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Abstract: We theoretically investigate quantum interference of two single photons at a lossy
asymmetric beam splitter, the most general passive 2⇥2 optical circuit. The losses in the circuit
result in a non-unitary scattering matrix with a non-trivial set of constraints on the elements
of the scattering matrix. Our analysis using the noise operator formalism shows that the loss
allows tunability of quantum interference to an extent not possible with a lossless beam splitter.
Our theoretical studies support the experimental demonstrations of programmable quantum
interference in highly multimodal systems such as opaque scattering media and multimode
fibers.
© 2016 Optical Society of America

OCIS codes: (270.5290) Photon statistics; (270.2500) Fluctuations, relaxations and noise; (230.1360) Beam splitters.

References and links
1. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature

409, 46–52 (2001).
2. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing

with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
3. M. Reck, A. Zeilinger, H.J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,”

Phys. Rev. Lett. 73, 58–61 (1994).
4. A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon waveguide quantum circuits,”

Science 320, 646–649 (2008).
5. R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, D. Boiron, and C. I. Westbrook, “Atomic Hong-Ou-Mandel

experiment,” Nature 520, 66–68 (2015).
6. T. A. W. Wolterink, R. Uppu, G. Ctistis, W. L. Vos, K.-J. Boller, and P. W. H. Pinkse, “Programmable two-photon

quantum interference in 103 channels in opaque scattering media,” Phys. Rev. A 93, 053817 (2016).
7. H. Defienne, M. Barbieri, I. A. Walmsley, B. J. Smith, and S. Gigan, “Two-photon quantum walk in a multimode

fiber,” Science Adv. 2, e1501054 (2016).
8. J. R. Petta, H. Lu, and A. C. Gossard, “A coherent beam splitter for electronic spin states,” Science 327, 669–672

(2010).
9. C. Lang, C. Eichler, L. Steffen, J. M. Fink, M. J. Woolley, A. Blais, and A. Wallraff, “Correlations, indistin-

guishability and entanglement in Hong-Ou-Mandel experiments at microwave frequencies,” Nat. Phys. 9, 345–348
(2013).

10. R. W. Heeres, L. P. Kouwenhoven, and V. Zwiller, “Quantum interference in plasmonic circuits,” Nat. Nanotechnol.
8, 719–722 (2013).

11. J. S. Fakonas, H. Lee, Y. A. Kelaita, and H. A. Atwater, “Two-plasmon quantum interference,” Nature Photon. 8,
317–320 (2014).

12. T. Roger, S. Vezzoli, E. Bolduc, J. Valente, J. J .F. Heitz, J. Jeffers, C. Soci, J. Leach, C. Couteau, N. I. Zheludev,
and D. Faccio, “Coherent perfect absorption in deeply subwavelength films in the single-photon regime,” Nat.
Commun. 6, 7031 (2015).

13. L. Baldacci, S. Zanotto, G. Biasiol, L. Sorba, and A. Tredicucci, “Interferometric control of absorption in thin
plasmonic metamaterials: general two port theory and broadband operation,” Opt. Exp. 23, 9202–9210 (2015).

14. S. M. Barnett, J. Jeffers, A. Gatti, and R. Loudon, “Quantum optics of lossy beam splitters,” Phys. Rev. A 57,
2134–2145 (1998).

15. T. Gruner and D.-G. Welsch, “Quantum-optical input-output relations for dispersive and lossy multilayer dielectric
plates,” Phys. Rev. A 54, 1661–1677 (1996).

                                                                                                  Vol. 24, No. 15 / 25 Jul 2016 / OPTICS EXPRESS   16440

#264459 http://dx.doi.org/10.1364/OE.24.016440 
Journal © 2016 Received 4 May 2016; revised 3 Jun 2016; accepted 4 Jun 2016; published 12 Jul 2016 



16. J. Jeffers, “Interference and the lossless lossy beam splitter,” J. Mod. Opt. 47, 1819–1824 (2000).
17. S. Scheel, L. Knöll, T. Opatrný, and D.-G. Welsch, “Entanglement transformation at absorbing and amplifying

four-port devices,” Phys. Rev. A 62, 043803 (2000).
18. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by

interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
19. A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8, 285–291 (2012).
20. I. A. Walmsley, “Quantum optics: Science and technology in a new light,” Science 348, 525–530 (2015).
21. C. C. Gerry and P. L. Knight, Introductory Quantum Optics (Cambridge University, 2005).
22. B. Huttner and S. M. Barnett, “Quantization of electromagnetic field in dielectrics,” Phys. Rev. A 46, 4306–4322

(1992).
23. J. Zmuidzinas, “Thermal noise and correlations in photon detection,” App. Opt. 42, 4989–5008 (2003).
24. P. L. Kelley and W. H. Kleiner, “Theory of electromagnetic field measurement and photoelectron counting,” Phys.

