J. Pluid Mech. (1980), vol. 99, part 2, pp. 203-319 203

Printed in Greal Britain

Flow in the exit of open pipes during acoustic resonance
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Twente University of Technology,
Enschede, The Netherlands

(Received 9 July 1979 and in revised form 30 November 1979)

The low near the mouth of an open tube is examined, experimentally and theoretically,
under conditions in which resonant acoustic waves are excited in the tube at the other
end. If the edge of the tube is round, separation does not occur at high Strouhal
numbers, which enables us to verify theoretical predictions for dissipation in the
boundary layer and for acoustic radiation. Observation with the aid of schlieren
pictures shows that in the case of a sharp edge vortices are formed during inflow.
The vortices are shed from the pipe during outflow. Based on these observations a
mathematical model is developed for the generation and shedding of vorticity. The
main result of the analysis is a boundary condition for the pressure in the wave, to
be applied near the mouth. The pressure amplitudes in the acoustic wave measured
under resonance are compared with theoretical predictions made with the aid of the
boundary condition obtained in the paper.
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1. Introduction

The subject of this paper is the investigation of flow phenomena in open tubes when
acoustic waves are excited in these tubes near the lowest resonance frequency, In a
linear non-dissipative theory, such waves reach infinite amplitudes of velocity and
pressure. When viscous and thermal dissipation in the main wave and in the boundary
layers along the wall are taken into account, it appears that these mechanisms keep
pressures and velocities as low as observed in practice, only for very small amplitudes
of excitation. Hence nonlinear effects have to be included for larger excitation
amplitudes. With standing waves in closed tubes this has been done satisfactorily in
the theories by Chu & Ying (1963) and Chester (1964) which both, along different lines,
describe the formation of shock waves near resonance frequencies. If the excitation,
a piston for example, has a velocity of order § and the amplitude of the resulting
standing wave is of order ¢, the work done by the piston is of order d¢ whereas the
dissipation in the shock wave is of order ¢3, From this it follows that ¢ ~ 8%, This
conclusion, as well as other more detailed ones from the aforementioned theories, is
well confirmed by experiments, like those by Cruikshank (1972).

Nonlinearity has also been considered for propagation in open tubes. It appears
that nonlinearity in the wave becomes effective only when velocity and pressure
disturbances are taken into account to the third order in e, With closed tubes, this
happens already in the second-order theory. The reason for this is essentially that a
compression wave is reflected against an open end as an expansion wave. Nonlinear
steepening, with an associated increase in wave velocity, gained during one traverse
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Ficure 1. Sink.like inflow (a) and jet-like outflow (b) for open pipe. The boundary conditions
(1.1) (Van Wijngaarden 1968) are based on this flow behaviour.
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of the tube is therefore almost lost during the next. Against a closed end a compression
wave is rveflected as a compression wave again. The outcome of third-order theories
(Seymour & Mortell 1973; Jimenez 1973) is that € ~ 63, a result which is not confirmed
by the bulk of experimental results such as those of Sturtevant (1974). For sharp-
edged open pipes Van Wijngaarden (1968) drew attention to jet formation at the
mouth during outflow and boundary-layer separation during inflow as possible
dissipative mechanisms. Based on the flow behaviour sketched in figure 1, he proposed
as the condition for the pressure disturbance p —p, at the mouth of the pipe

p—py =0 atoutflow, (1.1)

d
P—Dy = og—ﬂpﬂug at inflow,

where p, and p, are the ambient atmospheric density and pressure, » denotes the
velocity, ¢ denotes time and ¢ is a constant. A theory along the lines of Chu & Ying
(1963) has been given in Van Wijngaarden (1968) in which (1.1) is imposed at the
open end of the tube. In retrospect this theory could have been much simpler, as
pointed outb later by Seymour & Mortell (1973), when it was realized that nonlinear
effects in the main wave appear only in third-order theory. In the case when boundary-
layer separation dominates we have to deal with a second-order problem. It is known
from experiments (Lettau 1939; Sturtevant 1974) that with very steep pressure
signals shock waves also appear in the open tube case, showing that eventually non-
linear distortion plays an important part. Yet the situation treated here, where the
boundary condition at the open end determines the flow, is far from clear. In Yan
Wijngaarden (1968) viscosity and thermal conduction are neglected.

Further experiments reported in Van Wijngaarden & Wormgoor (1974) show that
- the picture in figure 1 is too simple. It would do if the flow were quasi-steady. In
~ general, however, vortices are generated during inflow and expelled during outflow.
- This unsteady process affects the standing wave in the tube significantly. We decided
theretore to make more detailed observations of the flow behaviour near the mouth
and to attempt to explain these observations quantitatively.

To assess the role of viscous and thermal dissipation in boundary layers along the
wall we also considered tubes with round edges for which, at least at low amplitudes,
there 13 no boundary-layer separation at inflow or outflow. This type of standing wave,
entirely determined by dissipation and by acoustic radiation from the end, is discussed
in §2. In §3 the experimental set-up iz briefly described. In §4 results of the experi-
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ments are given in particular for aspects which concern vortex generation and vortex
trajectories near the open end. A mathematical model which is based on these obser-
vationsisgivenin § 5. Since for practical applications the main interestis in formulating
a boundary condition at the open end for the standing wave, the model is constructed
50 a8 to enable the calculation of the difference between the pressure in the wave near
the mouth and the ambient pressure. In § 6 the numerical scheme is described, with
the help of which the rolling up of vortex sheets coming from the sharp edges is
caleculated numerically. Numerical results for the trajectories of vortices and for
pressures near the mouth of an open pipe are given in § 7.

From the numerical results a boundary condition for the pressure at the open end
follows. A refinement is that this should be applied not at the end but at a section at
0:-61R (R being the tube’s radius) outward in the axial direction. This is implied by the
results of Levine & Schwinger (1948) who found that radiation of sound from an
unflanged pipe can be allowed for by lengthening the pipe by an amount 0:61.R (at
large wavelengths) in the caleulation, thereby imposing ambient pressure at this
(fictitious) open end. In the new boundary condition the time dependence of the
pressure p — P, is the same as that of the velocity «, and in amplitude p —p, ~ u%, a
conseqtience of potential theory. The work done by the gas leaving the pipe on the
ambient atmosphere follows from the proposed boundary condition. The mean energy
balance of the gas in the pipe states that this and the power dissipated by heat
conduction and viscosity together with the radiated acoustic power balance the work
done on the gas by the driving piston. The latter can easily be measured and in this
way & verification of the proposed boundary condition is possible.

