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A general expression for the semiclassical, nonrelativistic linear polarizability of an arbitrary volume ele-
ment V has been derived in the long wavelength approximation. The derivation starts from the expectation
value of the dipole strength, as in the original Kramers-Heisenberg paper about optical scattering by atoms. The
main requirements underlying the present approach are a separate non-Hermitian part of the Hamiltonian and
a frequency dependent damping, which is zero for the static case. Resonant and antiresonant exponentials are
both found to be necessary to obtain a proper static response. It is concluded that even parity for the damping
has to be preferred from the theoretical point of view, although odd and asymmetric parity yield virtually the
same polarizability. The electromagnetic response can still be written in terms of a single complex frequency,
in agreement with the requirements of electrodynamics. The resulting expression is suited for the treatment of
nonisotropic systems.
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I. INTRODUCTION

The basic and fundamental problem of the optical re-
sponse of atoms to an externally applied electric field was
treated by Kramers and Heisenberg in a classical paper[1],
as early as 1925. This treatment was improved and extended
by Dirac [2] and subsequently by Weiskopf and Wigner[3].
The backbone of the Kramers-Heisenberg(KH) paper con-
sists of the classical Larmor expression for the total intensity
scattered by the dipole strength induced in the atom by the
applied field and the calculation of this dipole strength by
what is called now first order linear time dependent pertur-
bation theory. The surprising aspect of the paper is that, al-
though definitely the induced dipole strength depends in a
linear fashion upon the amplitude of the electric field, the
paper does not even discuss why this dependency has not
been used to define properly a corresponding polarizability.
This deficiency prevents the induction studied in the paper,
from being applied in an easy and direct way to problems of
electrodynamics. A number of later papers presented polariz-
ability expressions classified as Kramers-Heisenberg, but de-
spite the, at first glance, simple character of the derivation,
there is still no consensus about the precise formulation, as
can be inferred from recent publications[4–6]. This holds
particularly for the frequency dependent parity of the damp-
ing. To investigate this parity issue, the general expression
for the semiclassical nonrelativistic polarizability of an arbi-
trary volume elementV of subwavelength dimensions will be
(re)derived in this paper, as in the original KH paper, starting
from the dipole strength. A separate, dissipative, time and
frequency dependent part of the Hamiltonian in the single
electron picture will be used for the quantum mechanical part
of the derivation. This is equivalent to the use of complex
self-energies in methods of condensed matter physics, like
the GW or Bethe-Salpeter equations methods[7]. This dissi-
pative part will determine directly the damping of the polar-
izability, but only as far as material energy losses are con-
cerned. The energy stored in the electromagnetic field is not
part of the Hamiltonian. As a result the radiative self-
damping cannot follow from this description[8–10].

The ongoing discussion about the subject finds its origin
in the requirement from electromagnetism that the time de-
pendence has to be described by means of a real valued
cosine. As a result, two complex exponentials, resonant and
antiresonant, are necessary to link quantum mechanics and
electrodynamics. The asymmetric treatment in quantum me-
chanics of the resonant and antiresonant exponential prevents
a smooth connection from being made, since electromagne-
tism requires a symmetric treatment. Therefore, in this paper
the two exponentials necessary in the quantum mechanical
description will be contracted into a single one complying
with the electrodynamic demands. As only external electro-
magnetic fields(KH: “Der Einfluß äußerer Bestrahlung”) are
taken into account, a finite volumeV is implied. As a result,
electrodynamic potentials can be used, without having to
cope with gauge transform problems. The definition of the
polarizability itself requires thatV has to be small enough for
a long wavelength approximation to be allowed. In the origi-
nal KH paper only isotropic types of response were treated.
This restriction is not necessary and some elementary tensor
rules [11] suffice to extend the treatment to arbitrary aniso-
tropic cases.

Along these lines, an expression for the polarizability of
an arbitrary volume element will be derived, which can be
used for quantitative descriptions and is suited to handle ar-
bitrary polarization dependent behavior. This expression will
be highly useful for problems where the emphasis is on the
material aspect of the light-matter interaction and copes with
the frequency dependent parity aspects of the corresponding
damping.

II. TIME DEPENDENT PERTURBATION THEORY

The classical derivation of the Kramers-Heisenberg ex-
pression is based upon first order linear perturbation theory.
Accordingly, the present treatment will start from the as-
sumption that the system is described by the time dependent
Schrödinger equation
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fH0 + ĤDsvd + Wsr dfstdgCsr ,td = i"
]

] t
Csr ,td,

fstd = eivt, s1d

whereH0 is the Hermitean ground state Hamiltonian of the
material system. The time dependent perturbationWsr dfstd
stems from sources external to the system and will be de-
scribed at the start by a single complex exponential of posi-

tive frequencyv. ĤDsvd is the dissipative non-Hermitian
part of the Hamiltonian, and is zero forv=0 [3,8], the case
of a time independent perturbation. In this paper, the caret

will be used to indicate that a quantity is complex.ĤDsvd
can also be identified as the interaction of the electron with
the bath or reservoir in the effective one-electron description
[12]. For the ground state it is assumed that the complete and
orthonormal set of eigensolutionsEk

s0d, fk
s0dsr d in the inde-

pendent particle treatment of the problem, is known. For the

perturbed HamiltonianH0+ĤDsvd a different set of ortho-

normal solutionsÊk
s1d, fk

s1dsr d has to be taken. This set has the
same solutions for the occupied states, but has slightly dif-
ferent ones for unoccupied or excited states, the more pro-
nounced difference being the nonzero imaginary part of the
(quasi)energies. For these states it will be used that

kfl
s1duH0 + ĤDsvdufl

s1dl = Êl
s1d = El

s1d − i"gsvd. s2d

SinceĤD is a function ofv, g should also be a function of
frequency,gsvd.