Rev. 136, A316–A334 (1964).
25. W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a

broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
26. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.

32, 2309–2311 (2007).
27. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing

in complex media,” Nature Photon. 6, 283–292 (2012).
28. S. R. Huisman, T. J. Huisman, S. A. Goorden, A. P. Mosk, and P. W. H. Pinkse, “Programming balanced optical

beam splitters in white paint,” Opt. Express 22, 8320–8332 (2014).
29. S. R. Huisman, T. J. Huisman, T. A. W. Wolterink, A. P. Mosk, and P. W. H. Pinkse, “Programmable multiport

optical circuits in opaque scattering materials,” Opt. Express 23, 3102–3116 (2015).
30. J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda,

M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A.
Laing, “Universal linear optics,” Science 349, 711–716 (2015).

31. N. C. Harris, G. R. Steinbrecher, J. Mower, Y. Lahini, M. Prabhu, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. En-
glund, “Bosonic transport simulations in a large-scale programmable nanophotonic processor,” arXiv:1507.03406
(2015).

1. Introduction

Multiphoton quantum correlations are crucial for quantum information processing and quantum
communication protocols in linear optical networks [1, 2]. Beam splitters form a fundamental
component in the implementation of these linear optical networks [3]. They have been realized
in a variety of systems including integrated optics, atomic systems, scattering media, multimode
fibers, superconducting circuits and plasmonic metamaterials [4–11]. In plasmonic systems,
beam splitters have been used to generate coherent perfect absorption in the single-photon regime
[12, 13] and on-chip two-plasmon interference [10, 11]. Inherent losses in optical systems are
unavoidable and can arise from dispersive ohmic losses or from imperfect control and collection
of light in dielectric scattering media. The effect of losses in beam splitters has attracted a lot of
theoretical attention due to the fundamental implications of unavoidable dispersion in dielectric
media [14–17]. However, all these studies have dealt with either symmetric (equal reflection-
transmission amplitudes for both input arms) or balanced (equal reflection and transmission
amplitudes in each arm) beam splitters. In this article, we analyze the most general two-port
beam splitter which can be lossy, asymmetric and unbalanced, and find the non-trivial constraints
on the matrix elements. We derive general expressions for the probabilities to measure zero, one
or two photons in the two outputs when a single photon is injected in each of the two inputs.
Further, we comment on the possible measurements of quantum interference through coincidence
detection in a Hong-Ou-Mandel-like setup [18]. The presented theoretical analysis establishes
that losses allow programmability of quantum interference, which is required in a variety of
useful quantum information processing and simulation protocols [19, 20].

A general two-port beam splitter or a linear optical network consists of two input ports a1,a2
and two output ports b1,b2 as schematized in Fig. 1(a). The linearity of the beam splitter gives
rise to a linear relation between the electric fields, E(bi) = Âi, j si jE(a j). The complex numbers
si j are the elements of a scattering matrix S and correspond to the transmission and reflection
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Fig. 1. (a) depicts the schematic of a general 2⇥2 beam splitter with input ports a1 and a2
and output ports b1 and b2. The transmission-reflection amplitudes for light in input ports
a1 and a2 are t-r and t-r respectively. (b) illustrates the output power at ports b1 (orange
curve) and b2 (blue curve) as phase q is varied between 0 and 2p at input port a1. The phase
between the peak amplitudes a is related to the phases of the reflection coefficients f1 and
f2 as a = f1 +f2.

coefficients with s11 = t exp if11, s22 = t exp if22, s12 = r exp if12, and s21 = r exp if21, where
t,t,r,r are positive real numbers. The phases fi j are not all independent and can be reduced to
f1 and f2 which correspond to the phase differences between transmission and reflection at a
given input port. This gives the scattering matrix

S =


t reif2

reif1 t

�
. (1)

Without further constraints on the matrix elements, the scattering matrix S need not be unitary.
Special cases include the balanced beam splitter where t = r; t = r and the symmetric beam
splitter where t = t;r exp(if2) = r exp(if1).

The six parameters in the scattering matrix are required to describe the behavior of the output
intensities. Figure 1(b) illustrates the intensities |E|2 at b1 and b2 as the phase of the input
coherent field at a1 is varied (with phase at a2 fixed). For a general beam splitter, the amplitudes,
intensity offsets and phase offsets at the two output ports, b1 and b2, can be completely free. Of
particular interest is the value of the phase a between the output peak intensities, which is related
to the phases of the reflection coefficients f1 and f2 as a = f1 +f2. This phase a determines the
visibility of quantum interference between two single photons, as discussed in the subsequent
sections.