The comparison between predicted and measured results is made at the end of §7
in terms of the three dimensionless parameters by which the physical mechanisms can
be characterized. They are listed here. The angular frequency Q, tube radius & and
viscostty » of the medium, in our case air, define a dimensionless number representing
the ratio between the thickness (v/Q)# of the boundary layer at the wall and the tube
radius £. It 1s denoted here by the abbreviation Sh, standing for ‘shear’,

Sh = (v/QR2)3. (1.2)

Then there is the ratio between local acceleration and convective acceleration. A
measure for this is the Strouhal number §¢. If the maximum velocity during a cycle
18 41, the pertinent Strouhal number here 1s

St = QR/4. (1.3)

IFor large frequencies and small velocity amplitudes 8t is large, and vice versa. Finally,
acoustic radiation is characterized by the ratio between tube radius and wavelength.
With velocity of sound a, in the ambient atmosphere, this ratio, denoted here by K, is

K= QR/a,. (1.4)
At the resonance frequencies at which our experiments are clone
K =nR/2L. (1.5)

In our experiments K is always a small number varying between 0-01 and 0:08. The
parameters Sh, St and K are measures of the principal mechanisms, viscous action,
nonlinearity and radiation, which we shall consider.
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2. Waves in tubes with a round edge

Standing waves in tubes with a round edge are primarily investigated here because
no boundary-layer separation occurs, at least at low amplitudes of the excitation.
The external work on the gas in the tube is partly dissipated. in the boundary layer
along the wall and partly radiated from the open end as sound. These can both be
predicted accurately with, for the dissipation, the restriction of laminar flow in the
boundary layer. Merkli (1973), in his extensive experimental study of acoustic oscilla-
tions in tubes, finds that turbulent flow in the boundary layer occurs when 4 /(Qv)*
exceeds a value of 8350-700, In terms of the dimensionless parameters used here
this means that laminar flow in the boundary layer may be assumed as long as
(StSh)™ < 500, say, a condition which is satisfied in most of the experiments
discussed later in this paper. A theory of boundary layers in oscillating flows has
besn given in Rayleigh (1945), Temkin (1968) finds for the dissipation P, in an
oscillating pipe flow, with Prandtl number Pr, ratio of specific heats v,

P, = }p, 02 Qu)t mR¥(1 + (y — 1)/ Pr}) L/R. (2.1)

This comprises the power dissipated by viscosily and by heat conduction. The sub-
seript w indicates wall friction, An additional, though small, contribution occurs in
the (smooth) flow around the edge. This has been calculated elsewhere (Disselhorst &
Van Wijngaarden 1979) and is omitted here, We cast (2.1) in a slightly different form.
Since we are dealing with resonance conditions we may eliminate L by using the
relation, valid at the lowest resonance frequency,

L = may /2. (2.2)

Further, in the linear acoustic approximation there exists between # and the maximum
pressure at the driving piston §,, the relation

Pp— Do = Pyoll. (2.3)

In an energy balance consisting of second-order terms in which we shall use (2.1),
we may use (2.3). Then we find, §% being defined in (1.2),

B, =" shp{r—Po) (1 7). (2.4)

The radiated acoustic power could be obtained from the results in the classic paper
by Levine & Schwinger (1948), dealing with sound radiation from an unflanged pipe.

For small values of K, defined by (1.4) and (1.5), the radiated power can more easily
be found as follows. The mass low from the mouth is

. _ m = pomh2g et
In the far field the mouth can be considered as the site of an acoustic monopole with
strength m. Using the expression (see, for example, Lighthill 1978, p. 22)
' - P =m?/dmp,a,
for the power radiated from a monopole, and adjusting for the proximity of a rigic
wall at distance d from the centre of the mouth using the factor

., 8in2Kd/R  sinmd/L
k= 1- SRR " 1+ =Y at resonance, (2.5)
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we find for the radiated acoustic power P,;, averaged over a cycle,

K R, — p,)?

P =
ac K Q Pg a’[} (2 y 6)
In resonant conditions the pressure at the piston
Dp—Po = (P — Do) €% (2.7)

is in phasef with the velocity of the piston when this is harmonic in time. We represent

the velocity of the piston here with the real part of Qe Then the work done by the
piston over a period of the motion of the piston is

B, = 5Q0(p, —pq) mR2, (2.8)
yielding the energy balance

B, =PB,+F, (2.9)

The resulting pressure amplitude of the wave motion, at given Q and &, can be
expressed in terms of the dimensionless quantity Q, defined as

Q (pﬁ .‘p[}) a’ﬂ
YL Qf

Using this definition and the expressions (2.4), (2.6) and (2.8), we obtain from the
energy balance (2.9)

(2.10)

) = [2\/2 (1+Z-——-) Sh+£{f—2}—l. (2.11)

Since we may use the relation (2.3) and the definition (1.3) of the Strouhal number to
write ¢} as
Q= R/St6, (2.12)

an alternative expression for (2.11) is

st= (27 (12 (1) ). 510

The relation (2.11) may be expected to hold for high values of St; more precisely,
when no boundary-layer separation occurs.

At large values of 4, corresponding to low values of St, the boundary layer separates
from the wall at outflow. In the limit of very low 8t the flow near the exit will look like
that sketched in figure 2. During inflow, when owing to the round edge no separation
takes plivce, Bernoulli’s theorem gives in the exit

D—Py = — 5Py (2.14)

During outflow jet formation occurs and the pressure approximately equals the
a,mblent pressure

p = pﬁ' (2.15)

T Of course there is & small phage lag due to viscosity and thermal conduetion. This leads for
small enough Sk to a negligible contribution to @ in (2.11),
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FIGUI;E 9, Quasi-steady flow in the exit of a pipe with a round edge. With infiow (a) Bernoulli's
~ law (2.14) holds; at outflow (b) the flow is jet-like due to boundary-layer separation.

With sharp edges the conditions (1.1) reduce for St - 0 to
' D—-=py = —pou? at inflow, (2.16)
p =p, atoutlow.

The difference between the right-hand sides of (2.14) and (2.16) is associated with
separation at inflow with the sharp edge and smooth flow with the round edge. The
result of calculations of the pressure in a standing resonant wave subject to (2.16)
at the exit is, as given in Van Wijngaarden (1968),

— 3

Pp—Fo (W-—-g) |sin Q¢|# sgn (sin Q). (2.17)
TP L

For a harmonic p,, — p, we defined 5, —p, as the maximum value. For a function like

the above which comprises higher harmonics as well, we define $,, — p, as 2% times the

root mean square of p,, —p, (which is, for a purely harmonic function, the maximum
value). This gives for (2.17)

ﬁ:p —~ Dy (3)%
o _L0_.9{~) . 2,18
. YDy L ( )
The corresponding value of @ is, using (2.10), found to be
' 4 (L\#

Q = - ("5) : (2.19)
Likewise, in the limit of small values of St for a round-edged tube, where (2.14) holds,
we obtain .