To start, only a single pair of levels, involving an occu-
pied statek and an unoccupied statel, will be considered, for
which the following energy differences will be used:

Elk = El
s0d − Ek

s0d = "vlk,

Êlk = Êl
s1d − Ek

s1d < El
s0d − Ek

s0d − i"glksvd

= "v̂lk = "fvlk − iglksvdg. s3d

The dampingg depends upon the indiceslk. This depen-
dence, however, will not be shown in the derivation to keep
the expressions more transparent. The corresponding ansatz
for the wave function, as perturbed byWsr dfstd, is in the pair
approximation:

Csr ,td = ckstdfk
s1dsr de−iEk

s1dt/" + clstdfl
s1dsr de−iÊl

s1dt/". s4d

The dampinggsvd, contained here inÊl
s1d, has to be positive,

because of the dissipative character of the perturbed Hamil-

tonianH0+ĤDsvd. To denote the damping of the probability/
intensityG is mostly used, related tog by G=2g. By means
of ansatz(4), the Schrödinger equation can be solved up to

first order with the setÊk
s1d, fk

s1dsr d being a solution ofH0

+ĤDsvd:

ckstdWsr dfstdfk
s1dsr de−iEk

s1dt/" + clstdWsr dfstdfl
s1dsr de−iÊl

s1dt/"

=i"fk
s1dsr de−iEk

s1dt/" d

dt
ckstd + i"fl

s1dsr de−iÊl
s1dt/" d

dt
clstd.

s5d

This result is multiplied byfl
s1d*sr d and is next integrated

over all space. For that step it is easiest to assume that the
levels of the pairl, k are nondegenerate. Degenerate levels
can only be treated however, if they are properly orthogonal-
ized (e.g., by Schmidt’s procedure). If so, the orthonormality
of the setfl

s1d can be used to obtain

i"e−iÊl
s1dt/" d

dt
clstd = ckstdfstde−iEk

s1dt/"kl uWsr dukl

+ clstdfstde−iÊl
s1dt/"kl uWsr dull. s6d

The implicit assumption made in the KH derivation is the
linearity with respect to the perturbationWsr d. In this paper
only electric dipole type of perturbations will be considered,
as treated in more detail in the next section. In Eq.(17) it
will be shown that the external perturbationW scales with
the momentum operatorp and the external vector potential
AX. This vector potential will be assumed to be constant over
that part of space where the wave function has most of its
probability. Then the spatial parity of the perturbationWsr d
is the same as the spatial parity of the momentum operatorp:
antisymmetric. If the states inV have also a defined spatial
parity, it then holds that

E drfl
s1d*sr dWsr dfl

s1dsr d = 0. s7d

This leaves only one term in the right-hand side of Eq.(6).
Now one time integration step suffices to obtain the expres-
sion for the coefficientclstd of the excited state:

clstd =
1

i"
E

0

t

dt8eisv̂lk+vdt8kl uWsr dukl

= −
kl uWsr duklV

"
Feisv̂lk+vdt − 1

v̂lk + v
G . s8d

The integration to obtain the expectation value of the pertur-
bation kl uWukl can be limited to the volumeV, if it is as-
sumed that the part of the wave function outsideV can be
neglected.

For an electromagnetic wave taken as a perturbation,fstd
is given by

fstd = f+std + f−std =
1

2
feivt + e−ivtg = cossvtd. s9d

After the Schrödinger equation(1) has been solved forf+std
and f−std separately, the two solutionsC+sr ,td, C−sr ,td can
be added(as in KH). This approximation is valid if the con-
dition
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f+stdC−sr ,td − f−stdC+sr ,td < 0 s10d

is satisfied. This restriction holds rigorously forv=0 and is
irrelevant forv at resonance. Therefore it is a good approxi-
mation. Beyond these restrictions, the use of the rotating
wave approximation is required, but at the expense of a
much longer and less transparent derivation. Since most of
the discussion to come will focus upon the static behavior,
this extension is superfluous.

The cosvt description (9) determines integrally the

damping part of the HamiltonianĤDsvd. Since the cosine is

even inv, both ĤDsvd andgsvd can only be even functions
of v obviously. Both quantities have to be 0 forv=0. De-
spite these restrictions ongsvd by quantum mechanics, the
parity of gsvd with respect tov will be left undefined, to
allow for an open analysis of the frequency dependent parity
issue.