2. Energy constraints

The beam-splitter scattering matrix in Eq. (1) is defined without any constraints on the parameters.
However, the physical constraint that the output energy must be less than or equal to the input
energy imposes restrictions on the parameters as derived below. Let us consider the scenario
where coherent states of light with fields E1 and E2 are incident at input ports a1 and a2
respectively. Energy conservation at a lossy beam splitter imposes the restriction that the total
output powers in the arms should be less than or equal to the input,

|tE1 +reif2E2|2 + |rE1eif1 + tE2|2  |E1|2 + |E2|2. (2)
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The two input coherent state fields can be related through a complex number c = |c|e�id as
E2 = cE1, which gives

tr cos(f2 �d )+ tr cos(f1 +d ) (1� t2 � r2)+ |c|2(1� t2 �r2)

2|c| . (3)

As the inequality holds for all values of |c|, it should also hold in the limiting case where the
right hand side of Eq. (3) is minimized. This occurs for |c|2 = (1� t2 � r2)/(1� t2 �r2). Upon
substitution, the inequality becomes

tr cos(f2 �d )+ tr cos(f1 +d )
q
(1� t2 � r2)(1� t2 �r2). (4)

The above inequality can be algebraically manipulated using trigonometric identities into the
following form

q
t2r2 + t2r2 +2trrt cos(f1 +f2)sin(d +qoff)

q
(1� t2 � r2)(1� t2 �r2), (5)

where qoff = arctan[(tr cosf2 + tr cosf1)/(tr sinf2 � tr sinf1)]. As the inequality holds for all
values of d , it should hold in the limiting case of the maximum value of the left hand side which
occurs when d +qoff = p/2. Substituting a = f1+f2 results in the following inequality in terms
of the reflection and transmission amplitudes

q
t2r2 + t2r2 +2trrt cosa 

q
(1� t2 � r2)(1� t2 �r2). (6)

For the lossless beam splitter, the equality results in a = p . For a symmetric balanced beam
splitter, i.e. t = r = t = r and f1 = f2, Eq. (1) reduces to the well-known beam splitter matrix [21]

Ssym-bal = t


1 i
i 1

�
(7)

The inequality in Eq. (6) corresponds to the most general constraint on the parameters of a
passive lossy asymmetric beam splitter. For the sake of clarity, we will discuss the case of a
lossy symmetric beam splitter with t = t and r = r. In this scenario, the inequality has three
parameters

���cos
a
2

���
1� t2 � r2

2tr
. (8)

This inequality results in an allowed range of a between [p � Da
2 ,p + Da

2 ]. Figure 2 depicts
the tuning width Da as a function of reflectance r2 and transmittance t2. The lossless beam
splitters lie on the diagonal line that separates the forbidden and allowed regions. Evidently,
lossless beam splitters have Da = 0, i.e. the phase a between the output arms is fixed and equals
p . With increasing losses in the beam splitter, Da increases and achieves a maximum value of
2p , i.e. complete tunability of a . The beam splitters that exactly satisfy t + r = 1 (red dotted
line) correspond to those lossy beam splitters that allow completely programmable operation
with maximum transmission or reflection. In the following section, we discuss the effect of this
tunability on the quantum interference between two single photons incident at the input ports of
the general beam splitter.

3. Quantum interference of two single photons

The quantum-mechanical input-output relation of the lossy asymmetric beam splitter can be
written using the scattering matrix in Eq. (1). From this point, we explicitly take into account the
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Fig. 2. The figure depicts the allowed tunable width Da around p . The anti-diagonal line
(r2 + t2 = 1) separating the allowed from the forbidden region corresponds to lossless beam
splitter. The red dashed line is the curve t + r = 1. Any lossy circuit that satisfies t + r  1
allows complete tunability of a 2 [0,2p].

frequency dependence that is required to calculate the Hong-Ou-Mandel interference between
single photons incident at the input ports.


b̂1(w)
b̂2(w)

�
=


t(w) r(w)eif2

r(w)eif1 t(w)

�
â1(w)
â2(w)

�
+


F̂1(w)
F̂2(w)

�
. (9)

The operators âi(w) and b̂i(w) are creation-annihilation operators of photons at the input and
output ports, respectively. The canonical commutation relations of these operators are satisfied
even in the presence of loss.

[âi(w), â j(w 0)] = 0; 8i, j 2 {1,2}, (10)

[âi(w), â†
j(w

0)] = di jd (w �w 0); 8i, j 2 {1,2}, (11)

[b̂i(w), b̂ j(w 0)] = 0; 8i, j 2 {1,2}, (12)

[b̂i(w), b̂†
j(w

0)] = di jd (w �w 0); 8i, j 2 {1,2}. (13)

The introduction of noise operators F̂i(w) in Eq. (9), which represent quantum fluctuations, are
necessary in the presence of loss as reported earlier [14, 22, 23]. We assume that the underlying
noise process is Gaussian and uncorrelated across frequencies.