4./2 (L
= ("5) : (2,20)

- Experiments to be described in the next section were carried out with tubes both
with round and with sharp edges. At resonance the pressure at the piston was measured
and the experimentally obtained values of ¢, defined in (2.10), plotted for a number
of values of I, &ga}inst 8 /R. The results are shown in figure 3. We discuss first the results
for pipes with. a round edge. For each length I, K and Sh are constant when & varies
because they are determined by the resonance frequency (. For increasing &, St
decreases because 4 increases. The broken line on the left-hand side indicates, for
each L, the value of ¢ predicted by (2.11) whereas that on the right-hand side indicates
the relation (2.20) predicted by the theory for low 8¢. The measurements clearly show
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Fiaure 3. The quantity @ as a function of the dimensionless piston amplitude /R for different
lengths of the tube. () L = 1'1m; (b)) L = 1':8m; (¢) L = 3:3 m;(d) L = 63 m, Meagsurements:
Q, sharp edge; @,round edge. Theory: x x x, sharp edge, equation (2.19); ——~, round edge,
equations (2.11) and (2.20).

two regions. First, for 6/ F smaller than 10-2 ¢} is independent of ¢t and very close
to the theoretical value in (2.11) based upon boundary-layer dissipation and sound
radiation. For &/R larger than about 10-2, ¢ decreases with ¢ in a way which ig
tor larger & (small 8f) in good agreement with (2.20). From the agreement between
theory and experiment at low values of §/R, we may conclude that losses due to
boundary-layer dissipation and acoustic radiation are accurately described by the
relation for £, and £, in (2.4) and (2.6), whence we shall use these expressions with
sharp edges to separate radiation and boundary-layer digsipation from energy losses
of other nature,

For tubes with a sharp edge the results in figure 3 show that there are, in the range
of experimental parameters, no & values where ) is independent of &/R. At low
values of §/ R (high Sf) the experimental results fit neither with (2.11) (the measure-
ments suggest, however, that for very small §/ R, less than 10~ say, end losses become
negligible) nor with (2.19). At large §/ L (low St) a tendency to approach the asymptotic

T More precisely, ¢ does not depend on § for St larger than about 1, see figure 20, For @ ~ 102
this amounts to [ef. (2.12)] 0/R ~ 10-2,
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Fiaure 4. The dimensions of the sections of the open tube: (a) steel section;
(b) open end with sharp edge; (¢} open end with round edge.

Compressed air

7

FicurE 5. Construction of the piston sealing.

result (2.19) can be observed, confirming the experimental resultsin Van Wijngaarden
(1968) which were for relatively large ¢/R.

Accordingly, the aim of this paper is primarily to investigate in more detail the
behaviour of the flow near the exit in sharp-edged pipes for low values of §/R and
correspondingly large Strouhal number.

3. Experimental set-up

In this section we describe how the experiments were carried out. We used a tube
consisting of steel sections of 1:5 m length with an internal diameter of 0-11 m, as
shown in figure 4. The end sections, both with sharp and with round edges, were made
of Perspex. The radius of curvature of the smooth edge is 0-01 m. The oscillations in
the pipes were excited by a piston at the other end. The problem of making a good
sealing between the piston and the pipe wall was solved as shown in figure 5. The
fairly large clearancef is filled up with a kind of tyre which can be pressurized to an
absolute pressure of about 1-5 bar. This tyre, rubber with a thickness of 0-007 m,
is glued to the piston, as indicated in figure 5, and clamped to the end of the pipe.
The leakage through this sealing is negligible. Two other advantages of this construc-
tion are that there is only a small friction force between tube and piston and that the
construction poses no severe lining problems with the excitation, an MB electro-

1 Radial modes generated at the piston as a result of this clearance are strongly attenuated

because the cut-off frequency, of order ay/ R, is much larger than the regsonance frequency, given
m (2.2),
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dynamic shaker. With this device we could carry out experiments with piston ampli-
tudes & as small as 10— m without distortion by friction. The amplitude of the piston
was measured both with a Peekel inductive displacement inducer and with an accelero-
meter built in the excitator.

The pressure p,, at the piston was measured with a Bruel & Kjaer $” microphone
located at a distance of about 0-03 m from the piston. This distance is very small with
respect to the wavelength: the latter is four times the pipe length, which varies, see
figure 3, between 1 and 6 metres. Moreover there is an antinode of the pressure at
the piston under resonance. The pressure at 0:03 m from the piston therefore differs
negligibly from the pressure at the piston. The pressure at the exit of the pipe was
measured with the same type of microphone. Here a problem arises. In the most
simple kind of linear theory the pressure is zero at the open end. This however is not
true, because due to radiation from the open end (Levine & Schwinger 1948) the first-
order standing wave has a node not at the exit but at a distance 0-61 times the radius
outside the pipe. So, when one measures the pressure right at the exit, this signal
contains, apart from second-order quantities as in (2.14) and (2.16), a first-order
contribution. Bearing this in mind we acted as follows: with a microphone the pressure
was measured at various locations inside the tube, indicated with distance x from the
mouth. These measured results were Fourier analysed and the FFourier components
were determined as a function of 2. With help of these the pressure was extrapolated
to a value at & = 0-61R. In the calculation of the Fourier components the measure-
ments made near the exit were weighted less heavily than those further inside the
tube because of the inhomogeneity of the pressure across the pipe near the exit. The
velocity can be obtained from the pressure by the relation

ou  op
Pogi T o

between pressure and velocity, which is valid up to the third order in » because the
first-order du/ox is zero at the mouth.

Expervmental analysis of flow behaviour near the edge. In order to make the flow
near the edge at the exit visible we connected to the circular tube a two-dimensional
open end with the same area of cross-section. Visualization was accomplished with
schlieren methods, the necessary density gradients being realized by slightly heating
the upper of the two plates forming the two-dimensional channel. This set-up is shown
in figure 6. Because of the heating the streak line originating from the edge can be
made visible. For other streak lines thin hot wires may be used. Two versions of the
schlieren method were used, illustrated in figures 7 and 8. In both of these, each
point / in the object plane is illuminated by a narrow beam coming from the light source
- 8. The camera is focused on this object plane. This means that all rays from I come
together at one point of the film F, even if the beam is refracted, as in [j, by some dis-
turbance. In the first version, the conventional schlieren method, a knife edge ¥ is
placed in the image of the aperture 4, figure 7. In the second version there is instead
a Wollaston prism W and two polarization filters ('1 and G2. The Wollaston prism
splits a ray into two slightly diverging components. This means that the light falling
on a point I', see figure 8, stems from two different points I; and /[, in the object
plane. One is polarized in the plane of the paper of figure 8, the other perpendicular to
this. The filter (1 polarizes the light over an angle 37 with respect to the plane of the

=0 (3.1)
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Fiaure 6, Experimental set-up for the flow visualization.