III. ELECTRIC DIPOLE OPERATOR
AND EXPECTATION VALUE

As stated in the Introduction, the dipole strengthkdlVstd,
the expectation value of the electric dipole operatord over
the volumeV, is the main interface between quantum me-
chanics and electrodynamics. To describe this electric dipole
operator, the real space representation will be used(as in the
KH paper):

d = qr s11d

where r is the spatial coordinate andq the charge of the
electron. This electromagnetic source term enters the Max-
well equations as an expectation valuekdlVstd, given by

kdlVstd = kCsr ,tduduCsr ,tdlV

= uckstdu2kfk
s1dsr dudufk

s1dsr dlV

+ uclstdu2kfl
s1dsr dudufl

s1dsr dlV

+ ck
*stdclstdkfk

s1dsr dudufl
s1dsr dlVeisÊk

s1d−Êl
s1ddt/"

+ cl
*stdckstdkfl

s1dsr dudufk
s1dsr dlVeisÊl

s1d*−Êk
s1ddt/".

s12d

The first two terms can be neglected, because they are either
too weak or almost static[uclstdu! uckstdu, uckstdu2+ uclstdu2=1].
So, the approximate result is given by

kdlVstd < 2Refclstde−iv̂lktkkudullVg

= −
2

"
ReFS eivt

v̂lk + v
DkkudullVkl uWsr duklVG . s13d

This expectation value describes the contribution to the di-
pole strengthkdl of the volumeV, due to transitions from
statek to statel. In the above reasoning, one exponential
containingv̂lk has been omitted, since it is strongly damped
and only the steady state response is needed. The further
derivation depends entirely upon the general expression for
the one-particle HamiltonianH [13]:

HCsr ,td

= FS p2

2m
+ qFsr dD −

q

2m
spTA + ATpd +

q2

2m
A2GCsr ,td,

s14d

which will be used to specifyWsr d. As has been stated in the
Introduction, the radiation field as such is not part of the
Hamiltonian, since the derivation is semiclassical. We have
used the convention that a vector becomes transposed when
it has a superscriptT. If a transposed vector is followed by a
second vector the notation implies the scalar product. If a
vector with superscriptT has been preceded by a second
vector the notation implies a direct product tensor. The nota-
tion is particularly useful[11,14] when applied to triple prod-
ucts, because of the associativity:

asbTcd = sabTdc, s15d

wherea,b,c are arbitrary vectors. The vector potentialAsr ,td
will be decomposed into the following components:

Asr ,td = A0sr d + A Isr ,td + AXsr ,td, s16d

with all static components ofAsr ,td belonging toA0sr d. The
dynamic part ofAsr ,td is attributed toA Isr ,td or AXsr ,td,
depending on whether the electromagnetic sources causing
them are inside volumeV or not. For this reason the vector
potential partAXsr ,td obeys the vacuum Maxwell equations
inside the volumeV. In conventional optics the static com-
ponentA0sr d can be ignored. When the term containingA2 is
neglected in the usual way and expression(16) for Asr ,td is
substituted into Eq.(14) , the different components ofH, as
defined in Eq.(1), can be identified, giving

H0 =
p2

2m
+ qFsr d,

ĤDsvd = −
q

2m
fpTA Isr ,td + A I

Tsr ,tdpg,

Wsr dfstd = −
q

2m
fpTAXsr d + AX

Tsr dpgfstd. s17d

The ground state HamiltonianH0 and the dissipative part of

the Hamiltonian ĤDsvd should also contain exchange-
correlation contributions when the number of electrons con-
tributing to the response of the volume elementV exceeds 1.
Such additions will not influence, however, the main findings
of this paper. The polarizability is defined with respect to the
electric fieldE. Therefore the general relation between the
electrodynamic potentialsA, F and the electric fieldE is
needed:

Esr ,td = −
]

] t
Asr ,td − = Fsr ,td s18d

and this requires a closer examination of the use of gauge
transforms for this case. It is a common assumption in
quantum mechanics that the scalar potentialF is time
independent:

POLARIZABILITY TENSOR AND KRAMERS-… PHYSICAL REVIEW A 70, 063807(2004)

063807-3



]

] t
Fsr ,td = 0. s19d

Actually this assumption is a special kind of electrodynamic
gauge. It is the only gauge that will be used in this paper.
Since the contribution of the scalar potential to the electric
field is now a static one, it can be neglected in the analysis of
the dynamics of the problem. Next, as in the original KH
paper, only the external field components will be taken into
account inWsr d:

EXsr ,td = gstdEXsr d = −
] fstd

] t
AXsr d. s20d

From the entire HamiltonianH only the external perturbation
Wsr d is needed to treat the electromagnetic source termkdl.
To give this perturbation the commonly used shape, requires
that the divergence of theexternal vector potential has to
vanish. Since this external electric fieldEX obeys the vacuum
Maxwell equations inside the volumeV by definition, the
Poisson equation can be applied, yielding

=TEXsr ,td = −
] fstd

] t
=TAXsr d = 0. s21d

For all dynamic cases the time derivativef8std is nonzero.
Hence the Poisson equation acts like the traditional Coulomb
gauge here. Then rigorously the following operator equation
holds:

s22d

The commutation of vector potential and gradient is neces-
sary. Ignoring this, it would not be possible to define a po-
larizability using its standard definition. For a single atom or
volume elementV, the vector potentialAX is the external
field. When more atoms or volume elementsV need to be
taken into account,AX is nothing else but the traditional local
field. Often the fieldAX is also called the applied field, but in
that sense it mostly comprises both cases. The assumption
commonly made in this kind of derivations is that the applied
field AX is constant over the volumeV, the so-called long
wavelength approximation. Also this assumption makes the
divergence disappear, but that is not needed at this place. The
perturbation can now be written as

