definition foy(w) is as described by ment is required there, e.g., for the constanprofile, the
Ed. (). In the modeling it has been used that at infinity thereimaginary part of the odd parity polarizability is not singular
is no damping. This assumption is only based upon the clagor »=0, but discontinuous. Columns 6 and 7 summarize
sical argument, that a mass point will not follow very fast absorption related features. From the electromagnetic point
oscillations and becomes effectively static without energyof view, the absorption is given by E¢44) and should be
transfer. The frequency dependent functidag or(w) be-  positive. All cases obey this demarecblumn 6. Column 7
longing to this “variable”y(w) profile are shown in Fig. 7. refers to the time dependent behavior of the excited state
The real part offg(w) clearly deviates from all other cases. ¢ If this state is damped fdr— =, it is shown in the table
The real parts for these other cases are almost similar and tlg a +. The~ for the asymmetric choice in column 7 origi-
same holds for all imaginary parts, including resonant. Thenates from the fact that the antiresonant part is related to a
limiting behavior of the real and imaginary parts nes#0  state with time independent modulus. The last two columns 8
correctly yieldsfs, as given in Eq(43), for all cases, apart and 9 summarize the behavior of the poles for the direct and
from resonant. The results shown before in Fig. 2, for amonochromatic descriptions, according to E49). The +
“constant”y(w), represent traditional Lorentz line shapes. Asindicates that the antiresonant pole is outside the corffour
compared to the Lorentzian, the distortion introduced by theand the behavior has to be classified as causal. Since the
variable y(w) (51) is also small. antiresonant pole for the asymmetric choice is on the real
In Table | the major conclusions of this paper have beeraxis, such classification cannot be given.
summarized, in order to compare the different cases investi- Regarding the table and requiring thg)=0, so ignor-
gated. The label€, O, A, R in the first column are the ing columns 2 and 3, the best solution is given by the even
frequency dependent function labels. The columns 2, 3, 4, Bfhonochromatic one, in agreement with the original demands
from quantum mechanics. Neither the damping of the wave
TABLE I. Performance of polarizability models using evd®, ~ function nor the issue of causalifgolumns 7, 8, and )3can
odd (0), asymmetric(A), or resonantR) frequency dependence D€ addressed directly in an experiment. When also these col-
f(w). Columns 2, 3, 4, and 5, no singular behaviorderO; coumn ~ umns 7, 8, and 9 are left out of consideration, it is not pos-
6, absorbanced>0, Eq. (44) ; column 7, excited stateg”’  sible to choose between even and odd parity.

damped; columns 8 and 9, causality obey@diirect, M monochro- Finally, as in the original KH paper, the pair results can be
matic, Eq.(49). Further, see text. extended to treat approximately systems with an arbitrary
number of levels. To that end the contributions of all pHirs
Constanty Variable y Causality ~ representing transitions from any occupied statéo any

Rea) Im(a) Rea) Im(a) A>0 ¢damped D M unoccupied staté, have to be added to produce the sum-
over-states expression. For the induction rule given by

E + - + + + + - +
O - + * * - - (d)v(t) = Red(w)e™ ' ]=Re dg(w)Ex(r)e™]  (52)
A - - + + + ~ ~ ~
R _ _ + " + + 4 the definition for the total polarizabilityyg, if the damping

v(w) is chosen to have even parity, becomes then
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- 207 K part for the effective single electron Hamiltonian. The latter
ag(w) = 72 s gives rise to a frequency dependent damping factor that is
K zero in the static case, as is generally accepted now in most
(Wi = 0 = ¥o) + iy + 0?+ %) phenomenological descriptions. This semiclassical nonrela-
(02 - 02— )2+ 412 2 tivistic derlvat|on_ takes into account only damping by t_he
Ik lk Ik material system in the weak field limit. The use of potentials
X AKIF WAL r (K, (53)  results in a prefactor reciprocal in, as discussed by Lamb