Ficurm 8. Schematic diagram for schlieren method with Wollaston prism.

paper and renders the two components behind the prism of equal strength. The filter
G2 polarizes the two components in the same direction (perpendicular to 1), making
interference possible. This interference depends on the relative phase shift of the two
rays. In the absence of flow inhomogeneities this phase shift is determined by the
location at which the rays pass the Wollaston prism. If the prism has a neutral position
the interference is destructive for all wavelengths. By slight shifting of prism some
background colour can be established, as shown in figure 13, which has been obtained
in this way. An additional phase shift is established when the two rays pass through
different densities in I, and I,, This additional phase shift results in a change of colour
as shown in figure 13. This plate together with figure 12 obtained with the conventional

schlieren method will be discussed in the next section, which deals with experimental
‘results, ' -
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4. Experimental results

Experimental results obtained at resonance for the pressure at the piston were
shown already in figure 3, in terms of the quantity @ defined by (2.10). For the deter-
mination of the pressure near the exit, the pressures measured at various locations «
within the pipe were (in the way described in §3) extrapolated to the cross-section
v = 0:61 R outside the pipe; this because the first-order standing wave has a pressure
node there so that second-order quantities like p,u? are not drowned in the first-order
signal. Results of this are shown in figures 9-11. In figures 9(a)-(f), for St = 0-73
and K = 0-026, the pressure is plotted as a function of time during one cycle at various
locations x inside the tube. The pressure obtained by extrapolation for z = 0:61R is
represented, together with the velocity, in figure 9(g). There is clearly a significant
difference between the pressure right at the exit, z = 0, and at x = 0-61R. Also there
is, 1n the pressure at z = 0-61.F, apart from a contribution from a third harmonic
(for which we have no explanation), a tendency to variation like 42, as oceurring in
the boundary condition (2.16). A good agreement with (2.16) cannot be expected
because the Strouhal number 1s not really small. Another set of measurements of this
type is given in figures 10 (a)—(c), this for K = 0-026 and St = 0:29. In figures 10(a, b)
the measured profiles are shown, in figure 10{c) the extrapolation to 2 = 0-61 R and
the measured velocity. The same features as in the preceding figure can be observed.

This kind of experiment was also carried out with pipes provided with a smooth
edge. A result for K = 0:026 and St = 0-41isshown in figures 11 (a¢)~(¢). The ‘ Bernoulli
term’, —§p,u®, in (2.14) is clearly visible, although here also the Strouhal number is
too large for the flow to be quasi-steady. The main conclusion to be drawn from these
measurementsis that,if the boundary condition at the open end is appliedatx = 0-61R,
then, 1n that boundary condition, only effects other than acoustic radiation need to be
talken into account.

Both qualitative and quantitative information about vortex formation near the
edge, already observed by Van Wijngaarden & Wormgoor (1974), was obtained from
the schlieren pictures. In figure 12 (plate 1) is shown the rolling-up, during one cycle
of the flow, of the vortex sheet leaving the edge. These pictures have been made in
the two-dimensional end section described in § 3. In each picture the time at which
1t was taken 18 indicated as fraction of the period 7' of the motion. The velocity,
measured with hot wires, is given with the help of arrows, the length of which is a
measure for the magnitude of the velocity; the direction is as indicated by the arrows.
The process of formation of the rolled-up vortex and the subsequent expulsion of
this vorticity from the pipe can be followed in detail. The Strouhal number, based on
the distance between the plates, is large, St = 8.

Apart from the vortex formation several other interesting features of the flow are
visible. Notice first the inhomogeneity of the velocity distribution at the exit, At
t = 0-451" the flow near the edge is already directed outward, while nearer the centre-
line air 1s still flowing in. On the other hand, at { = 0-967 air is leaving near the centre
but already flowing in at the edge. Further, it is of interest to know whether or not
2 Kutta condition is satisfied by the flow at the edge. Detailed study of enlarged
versions of the pictures shown in figure 12 have led usto the conclusion that stream-
lines leave the edge smoothly in the sense that, at each instant, the streamline leaving
the edge coincides with the tangent to the edge.
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Fraurg 9. The pressure near the open end of the tube, p — P, P being the average value over a

period, as a function of time for the sharp edge. Measurements: (@) ©x = —~06R; (b) * = —4R;
(c)x = —3R;(d)x = —2R;(e)x = ~B;{fla = 0.(9) ¥ = 0-61E: ——, extrapolated pressure;
----- ', veloeity ; ———, pressure caleulated with (2,16). The pressure p —~ P is in N m~2, the velocity
in mg-i,

2000 (h)

P.

Fioure 10, The pressure near the open end of the tube, p -7, P being tho average value ovar a.
period, as a function of time (sharp edge). Measurements: (a) © = —3:61; (b)) * = —1-0R.
(eyx = 0-0R: , extrapolated pressure; «+-«-+, velocity; - - ~, pressure caleulated from (2,16).
The pressure p—7p 18 in N m~%, the velocity in m s,

The rolling-np process of the vortex sheet leaving the edge, is also very clearly
vigible in the pictures taken with help of the Wollaston prism. Figure 13 (plate 2)
shows a series of such pictures, From these and those shown in figure 12 it follows that
a vortex sheet leaves the edge and subsequently rolls up during inflow quite near the
edge. The displacement of the centre of the vorticity-containing region is small during
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2000 (a) 1000 - (b) 200

Ficure 11. The pressure near the end of the tube, p — P, P being the average value over a period,
for the round edge as a function of time. Measurements: (a) # = —384R; () z = ~ 1-4R.

() x = 0'6R: ——, extrapolated pressure; <+« , velocity ; ———, pressure calculated from (2.14)
applied both at inflow and at outflow, The pressure p —7 is in N m~2, the velocity in m s,
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Fraure 14. The conformal transformation of a semi-infinite channel
with two rolled-up vortices. (a) The z plane. (b) The { plane.

inflow but becomes large during outflow. It can be anticipated that this process will
have an important feedback on the amplitude of the standing wave in the tube. That
is why we tried to develop a mathematical model of the vortex motion near the
edge, on the basis of observations of which figures 12 and 13 are typical examples.