Wsr dfstd = −
q

m
AXsr dTpfstd = −

q"

mi
AXsr dT = fstd. s23d

The subscriptX can be omitted, since the only fields going to
be used will be the applied onesAsr d=AXsr d. The commu-
tator of H0 and r , according to Ehrenfest’s theorem, can be
taken from textbooks[13]. The vector potentialAsr d can be
replaced by the electric fieldEsr d, using Eq.(18) and the
exponential time dependence from Eq.(1), giving

fr ,H0g =
i"

m
p,

Asr d = −
1

iv
Esr d. s24d

These two relations enable us to rewrite the matrix element
of Wsr d in the form

kl uWsr duklV = −
q

i"
sEk

s0d − El
s0ddkl ur uklV

TAsr d

= qSvlk

v
Dkl ur uklV

TEsr d. s25d

Since the commutator is related to the ground state Hamil-
tonian, the frequencyvlk is a real quantity. It is at this stage
that the additional prefactor containing the reciprocal of the
frequencyv shows up, which is known to occur in deriva-
tions based upon electromagnetic potentials[15]. The KH
paper uses anETr -type of perturbation from the beginning,
but in this paper theATp-type will be preferred to treat the
optical response problem. If the classical relationp=mṙ
were used, the prefactor would be just 1, as at resonance, for
v=vlk. So the origin of the prefactor is a quantum mechani-
cal one. At this stage the long wavelength approximation is
used to bringAsr d outside the integral and the coordinater
now only points to the center of volume elementV.

IV. POLARIZABILITY TENSOR

The introduction of the polarizability tensor requires the
amplitude of the electric field to be specified. This tensor is
not an operator in the sense of quantum mechanics, unlike
the dipole operator. The first specification of the electric field
amplitude uses a single complex exponential of positive
frequency for its time dependence and is directly connected
to the quantum mechanical treatment of the preceding two
sections:

Esr ,td = Esr deivt. s26d

The derived matrix elementkl uWsr duklV can now be substi-
tuted into the expression for the dipole strength(13) to ob-
tain the single frequency spectral component contributed by
the pairlk:

kdlVstd = RefaJFsvdEsr deivtg,

aJFsvd = −
2q2

"
Svlk

v
DS kkur ullVkl ur uklV

T

vlk + v − igsvd
D . s27d

This polarizabilityaFsvd represents a single frequency po-
larizability. Electromagnetism, however, requires a real val-
ued electric field to be applied to the system. To satisfy that
condition, a cosine description will be used of the form

Esr ,td = Esr dcosvt =
1

2
feivt + e−ivtgEsr d. s28d

Although an arbitrary electric field is described by cossvt
+fd, only a time translation suffices to reduce the description
to the proposed one. The electric field(28) introduces an
inseparable positive and negative frequency exponential, as
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discussed before, and, according to Eq.(27), gives rise to the
following direct description of the dipole strength:

kdlVstd =
q2

"
Svlk

v
DReFS e−ivt

vlk − v − igs− vd
−

eivt

vlk + v − igsvdD
3kkur ullVkl ur uklV

TEsr dG . s29d

In this paper it will be assumed that the matrix elements
kkur ullV will be real, as is the case in conventional optics. At
first, the special resonant case ofv<vlk will be considered,
with only the first exponential inside the square brackets con-
tributing:

kdlVstd = Refds− vde−ivtg=RefaJRs− vdEsr de−ivtg,

aJRsvd = −
q2

"
Svlk

v
DF 1

vlk + v − igsvdGkkur ullVkl ur uklV
T

s30d

with v the positive frequency of the cosine form ofE. This
resonant polarizabilityallows the direct result(29) to be re-
written as

kdlVstd = Refds− vde−ivt + dsvdeivtg

=Ref„aJRs− vde−ivt + aJRsvdeivt
…Esr dg s31d

with Esr d denoting now a real quantity. Here, it should be
emphasized that

Refdsvdeivtg = Refd*svde−ivtg. s32d

This mathematical remark is crucial for the later discussion
about causality. Such “reset” enables now the introduction of
a complex description in agreement with the electromagnetic
convention(as used for the Larmor intensity in[1], but here
with negative exponential):

kdlVstd = RefaJMsvdEsr de−ivtg,

aJMsvd = aJRs− vd + aJR
* svd. s33d

The complex polarizabilityaM will be referred to as the
monochromatic polarizability. Implicitly it also implies that
in spite of the fact that only a single exponential has been
used in the description, the amplitude of the real cosine-type
wave can still be used. So,aM can now explicitly be written
as

aJMsvd =
q2

"
Svlk

v
D

3F Trsvd + iTisvd
fsvlk − vd2 + g2s− vdgfsvlk + vd2 + g2svdgG

3kkur ullVkl ur uklV
T,

Trsvd = 2vsvlk
2 − v2d − vlkfg2s− vd − g2svdg

− vfg2s− vd + g2svdg,

Tisvd = fvlk
2 + v2 + gs− vdgsvdgfgs− vd + gsvdg

+ 2vvlkfgs− vd − gsvdg. s34d

This expression for the monochromatic polarizability will be
the final one to analyze the influence of the frequency depen-
dence of the dampinggsvd upon the electromagnetic re-
sponse.