- . [15]. This prefactor arises from the use of Ehrenfest’s theo-
where the indicel of the dampmgy have been _rest.ored. rem, but has hardly any visible consequences for the mono-
D|fferen'_[ f“’”? before,. we h_ave defmqﬂw) for this f'n.al chromatic cases studied here. The potential description re-
?XPreSS'Q“.V_V'thOUt mlnus_S|gn,_to be in agreeme.nt with e,X'quires a gauge transform to be chosen. In order to preserve
isting definition schemes in optics. The near static behaviof,o static scalar potential commonly used in quantum me-
is, of course, as treated before, but one warning should bg,anics poisson's law has to be used to replace the Coulomb
made. When measuring in the uv-visible range it is not dif-g.5 .46 This is possible only when the electromagnetic fields

ficult to find a low frequency “static” response. Yet this re- ,qe in the harmonic perturbation are external to the volume
sponse is seldom exactly the same as the result from a stajg

measurement. At least partly this discrepancy has to be as- |t has peen shown that a reset of the antiresonant branch
signed to the _contrlbutlon _of mfrared_wbratlonal levels, when ¢ 1ha polarizability is necessary to obtain results of the type
the volumeV is not occupied by a simple atom. . commonly used in electromagnetism and referred to as
Some Com”.‘e“t should be given as to the tensorial ?Speqﬁonochromatic. This reset is mathematically correct, but
of the expressions for the polarizability. If some rotation is y,eq not follow naturally from the quantum mechanics of the
applied to the system by means of a rotation maiixthe  orohiem. Explicitly, two types of frequency dependent damp-

result ing profile, constant and variable, have been investigated.
~ ~ G Both profile types have been studied as even or odd symmet-
a’:RaRT:%[R(I|r|k>VRT][R(||r|k>VRT]Tf(w) ric and as asymmetric monochromatic functions of fre-

quency. Results have been compared to the generally ac-
(54 cepted resonant results. The treatment of the frequency

simply states that the rotated polarizability is the direct prod_dependen_ce of _the _damplngw) Is also relevant _for the
uct of the rotated matrix elemenfr|I),. As a result, always present discussion in the literature about the sign of the

a coordinate system can be chosen having one of the axtg?argg';%cfgtrhtgghzcggfz??ﬁgt d;er;mi;q ai,bssﬁgv(\:/?\ gf t?]eeacr:on-
coinciding with the matrix element. Then the polarizability ping, y

tensor has only one nonzero element somewhere on the tant damping cases, unavoidably ends up in unphysical be-

agonal. So a two-level description inevitably always ends up, ﬁ:’éﬂ:;ﬁé thsfaﬁggﬁﬁ?cﬂfr;ﬁg' \,R;%%ﬁmga?nm)i/nthe rrgfcijlzo_
in a highly anisotropic polarizability. Most atoms, neverthe-t ere is no I?:Iear refer)énce for anv kind of darr? ir? 2 mm’e-
less, respond isotropically for symmetry reasons. The samtg' ith ttpf o t% basis of P Ig tﬁ/ i-
symmetry however, gives rise also to degenerate levels Y With respect o frequency. ©n the basis of purely theore
When this degeneracy is taken into account, isotropic beha ical arguments, such as causality and energy conservation,

ior is again retained, using the summation(88). In the preference can be 9“’9’? to the even type Of \{ariable fre-
original KH paper or;ly isotropic cases were studied. It is,quency dependent damping. Such preference s in agreement

however, easy to go beyond this restrictisee also, e.g., af\;éhﬁj icairtl)%ns aishlémgggnsa?ﬁnﬁzm'pe%éni(?ei:at\: g)e:t%fetztes
[2,4] ) and to obtain the full tensor as well. ' party 1S p

where the radiation field is part of the quantum mechanical
description. Radiation losses have not been taken into ac-
VI. CONCLUSIONS count and have to be added separately when necessary, e.g.,

The polarizability of a small arbitrary volume elemevit classically by means of a Lorentz radiation damping term.

has been derived, us@n_g the expectation value of the dipqle ACKNOWLEDGMENT

strength, as in the original Kramers-Heisenberg paper. Dif-

ferent from KH, electromagnetic potentials have been used The author wishes to thank Ir. H. H. J. M. Niederer for his
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