5. Mathematical model for the flow near the edge

We consider the two-dimensional flow near the edge as depicted in figure 14 (a).
The vorticity-containing region of the pipe has very small dimensions with respect
to the wavelength and the flow in this region may be considered as incompressible.
Viscosity 1s neglected, apart from its effect on boundary conditions (the Kutta
condition). In the channel, as z—> — 00, is a uniform time-dependent flow with velocity
u(t) which in our case will be specified later as 2 sin ¢, From the edges, z = 0 and z = B,
vortex sheets develop and gradually roll up after the motion has been started. Once
the location of the vortex sheets with their distribution of vorticity is known, the
velocity and pressure at each point of the z plane can be calculated. Iiventually our
aim is to calculate the pressure difference, Ap, say, between the wave i the tube as
2> —o0 and the outside atmosphere, insofar as this difference is caused by the
presence of the vortex sheets. To accomplish this we first map the z plane cut along

y = 0 (—oo<m<0),]_ 5.4)
y=UD5 (—~oo<::r:<0),J |

on & ¢ plane cut along the real axis from —ooto 1, by

2 = In(1-0)+) (5.2)
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The way in which this transformation maps the channel bounded by the lines given
in (5.1) on the { plane is indicated in figure 14 (b). In particular the region deep down
the channel, z - — <0, 18 mapped into { = 1 and hence the uniform flow in the z plane
becomes a source at { = 1 in the { plane. The vortex sheets coming from the edges at
z = 0 and 2z = ¢B are mapped as vortex sheefs coming from the origin in the { plane,
in complex-conjugate positions.

For the subsequent (numerical) calculation each vortex sheet is divided into a
finite number of discrete vortices. Let w be the complex potential due to NV vortices

and their images and the source at { = 1. The trajectory of any individual vortex
with circulation I', is given by

'cfz—n__ . fdw I', 1
@~ am {_Jé'“-ﬁ';riz—-zﬂ}’ (6.3
the bar denoting a complex conjugate. In terms of {, (5.3) reads
dz, (48 - Tduw Pn{ 11 (d%/dgA\\]
= (@) o i [T mlemg s ()| o4

Given the initial position of the vortices their motion can be calculated with help of
this relation. However, the total vorticity I',,, is not a constant because vorticity

is continuously generated at the edges. The rate at which vorticity is generated at
each of the edges z = 0, 2 = ¢B, is given by

= =3l(&), (@) )\(E),- &) ) o

In this relation the subscripts + and — refer to the sides of the vortex sheet leaving
the edge. The resulting potential w must satisfy the Kutta condition at the edges.

Because the transformation (5.2) is singular at these points, this means in the { plane
that

dw '
7= 0 at ¢=0. (6.6)

Because the problem of determining w and the geometry of the vortex sheets can
not be solved analytically, recourse to numerical computation must be made for this
and similar problems. For a survey of the various numerical methods used we refer to
recent papers by Clements & Maull (1976) and Saffman & Baker (1979). Owing to the
disceretization of the vortex sheets, errors are introduced numerically which accumulate
and eventually tend to destroy a coherent flow pattern. This tendency of the collection
of discrete vortices to form together a chaotic flow pattern becomes stronger when
the number of vortices is increased. However, limiting the number of line vortices,
we succeeded in calculating the pressure difference Ap, as a function of time in the

case of a harmonic motion 4 sint in the tube for £ > 0. Details of thig calculation are
given in the next section.

6. Numerical calculation of the motion of the vortex sheet

Kach of the vortex sheets is represented by N discrete vortices of circulation
[.m=1,...,N.Inthe {plane, the vortices belonging to the sheet coming from z = ¢B
are situated at § = {,; those belonging to the sheet coming from { =0 are at { = {,.
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(a) | (b)

!

— 3
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FigurE 156. The mapping of a vortex sheet with a parabolic shape
in the § plane (a); (b) the z plane.

The first vortex, with circulation I';, is distributed along a small vortex sheet, the
shape of which is chosen in the { plane as

E = E+in = Egn?/ni+1n. (6.1)

This parabolic shape has been chosen because, upon transformation to the z plane,
see figure 15, it resembles quite closely the shape of the beginning of the vortex sheet
observed in the experiments as shown for example in figure 13, This representation
of the first vortex by a sheet element with a continuous vorticity distribution, vy say,
enables us to apply the relation (5.5) for vortex generation in a convenient way. In
a first approximation the vorticity is constant along the sheet element in the physical

plane. dince 1t follows from (5.2) that near { = 0 we have dz/d{ = — {B/2m+ O({?),
the vy distribution is linear in the { plane,

Y = EE = *a“ga“g = ¢{+ 0(L?), (6.2)

¢ being a constant. Assuming the curvature of the sheet element to be small,

. gﬁ { 772: (6'3)
we can write
d' = 21y d (6.4)
1 |

H being the height (see figure 15) of the element.

In the ¢ plane the resulting potential is due to a source of strength .5, when u is
the velocity far inside the pipe, the N —1 discrete vortices with strength I, their
images with strength — I', and finally the small vortex sheets near { = 0. The resulting
complex velocity is, with use of (5.2) and (6.4), found to be given by

dw 1-{[uB . ¥ { 1 1 } 2117 J‘H Ny 1
va— o { 1, P ——a sereeemems : rron ; 6.5
dz {;B ..1 - g n§2 " g“”' gn g"" gﬂ, H? - I g""‘ 7/ 52??2/77%- ( )

The Kutta condition (5.6) requires that dw/dz be finite at { = 0. Evaluating the
quantity in square brackets for { — 0 gives, using the approximation (6.3),

N
wB—~i 3 T, (i....-i.)__ﬁl= | (6.6)
n =2 g'n, gn
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Using (5.5), (6.8), {6.5) and (6.6), the rate of vorticity shedding is found to be

dPtut 47?'1:_1_ —24_ % P 'i(g'n @#Eég{ % &_?’(Cntgn)r
(i B H? | B n=232 ng-n 772 B 'nn2Bz gng?t |

=

(6.7)

If the values of I', and £, (2 < n < N)and I'; and H are given at time ¢, their values
at ¢+ Ai are calculated in three steps as follows:

(i) Caloulation of the displacement of each vortex during the mterval Af. For this
we use (5.4) and obtain, with help of (5.2),

-gﬂ,(t)[ uf) ¥ I‘{ t 1 }
L LT=5,0 LO-50 LH-L4

| 1
7, (6 AL) = Z,(t) + At
l=t=ﬂ

o', | 2 1
“2°B |G- Z.0) T En (1) (1 §n(t))}] | (6.8)

In calculating the contribution from the small vortex sheet with circulation I'; we
hawe taken its centre {; at 9, = 2/3H.

(ii) Shift of the indices of the vortex. Tlus was done as follows:
Ty now = Doy prey (0= 2,3,...), (6.9)

gn,new = gn—-l, prevs

where ‘prev’ is shorthand for previous.
(ili) Calculation of the new vortex sheet circulation I') and its height H. The
vorticity in I', is generated at a rate dT'y,/dt, so

d Ftnt
di

I, = At (6.10)

Using (6.7) gives for H the relation

U n UEn— Qn, 2&2 w N T, ‘?:((gﬂ--gn) .
—HE — u-d:?TAt [E *n,éﬂ B2 gn gn 772 ﬂé gn gﬂ }] (6.11)

From the Kutta condition (6.6) we finally obtain 1.