V. NUMERICAL EXAMPLES

On the basis of some numerical examples, the conse-
quences of a particular choice forgsvd will be investi-
gated. The frequency dependence for the damping will be
like gs−vd, since the quantum mechanics of the problem
filters out the negative frequency. All polarizabilities intro-
duced in the last section, will be written generically as

aJsvd =
q2

"
kkur ullVkl ur uklV

Tfsvd s35d

with the differences between the polarizabilities only arising
from the frequency dependent functionfsvd. First, mono-
chromatic frequency dependent functionsfsvd for commonly
used types of dampinggsvd will be considered. Thefsvd
assumes for defined parityg2s−vd=g2svd the form

fsvd = Svlk

v
DF Trsvd + iTisvd

fvlk
2 − v2 − g2s− vdg2 + 4vlk

2 g2s− vdG ,

Trsvd = 2vfvlk
2 − v2 − g2s− vdg. s36d

The defined parity reduces only the real partTrsvd. A change
of parity, on the other hand, affects only the imaginary part
Tisvd and leaves the following choices:

TE,isvd = 2gs− vdfvlk
2 + v2 + g2s− vdg,

TO,isvd = 4vvlkgs− vd, s37d

with the subscriptE referring to the even and the subscriptO
to the odd parity forgsvd. Notice that for both paritiesTisvd
is even. Apart from the even/odd parities, covering the body
of the present sign discussion, there is also a proposition[16]
to use an asymmetric choicefAsvd, putting gsvd=0 for v
.0. For completeness this option will be investigated as
well:

fAsvd = Svlk

v
DF2vsvlk − vd − g2s− vd + isvlk + vdgs− vd

svlk + vdfsvlk − vd2 + g2s− vdg G ,

s38d

with the subscriptA referring to this asymmetric choice. All
these monochromatic options should be compared to the
resonant type, denoted by the subscriptR:

fRsvd = Svlk

v
DF vlk − v + igs− vd

svlk − vd2 + g2s− vdG , s39d

the reference situation, but with ana priori already limited
range of applicability.
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To determine which of the options proposed has to be
preferred, the following four discriminating criteria will be
used: The expression offsvd should be free from singular
behavior; the expression should yield a positive absorbance;
the symmetry with respect tov should be correct; and cau-
sality should not be violated. The first round of investigation
concerns the “constant” dampinggsvd profiles shown in Fig.
1, which cover most of the current descriptions. In Figs. 2
and 3 are shown the functionsfRsvd [Eq. (39)] for the reso-
nant type,fE,Osvd [Eq. (37)] for the even and odd parity, and
fAsvd [Eq. (38)] for the asymmetric choice. Forvlk the value
1 will be taken and for the damping modulusugu the values
0.1 and 0.001. The latter value of 0.001 yields results closer
to experiment. The former value of 0.1 is taken to highlight
the details of and differences between the polarizabilities.

Near the resonance frequencyv=vlk none of the cases is
singular, provided thatgs−vlkdÞ0. A similar nonzerogs0d
makes that all cases, except for the odd parity one, become
singular in the real or imaginary part offsvd for v=0. In the
odd parity case the imaginary part then becomes discontinu-
ous. For the resonant type the singularity is even beyond
repair, because only a single pole arises from the prefactor
for v=0. As will be discussed later, in all other cases the
singularity can be made to disappear ifgs0d=0 is assumed
for a further smoothgsvd. Near the resonance frequency
there is hardly any difference between the separate cases. For
g=0.1, a pronounced difference occurs between the real
parts of fRsvd and the other cases treated.

Because of the singularities occurring atv=0 for this
“constant” gsvd profile, the near static region needs closer

examination. The external electric fieldEX applied to the
volume elementV, is given for any frequencyv by

EXsr ,td = EXsr ,vdcossvtd. s40d

Two mutually excluding descriptions are needed to derive
this electric field from the electrodynamic potentials(18) as

EXsr d = − = FXsr d,

EXsr ,vd = −
]

] t
AXsr ,vdsinsvtd

=− vAXsr ,vdcossvtd. s41d

Since the electric fieldEXsr ,vd is external, it can have any
shape as a function ofv. However, for a proper examination
of the spectral behavior of the optical response a constant
amplitudeEXsr ,vd should be taken. Therefore, the second
description in Eq.(41) (also responsible for the prefactor and
being undefined forv=0), should yield the same result in the
limit v→0 as is produced by the first(static) description in
Eq. (41). So this limit is the gradient of the scalar potential.
It is incorrect to add it as a special static contribution in the
static scalar potential gauge chosen. For very low frequen-
cies and starting fromt=0 there will be a time interval in
which cosvt will be virtually indistinguishable from 1. The
size of this interval will increase for decreasingv. It is un-
physical to assume that in this interval the dipole strength
kdlVstd will be different for a slowly oscillating field of fre-
quencyv and a static field oft=0 value. Therefore the re-
sponsekdsvdl has to be continuous inv for v=0. As a result
the polarizabilityasvd and the frequency dependent function
fsvd have to be continuous for all frequenciesv.

For the “constant”gsvd profile only the real parts of the
even and odd frequency dependent functions have a proper
static limit:

lim
v→0

ReffE,Osvdg =
2vlksvlk

2 − g2d
svlk

2 + g2d2 . s42d

Yet for truly static fieldsEX the total Hamiltonian has to be
Hermitian, all (quasi)energies will be real and onlyg=0 is
possible. Therefore, there can be but one static valuefS:

FIG. 1. “Constant”gsvd profile. Modulusugu=0.1 or 0.001.