In order to avoid an excessive growth of computation time as the calculation
proceeds, an amalgamation process wagintroduced. The physical observation inspiring
this is (see figure 13) the formation during each ¢ycle of two spiral structures one with
positive and one with negative vorticity. These spirals keep their identity, more or
less, and may be represented by a single line vortex each, We chose the vortex with
index N, as amalgamation centre. This means that as a rule 1ts index was not shifted
but that I'y, _; was absorbed by it. This continues until I'y _, changes sign, in which
case all indices are shifted. In absorbing I'y, _, the centre {y moves to a new location
., news determined in our calculation in such a way that the potential far away inside
the tube is least affected. The region far inside the tube 1s mapped in the ¢ plane
(see figure 14) near { = 1, where the potential due to a vortex with circulation I', in
¢, is, together with its image in £, given by

Els

1-¢ [ 1 1
W Qﬂalnlf--fl (1-¢) 27 (lm{:ﬁ 1—-—§ﬂ)' (6.12)
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Using this relation, the amalgamation was done such that the total circulation remains
constant,

FND, new — PNU,prev + PNn—l, prev: (6*13)

and that the right-hand side terms in (6.16) remain unchanged,

PND, new &8 (1 '_ gNu, new) = PN{,, prev 1'g (1 o gNn, prev) T PNU—-L prev 48 (1 R gND--l, prev)

1 1 | 1
FNu: new {1 — } - PND, prev {“ T }

gNu: new 1 - gNn, new 1~ gNu, prev 1 gNﬁ, prev

1 1
+ Ty { 1 L ..__.._}. 6.14
Mo~ prev 1 — (:Nﬂ—l, prev 1— gNu—l, prev ( )

The potential w in the z plane and its derivative dw/dz given by (6.5) may with
the help of Bernoulli’s theorem be used to calculate the pressure far inside the tube,
z > —o0, { - 1, and far outside the tube, z -+ c0, { - o0, Taking the difference be-
tween these pressures and subtracting the pressure difference that would occur if

no vortices were present, we obtain for the pressure difference due to the presence of
the vortex sheets

p X d 5
Apy = X [ p{arg (1~ Eu)), (6.15)
n=1

The equations (5.2), {6.6), (6.8), (6.9), (6.11)—(6.14) form a set with which a numerical
simulation of the vortex shedding from the edges can be performed. We restrict
ourselves here to low amplitudes of . Then the displacement of a vortex during a
cycle ig relatively small and the vortex remains in the vicinity of the edge. This permits

the approximation

6 <. (6.16)

Introducing this approximation enables to scale our variables in such a way that the
scaled variables?, {, Z, H, @, I and A, are of unit order. The appropriate sealing is

F=0t, = (%ffg, 7= (QB/0)} (z/B), I = (QB/Q)}H,

(6.17)
@ =u/f, AP, = (QB/0)(Ap,/pQ2B%), T = (QB/9)*I/QB*
With (6.16) and (6.17) the equations become
( |
~ S 9,
=~ (6.18)
PR ¢ S R N o~ &8
I = anpf] 5 if L-m;u;%(u b G )} 6.19
?Eg " g:? gr‘;‘ ?'E ?33-‘3 ? E?L g?l ( )

-3 il '; ' 6,20
f? n = 2 L fﬂ Z*n ( )

e 2 {
“‘%”*Pﬂ{m - ﬂ, n=12,.0N; (621)
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(a) (D)

Fiaur® 16. Some similarity solutions. (a) a = 0, N = 14, A7 = 0-1; () a = 05, N =14,
AT=01; (a=1, N=14, Ar=01; (d) =1, N =8, At = 0:08; (¢) « = 1, N = 10,
AT = 0:08; (f) o = 1, N = 20, AT = 0-05. The indicated length scale is 0:1 per division.

Apy(F+380) = — | 3 B+ - B Fu®]; (6.9
Fn, now = Fﬂ_a, pm’l if sgn fNﬂ = §gn FNG_I, n=23,..N~1;
fm'nﬂw == fn__l, pva otherwise, n=23,..,N+1;
Niew = Nprey+1 i sgn fNu F 52N fﬁyﬂ_l; (6.23)

lﬂ%Ng. new — FN{,-—L DI‘EV+ P-‘Nﬂr prev
( _7?)1\’0. new (Fﬁ)ﬁu—-l, prev - (Pﬁ)Nu, prey i SET FNG = Sgn FNU—-l' (6-24’)
(TE)xy, new = (18 )yer, prov+ (T

)
We applied the system of equations (6.22)—(6.28) first to compute a similarity solution.
To obtain such a solution we write

i = [=, gﬂ = {F1, Z, = h, 25, Al = AT, Fﬂ = gnZﬁE, | Af, = Mibs, (6.25)

¢ R

et

.Ng, BIrey

2

where «, f#,, f, and f, are constantg. Substituting the relations (6.25) gives for 8,, 5,
and £,
pr=51+a), B, =31+4a), [5=4$(5c—1) (6.26)

This result is in agreement with the similarity solution for the vortex sheet coming
from a flat plate given by Prandtl, see Prandtl (1961). Since eventually we want to
compute the solution for # = —sin#, we took as starting condition the similarity
solution for & = 1. The equations (6.18)-(8.24) were integrated with the substitutions
(6.25) and (6.26) until steady values for s,,, b, and M resulted.

" "N

7. Results

In figure 16 some results of the calculation of the similarity solution are shown.
Unfortunately the motion became chaotic when N or A7 were too large and also when
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Fraurm 17. The evolution of the vortex sheet for N, = 20. At the left the amalgamated vortex
centres are shown. In the enlargement at the right the first N, vortices are shown. The indicated
length soale is 1 per division. Open and closed circles indicate that the vortex strength is negative
and positive respectively. (@) T = 26; (b)) { = 27; (¢) I = 28; (d)§ = 29; (e} t = 30; (f) I = 31;
(q) I = 32.

ATt was too small. We did not try to improve on this, because our interest in the
similarity solution mainly is to use it as a start for the calculations with % = —sin/.
The results of these calculations are shown in figures 17 and 18. In the former the
displacement of the vortices is shown during the fifth period after the start and N, = 20.
At the left-hand side the positions of amalgamated vortices of negative strength
(open circles) and positive strength (closed circles) are shown, whereas at the right-
hand side a more detailed picture is shown of the development near the edge of the
plate. If we compare these results with the experimental observations in figures 12
and 13, we see that there is qualitative agreement. The diameter of the vortex structure
that is shed off is 0-9 whereas the scaled diameter in figure 12 is 0-73, which is about
20 9, less.

In figure 18 the scaled pressure AP, defined in (6.21), is given as a function of 4,
also defined in (6.21), for the case # = —sini. After one cycle the pressure A, was
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- Ficore 19, Near the edge of a circular pipe the flow 1s effectively two-dimensional and can bo
compared with the flow between parailel plates if the distance B between the plates is replaced
by the tube radius R, as follows from & momentumn balance of the fluid contained in Z.

already nearly periodic and the numerical results shown in figure 18 are during the
third and fourth cycle for N, = 20. The results are obtained for Ny = 5, 15, 17, 20. It
follows from these results that A, is almost exactly in phase with #. The relation
between Af and 4 appears to be given by AP, = 0-6i, or, using (6.21),

Ap, = OBPQB(Q/QB)% w, T (7.1)
the velocity at the exit being given by
' - w = 4 sin L1, (7.2)

Relation (7.1) results from vortex formation and shedding near the edge of each
- of the plates in figure 14 and drawn again in figure 19, when the velocity far from the
edges is fisin Q. Since this vortex formation takes place in a small region near the
edge, indicated schematically in figure 19, we can apply (7.1) equally well to vortex
formation and shedding at the edge of a cylindrical tube, provided we use the appro-
priate velocity near its edge as a base, To find this we note that in the channel the
complex conjugate velocity is, from (6.7),

dw u

5T (7.9

1 In Disgelhorst (1978) a numerical factor of 0-8 is used instead of 0-6. Thix wos baged on the
average of the results for Ny = §, 15, 17 and 20. If we weight tho results for N, = 5, which
means & very small number of vortices, less heavily and let those for N, = 18, 17 and 20 mainly
determine the result, the relation (7.1) represents the computed results bottor.



Flow in open pipes during acoustic resonance 313

when, far from the edges between the plates, the velocity is  in the x direction. From
the mapping relation (5.2) it follows that near z = 7B we have

B
: LS ] Y N Smminienby IRy 2
Z = z—1B 55 (7.4)

whence, in the neighbourhood of the edge of the upper plate in figure 14,

3
W~ W=u{f( Z)} . (7.5)
The velocity in the x direction is, with Z = X 417, near the edge in the channel
U = u{B/4n(~ X}t (7.6)

In analogy with (7.6) for a channel we write, for the velocity in a circular pipe in the
vicinity of the edge,
U = u{gR/4m(— X)}t, (7.7)

— X being the distance along the pipe from the edge. In (7.7) ¢ is a constant to be
cdetermined. Potential flow theory gives that with a potential ¢Z* for the two-
dimensional flow around the edge Z = 0 of a plate is associated a suction force

I = }mpc? (7.8)
(Batchelor 1967, p. 412). Hence associated with the potential W in (7.5) is a suction

force 1p,u*B per unit width of the plate. For a circular pipe a momentum balance of
the fluid enclosed by the surface 2 indicated in figure 19 gives for the suction force

2mRE = Lpu*nk®
or I = Ipu?R. (7.9)

Then, if the potential in the vicinity of the edge is represented, according to (7.5) and
(7.7), by .

R
g—-—-(—-Z)} , (7.10)

v

W=u{

it follows from (7.8) and (7.9) that ¢? = 2R /7, and accordingly ¢ = 1. Hence the
expression for Ap, valid for a pipe is obtained from (7.1) by replacing B by B:

Ap, = p—p, = 0-6p, QR(®/QR)}u . (7.11)

This relation is the main theoretical result of the present study and provides, for high
Strouhal numbers, a relation between the excess pressure, as caused by vortex
formation, and the velocity at the mouth of the pipe.

The validity of (7.11) might be verified by measuring both p — p, and % at the open
end. However, at the low values of 4 for which (7.11) may be expected to hold, pressure
measurements are very difficult to perform, In order to verify whether (7.11) may be
used to predict the amplitude of standing waves, we proceeded as follows. Using the
symbols P, P, and F, introduced in (2.4), (2.6) and (2.8), representing respectively
boundary layer dissipation, radiated acoustic power and work performed on the gas
in the pipe by the piston, and in addition denoting the mean value of Ap,u with
Pyngs the mean energy balence can be written as

‘Pﬂ“Pend = P!H+Pﬂ-ﬁ‘ (7.12)
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Srngnd

Fiaune 20. The dimensionless loss at the open end of a tube as a funetion of the Stroubhal number
Solid lines, theoretical results, 4, L = 1*1m; X, L = 1'8m; O, L =33m; @, L = 6:3m,

We render P dimensionless by writing

P = P/mp, Q3R5. (7.13)

Then, from (2.3), (2.4), (2.6), (2.8), (7.12) and (7.13), 1t follows that in dimensionless
form the energy balance reads

- fo-—po} ﬁSh( yu-l) 1
2 oo - .?j — . """"1'__ —_  — . .
St2P 4 {2 e 31{ BT 1+WF?~% chI{ (7.14)

The quantity (P, —2q)/Poa, 20 was defined as ¢ in (2.10) in the course of the dis-
cussion of waves in pipes with a round edge. In that case there is at high Strouhal
numbers no vortex formation at the mouth and consequently P, tends to zero for
St > 1 and round edges. Indeed, the relation (2.11) 1s recovered from (7.14) when we
put the right-hand side equal to zero. Ifor all the experiments in which ¢) was measured
(see figure 3) 8i2 P,,, was determined by inserting @ in (7.14). The results have been
plotted in figure 20 against S, both for sharp-edged and smooth-edged pipes of
various lengths, Bearing in mind that all experimental observations apply to reso-
nance, it follows that with each value of the pipe length L a different value of Sh and
of K is connected. Ifor sharp edges, however, it appears from the results in figure 20
that the relative influence of K and Sh is only slight. For round edges the influence is
somewhat larger. This follows also from (7.14) because if we insert typical values
obtained from figure 3 into (7.14) it appears that with sharp edges the terms with
Sh/K and with <K in (7.14) are significantly smaller than the remaining ones, whereas
with round edges the terms on the right-hand side of (7.14) are of the same order of

magnitude. This explaing why with sharp edges the Strouhal number almost com-
pletely determines the flow.,
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We compare the experimental results for P, 4, as shown in figure 20, with the
available theoretical predictions, For low Strouhal numbers 8t <€ 1,

S2 P, 4 ~ %St"‘l for the sharp edge, (7.15)
St2 Py, 4 ~ -?;1-7;;5’15“1 for the round edge. (7.16)

These relations are readily obtained from the boundary conditions for quasi-steady
flow formulated in (2.14) and (2.15) for smooth edges and (2.16) for sharp edges,
therein writing » = @ sin Qf for . These lines are drawn in figure 20. It follows that
the experimentally obtained values for P,,, tend to be along these lines, although
probably in our experiments the Strouhal numbers were not small enough to fulfil
the conditions underlying (7.15) and (7.16).