FIG. 2. Constant frequency dependent damp-
ing: response functionsfsvd for resonant, asym-
metric, odd, and even cases. Frequencyv and
damping g in units of vlk. Strong dampingg
=0.1 fS static limit.
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fS=
2

vlk
. s43d

As a result, a discontinuity for this “constant”gsvd profile is
left. Although the discontinuity is small(not visible, e.g., in
Figs. 2 and 3), it remains unphysical.

For the investigation of the absorbanceA of energy by
the dipole from the field, Poynting’s theorem yields that this
absorbance is given by

A =
v

2
ImsEA

*Tpd =
v

2
EA

*TsImaJ0dEA. s44d

For ordinary dissipative systems, as treated here, this quan-
tity has to be positive in order not to violate conservation of
energy. It suffices to investigate isotropic polarizabilities.
Then it is immediately clear that the imaginary part of the
polarizability has to be positive. All cases considered are in
full agreement with this positive absorbance property of the
electromagnetic energy conservation law.

Electromagnetism demands that the real part of the polar-
izability has to be even and the imaginary part odd, as a
function of frequency. This arises directly from the electro-
magnetic requirement that

aJs− vd = aJ*svd s45d

for any polarizabilitya. It is clear from Eq.(33) that this
demand is obeyed by all monochromatic cases, regardless of
the frequency dependence ofgsvd. Only the resonant type is
not in agreement with this demand.

The last issue to be investigated concerns causality. To
that end the polarizabilities, or rather the frequency depen-
dent functions, have to obey the Kramers-Kronig(KK ) trans-
form. For that analysis it is better to use the direct precursor
of the KK transform:

fsvd =
1

ip
PE

−`

`

dv8
fsv8d

v8 − v
, s46d

whereP stands for the principal value. Mathematically, the
KK transform requires the frequency dependent function to
be analytical in the upper part of the complexv̂ plane. In

practice this means that the frequency dependent function
has to be free from poles in the upper half plane. First, the
frequency dependent functionfRsv̂d,

fRsv̂d =
1

v̂lk − v̂
, s47d

will be analyzed. The prefactor will be suppressed, since it
will turn out that its pole contributions can be ignored for the
monochromatic cases. Equation(46) for fsvd is correct only
if the following contour integral, using forfsvd the particular
form of fRsv̂d given in Eq.(47):

E
G

dv̂8
fRsv̂8d
v̂8 − v

= S 1

v̂lk − v
DFE

G

dv̂8

v̂8 − v
+E

G

dv̂8

v̂lk − v̂8
G

= fRsvdE
G

dv̂8

v̂lk − v̂8
s48d

becomes zero. Then, the functionfR complies with the KK
transforms. This happens only whenv̂lk has a negative
imaginary part. Taking causality and fulfillment of the KK
transform to be equivalent,fRsv̂d can be causal only ifv̂lk

has a negative imaginary part.
Two classes of poles have to be distinguished in the fre-

quency dependent functions belonging to thegsvd profiles of
Fig. 1. First, there are the poles occurring at the origin, be-
cause of the prefactor. These poles are located on the inte-
gration contourG and violate therefore the KK transform,
because in practice they still contribute half of their residue.
For this reason the resonant functionsfRsvd are not causal.
For the remaining optionsfEsvd, fOsvd, and fAsvd, there is a
double pole forv=0. If gsvd is continuous and differentiable
at v=0 andgs0d=0, as for the “variable”gsvd to be treated
next, the residues of these poles cancel. These poles will be
ignored here.

The remaining poles are all related to the choice ofv̂lk.
The discussion will now focus upon the following two de-
scriptions of the dipole strength and their corresponding fre-
quency dependent functions:

FIG. 3. Frequency dependent response func-
tions fsvd as in Fig. 2, but with weak damping
g=0.001.
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kdlstd = Ref„aJRs− vde−ivt + aJRsvdeivt
…Esr dg,

kdMlstd = Ref„aJRs− vd + aJR
* svd…e−ivtEsr dg. s49d

The first line describes the response in its direct form given
by Eq. (31), whereas the second, the monochromatic one,
gives the response after the reset given by Eq.(32). For the
direct description there are two different branches, the reso-
nant branch with its pole in the right half plane and the
antiresonant branch with its poles in the left half plane. This
situation is depicted in Fig. 4. Since a cosine type of descrip-
tion has been chosen for the applied field, it suffices to con-
sider only positive frequenciesv, where a positive damping
gs−vd will be taken for positivev. As can be seen from the
expression for the resonant polarizabilityaRsvd, Eq. (30),
there is only one relevant polev̂ for the resonant branch, at

v̂ = vlk − igs− vd. s50d

This pole is always in the lower half plane and this branch
therefore will always be causal. For the antiresonant branch
three options can be distinguished for the location of the
pole: in the lower half plane(odd parity), on the real axis
(asymmetric choice), and in the upper half plane(even par-
ity). From these three cases only the odd parity one is causal,
because it is the only case with the pole undoubtedly outside
the contourG.

The monochromatic description behaves differently. Now
there is a single frequency dependent function containing all
of the poles discussed for the direct form, but with the anti-
resonant even and odd poles reversed(Fig. 5). This results
straight from the reset enabled by Eq.(32) , because the
imaginary part of the dipole strength can actually be any-
thing. By this reset the antiresonant poles become their com-
plex conjugates. From the Cauchy-Riemann conditions it is
clear that either the function itself or its complex conjugate
can be analytic, but not both of them. This means that the
monochromatic description will always be at odds with the
direct one. Consider therefore the complex response, the
quantity between square brackets in Eq.(49). The direct de-
scription follows straight from Schrödinger’s equation and is
causal only for odd parity. The monochromatic description is
causal for even parity, but violates Schrödinger’s equation.
The odd parity wave function, however, increases exponen-

tially with time, being unphysical. The even parity wave
function has the correct damped behavior, but the necessary
reset exploits explicitly that the imaginary part of the dipole
strength has no physical meaning, according to Eq.(32). Yet
the monochromatic description is not wrong and meets the
demands from electromagnetism, requiring a single exponen-
tial description. The asymmetric choice will always violate
the KK transform.

A remark of a different kind is more serious however. It
has been assumed that the dampinggsvd is a piecewise con-
stant function of frequency. Inevitably it has still to be main-
tained thatgs0d=0, because it results from the constraints for

ĤDsvd and it cures the singularity problems forv=0 in all
monochromatic cases. Therefore,gsvd really has to be a
function of v. This means that the poles cannot have a fixed
location in the complex plane, but can at best be described as
“walking poles” in this picture(Figs. 4, 5). On the basis of

full knowledge ofgsvd, or ĤDsvd, complex analysis can be
done properly. This premise however, is beyond the scope of
this paper.

In a next round of investigation, the consequences of a
“variable” dampinggsvd profile will be shown. The model-
ing of this gsvd profile (Fig. 6) will be as follows:

gEsvd = gS 2vlk
2 v2

vlk
4 + v4D ,

FIG. 4. Behavior frequency dependent functions in the complex
plane. Resonant and antiresonant branches. Dash-dotted curves,
“walking pole” trajectories; open circles, poles.

FIG. 5. Behavior frequency dependent functions in the complex
plane. Monochromatic case. Dash-dotted curves, “walking pole”
trajectories; open circles, poles.

FIG. 6. “Variable” gsvd profile. Amplitudeg=0.1.
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gOsvd = − gS 2vlkv

vlk
2 + v2D . s51d

The asymmetric choicegAsvd follows gEsvd for negative
frequencies and is 0 otherwise. Also for the resonant type
gEsvd is used. The sign definition forgsvd is as described by
Eq. (1). In the modeling it has been used that at infinity there
is no damping. This assumption is only based upon the clas-
sical argument, that a mass point will not follow very fast
oscillations and becomes effectively static without energy
transfer. The frequency dependent functionsfA,E,O,Rsvd be-
longing to this “variable”gsvd profile are shown in Fig. 7.
The real part offRsvd clearly deviates from all other cases.
The real parts for these other cases are almost similar and the
same holds for all imaginary parts, including resonant. The
limiting behavior of the real and imaginary parts nearv=0
correctly yieldsfS, as given in Eq.(43), for all cases, apart
from resonant. The results shown before in Fig. 2, for a
“constant”gsvd, represent traditional Lorentz line shapes. As
compared to the Lorentzian, the distortion introduced by the
variablegsvd (51) is also small.

In Table I the major conclusions of this paper have been
summarized, in order to compare the different cases investi-
gated. The labelsE, O, A, R in the first column are the
frequency dependent function labels. The columns 2, 3, 4, 5

concern the frequency dependent behavior of the real and
imaginary parts of the polarizabilityasvd. For the two op-
tions used for thegsvd profile, constant and variable, the
symbols −, + indicate whether or not these polarizability
components become singular forv approaching 0. The,
used four times in the table indicates that additional com-
ment is required there, e.g., for the constantg profile, the
imaginary part of the odd parity polarizability is not singular
for v=0, but discontinuous. Columns 6 and 7 summarize
absorption related features. From the electromagnetic point
of view, the absorption is given by Eq.(44) and should be
positive. All cases obey this demand(column 6). Column 7
refers to the time dependent behavior of the excited state
fl

s1d. If this state is damped fort→`, it is shown in the table
by a +. The, for the asymmetric choice in column 7 origi-
nates from the fact that the antiresonant part is related to a
state with time independent modulus. The last two columns 8
and 9 summarize the behavior of the poles for the direct and
monochromatic descriptions, according to Eq.(49). The +
indicates that the antiresonant pole is outside the contourG
and the behavior has to be classified as causal. Since the
antiresonant pole for the asymmetric choice is on the real
axis, such classification cannot be given.

Regarding the table and requiring thatgs0d=0, so ignor-
ing columns 2 and 3, the best solution is given by the even
monochromatic one, in agreement with the original demands
from quantum mechanics. Neither the damping of the wave
function nor the issue of causality(columns 7, 8, and 9) can
be addressed directly in an experiment. When also these col-
umns 7, 8, and 9 are left out of consideration, it is not pos-
sible to choose between even and odd parity.