We are in particular interested in the limit of high Strouhal numbers where we
derived the result (7.11) for sharp edges. Using this at the open end of the pipe for
the pressure difference above the ambient atmosphere in calculating the mean value
of (p—p,) u at the open end, we obtain, with a view to (7.13),

St2 Py, = 0-38t-% for S8t> 1 and the sharp edge. (7.17)

This relation is drawn also in figure 20 and it is seen that the experimental points
are situated very close to the curve predicted by (7.17). One can conclude that down
to St ~ 1 the relation (7.4), or in dimensionless form (7.17), predicts the amplitude
of the standing acoustic wave very well. In view of the assumptions made in the
mathematical model, in particular the assumption [cf. (6.22)] that the vortices are
not far from the edge, this is a surprisingly broad range of validity. Finally, for smooth
edges we infer from the assumption that no vortex formation or separation takes
place at high St, that

St2P, ..~ 0 for St> 1 and the round edge. ('7.18)

This also is very well confirmed by the experiments.

In order to illustrate the results in another way, we have prepared from the experi-
mental data and from the known expressions (2.4) and (2.6) for P, and B, the figures
21(a, b), which represent in an overall way the relative importance of wall dissipation,
acoustic radiation and end losses.t At the constant value 00031 of the quantity
(v/a, R {1+ (y — 1)/ Pr¥}, these figures illustrate how an L/E—~¢8/R plane can be
divided into regions where one of these mechanisms dominates. In preparing these
plots analytic curves fitting the data in figure 20 have been used.

8. Comparison with other work

Relation (7.11) has been found, here for a range of parameters in which vortex
formation at the open end dominates. We briefly discuss some other boundary
conditions which have been proposed in addition to those mentioned in previous
sectiong. Jimenez (1973) and Seymour & Mortell (1973) assume at the end section
that the relation D—py = — il (8.1)

exists between the excess pressure and the velocity. The outcome of the analysis is

t We are indebted to one of the referecs for suggesting that we draw up such a plot.
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Figure 21 (a). For legend see page 317.

that, if radiation losses as expressed by (8.1) dominate, j ~ 4% and 4 ~ 8%, In experi-
ments no support for the assumption (8.1) has been found. Nonlinear distortion has
been found to lead to formation of shock waves (Lettau 1939; Sturtevant 1974) but
then the energy-consuming mechanism is dissipation i the shock wave and not
radiation. -

As a generalization of (2.16) Sturtevant & Keller (1978) subjected, in their analysis,
the motion in an open pipe to the end condition

P—Py= —EpeU(1+ky,) abinflow,
P—Py = —2pouN1+ ko) at outflow. (8.2)

Introduction of experimentally obtained data for the pressure at the piston in analytic-
ally obtained results, gave a relation between k;, and k,y, both for round and for
sharp edges. With round edges they found only small deviations from Bernoulli’s
law, ky, and &,,; less than unity, confirming our findings for round edges. For shary
edges they found values for £y, and k,,; of 3 and larger. They envisaged vortex
generation as a possible cause for these large losses but rejected this on the basis of
~an order-of-magnitude argument leading to a too small value, 0-2, of k,,;. In this
argument one ring vortex is supposed 1o be generated during the part of a cycle in

which fluid is ejected from the open end. Between the circulation, I' say, and w they

take the relation N
I~ uR (8.3)
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Frgure 21, Division of the d-L plane into three regions in which wall dissipation, end losses or

acoustic radiation is the most important mechanism at resonance; (v/a,R) {1+ (y—1) /Pri}
= (:0031. (@) Sharp edge; (b) round edge.

~ based on data for a low accelerated impulsively to velocity «. From our experiments
it appears that during outflow two vortex rings rather than one are formed. Apart
from this, it may be questioned whether (8.3) holds for periodic flow. If we employ
the ‘slug model’ found to be useful (Maxworthy 1977) in similar circumstances, then

=2 f al (8.4)

[ being the instantaneous length of the ejected slug of fluid. Thus we find for v = 4 sin ¢
that N
I' = a1, (8.5)

and, using this instead of (8.3) in the calculation by Sturtevant & Keller (1978) in
which the &, th fraction of the ejected energy is concentrated in a vortex ring, we find

knut ~ i‘SSt_l. (8.6)

In the experimental example, used by Sturtevant & XKeller, St—1 = 2:48, and k,,; 18
therefore, according to (8.6), much larger than 0-2. Also we can, assuming the end
loss (271/Q) Py, q [Pang defined in (7.12)] in a period of the motion to be equal to the
energy in a vortex ring, ask how according to (7.11) T is related to 4. We obtain

' ~ QR2(D/QR)Y, (8.7)
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which differs considerably from (8.3). The present authors are therefore not convinced
by the argument in Sturtevant & Keller (1978) to the effect that end losses cannot be
attributed to vortex formation. In fact our present work shows that in a certain
range of parameters the generation and rolling-up of vortex sheets does explain
observed end losses.

9. Conclusion

In this paper we have considered energy-consuming mechanisms in resonant
oscillations in open acoustic tubes. The power loss by boundary-layer separation or
vortex formation appears to depend strongly on the exit geometry. We have investi-
gated in particular the case of sharp edges at small wave amplitudes or, equivalently,
relatively high Strouhal numbers. As visualized in figures 12 and 13 an important
mechanism is the generation and shedding of vortices. This process has been simulated
numerically, which leads to a prediction [equation (7.11)] of the pressure excess at the
open end and therefore enables prediction [equation (7.17)] of the power loss. The
agreement with experimental results turns out to be very satisfactory, both in regard
to the power loss and also for the structure of the shed vortices. In the case of round
edges it is found both from analysis and experiment that viscous and thermal cissi-
pation, and to a lesser extent acoustic radiation, determine the flow at high Strouhal
number. At large amplitudes, which means low Strouhal numbers, the amplitude can
be fairly well predicted by adopting the model of jet formation at outflow and sink-
like flow at inflow, The experimental results show that in particular the boundary
condition proposed in Van Wijngaarden (1968) as a result of this model, gives a good
prediction of the power loss at the open end. Finally it should be noted that it remains
desirable to extend the numerical calculations to moderate amplitudes of the wave
motion, for which the assumption { ~ 322 [cf, (6.22}] 1s no longer valid. The success
obtained here for high Strouhal numbers with the model developed in §5 makes it
likely that in that way a better prediction than (7.11) may be obtained when Si-*
is of order one and larger.
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