Finally, as in the original KH paper, the pair results can be
extended to treat approximately systems with an arbitrary
number of levels. To that end the contributions of all pairslk,
representing transitions from any occupied statek to any
unoccupied statel, have to be added to produce the sum-
over-states expression. For the induction rule given by

kdlVstd = Refdsvde−ivtg=RefaJGsvdEXsr de−ivtg s52d

the definition for the total polarizabilityaG, if the damping
gsvd is chosen to have even parity, becomes then

FIG. 7. Variable frequency dependent damp-
ing: response functionsfsvd as in Fig. 2 withg
=0.1. gsvd according to Eq.(51).

TABLE I. Performance of polarizability models using evensEd,
odd sOd, asymmetricsAd, or resonantsRd frequency dependence
fsvd. Columns 2, 3, 4, and 5, no singular behavior forv=0; column
6, absorbanceA.0, Eq. (44) ; column 7, excited statesfl

s1d

damped; columns 8 and 9, causality obeyed,D direct,M monochro-
matic, Eq.(49). Further, see text.

Constantg Variableg Causality

Resad Imsad Resad Imsad A.0 f damped D M

E + − + + + + − +

O + , + + + − + −

A − − + + + , , ,
R − − − + + + + +
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aJGsvd =
2q2

"
o
kl
Svlk

v
D

3Fvsvlk
2 − v2 − glk

2 d + iglksvlk
2 + v2 + glk

2 d
svlk

2 − v2 − glk
2 d2 + 4glk

2 vlk
2 G

3kkur ullVkl ur uklV
T, s53d

where the indiceskl of the dampingg have been restored.
Different from before, we have defineddsvd for this final
expression without minus sign, to be in agreement with ex-
isting definition schemes in optics. The near static behavior
is, of course, as treated before, but one warning should be
made. When measuring in the uv-visible range it is not dif-
ficult to find a low frequency “static” response. Yet this re-
sponse is seldom exactly the same as the result from a static
measurement. At least partly this discrepancy has to be as-
signed to the contribution of infrared vibrational levels, when
the volumeV is not occupied by a simple atom.

Some comment should be given as to the tensorial aspects
of the expressions for the polarizability. If some rotation is
applied to the system by means of a rotation matrixR, the
result

aJ8 = RaJRT=
q2

"
fRkl ur uklVRTgfRkl ur uklVRTgTfsvd

s54d

simply states that the rotated polarizability is the direct prod-
uct of the rotated matrix elementskkur ullV. As a result, always
a coordinate system can be chosen having one of the axes
coinciding with the matrix element. Then the polarizability
tensor has only one nonzero element somewhere on the di-
agonal. So a two-level description inevitably always ends up
in a highly anisotropic polarizability. Most atoms, neverthe-
less, respond isotropically for symmetry reasons. The same
symmetry however, gives rise also to degenerate levels.
When this degeneracy is taken into account, isotropic behav-
ior is again retained, using the summation in(53). In the
original KH paper only isotropic cases were studied. It is,
however, easy to go beyond this restriction(see also, e.g.,
[2,4] ) and to obtain the full tensor as well.

VI. CONCLUSIONS

The polarizability of a small arbitrary volume elementV
has been derived, using the expectation value of the dipole
strength, as in the original Kramers-Heisenberg paper. Dif-
ferent from KH, electromagnetic potentials have been used
for the field description and a separate dynamic dissipative

part for the effective single electron Hamiltonian. The latter
gives rise to a frequency dependent damping factor that is
zero in the static case, as is generally accepted now in most
phenomenological descriptions. This semiclassical nonrela-
tivistic derivation takes into account only damping by the
material system in the weak field limit. The use of potentials
results in a prefactor reciprocal inv, as discussed by Lamb
[15]. This prefactor arises from the use of Ehrenfest’s theo-
rem, but has hardly any visible consequences for the mono-
chromatic cases studied here. The potential description re-
quires a gauge transform to be chosen. In order to preserve
the static scalar potential commonly used in quantum me-
chanics, Poisson’s law has to be used to replace the Coulomb
gauge. This is possible only when the electromagnetic fields
used in the harmonic perturbation are external to the volume
V.

It has been shown that a reset of the antiresonant branch
of the polarizability is necessary to obtain results of the type
commonly used in electromagnetism and referred to as
monochromatic. This reset is mathematically correct, but
does not follow naturally from the quantum mechanics of the
problem. Explicitly, two types of frequency dependent damp-
ing profile, constant and variable, have been investigated.
Both profile types have been studied as even or odd symmet-
ric and as asymmetric monochromatic functions of fre-
quency. Results have been compared to the generally ac-
cepted resonant results. The treatment of the frequency
dependence of the dampinggsvd is also relevant for the
present discussion in the literature about the sign of the
damping for the antiresonant term[4–6]. Absence of near
static smooth behavior of the damping, as shown by the con-
stant damping cases, unavoidably ends up in unphysical be-
havior for that frequency range. Regarding only the mono-
chromatic polarizability for the variable damping profile,
there is no clear preference for any kind of damping symme-
try with respect to frequency. On the basis of purely theoret-
ical arguments, such as causality and energy conservation,
preference can be given to the even type of variable fre-
quency dependent damping. Such preference is in agreement
with thea priori assumptions concerning the behavior of the
wave functions. The odd parity is preferred in treatments
where the radiation field is part of the quantum mechanical
description. Radiation losses have not been taken into ac-
count and have to be added separately when necessary, e.g.,
classically by means of a Lorentz radiation damping term.
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