The commutation relations of the noise operators can be calculated as the noise sources are
independent of the input light, i.e.

[âi(w), F̂j(w 0)] = [âi(w), F̂†
j (w

0)] = 0; 8i, j 2 {1,2}, (14)
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which results in

[F̂i(w), F̂j(w 0)] = [F̂†
i (w), F̂†

j (w
0)] = 0; 8i, j 2 {1,2}, (15)

[F̂1(w), F̂†
1 (w

0)] = d (w �w 0)[1� t2(w)�r2(w)], (16)

[F̂2(w), F̂†
2 (w

0)] = d (w �w 0)[1� t2(w)� r2(w)], (17)

[F̂1(w), F̂†
2 (w

0)] =�d (w �w 0)[t(w)r(w)e�if1 +r(w)t(w)eif2 ], (18)

[F̂2(w), F̂†
1 (w

0)] =�d (w �w 0)[t(w)r(w)eif1 +r(w)t(w)e�if2 ]. (19)

To calculate the effect of the quantum interference, let us suppose that a single photon with
frequency w1 is incident at input a1 and another single photon with frequency w2 is incident at
input a2. The two photons together have a bi-photon amplitude y(w1,w2) which results in the
following input state,

|Yi= |11,12i=
Z •

0
dw1

Z •

0
dw2y(w1,w2)â

†
1(w1)â

†
2(w2)|0i. (20)

The bi-photon amplitude y(w1,w2) is normalized as
R •

0 dw1
R •

0 dw2|y(w1,w2)|2 = 1, ensuring
that the state vector |Yi is normalized.

In a lossy beam splitter, there are in total six possible outcomes with either two, one or
zero photons at each output port. The probabilities of these outcomes can be represented as
expectation values of the number operators for the output ports, defined as

N̂i(w) =
Z •

0
dw b̂†

i (w)b̂i(w) i 2 {1,2}. (21)

Assuming that detectors have perfect efficiency, the probabilities can be calculated using the
Kelley-Kleiner counting formulae [24] and can be grouped into 3 sets:

• No photon lost

P(21,02) =
1
2
hN̂1(N̂1 �1)i, (22)

P(01,22) =
1
2
hN̂2(N̂2 �1)i, (23)

P(11,12) = hN̂1N̂2i (24)

• One photon lost

P(11,02) = hN̂1i�hN̂1(N̂1 �1)i�hN̂1N̂2i, (25)

P(01,12) = hN̂2i�hN̂2(N̂2 �1)i�hN̂1N̂2i (26)

• Both photons lost

P(01,02) = 1�hN̂1i�hN̂2i+ hN̂1N̂2i+
1
2
hN̂1(N̂1 �1)i+ 1

2
hN̂2(N̂2 �1)i (27)

Of particular interest is the coincidence probability P(11,12) which decreases to zero at a lossless,
symmetric balanced beam splitter, which is known as the Hong-Ou-Mandel effect [18].
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Fig. 3. (a) The variation of the maximal coincidence rate maxa P(11,12) in a general beam
splitter is shown as a function of reflectance and transmittance. The solid curves in (a) and
(b) correspond to cross-sections along different imbalance values t2/r2. The dashed curve
in (a) and (b) is the coincidence probability in a lossless beam splitter. The dotted curve in
(a) and (b) depicts the coincidence probability of beam splitters with t + r = 1.

Under the assumption that coefficients t,r,t,r are frequency independent, the expectation
values of the number operators are

hN̂1i= t2 +r2, (28)

hN̂2i= t2 + r2, (29)

hN̂1(N̂1 �1)i= 2t2r2[1+ Ioverlap(d t)], (30)

hN̂1(N̂1 �1)i= 2t2r2[1+ Ioverlap(d t)], (31)

hN̂1N̂2i= t2t2 + r2r2 +2trtrIoverlap(d t)cosa, (32)

where Ioverlap(d t) is the spectral overlap integral of the two single photons at the input ports of
the beam splitter, given as

Ioverlap(d t) =
Z •

0
dw1

Z •

0
dw2y(w1,w2)y⇤(w2,w1)exp[�i(w1 �w2)d t]. (33)

Usually, in experimental measurements of quantum interference, the time delay is varied to
retrieve the Hong-Ou-Mandel dip in the coincidence rates.

For the case of a symmetric beam splitter as discussed in Fig. 2, the probabilities of different
outcomes are

P(11,12) = t4 + r4 +2t2r2Ioverlap(d t)cosa, (34)

P(21,02) = P(01,22) = t2r2[1+ Ioverlap(d t)], (35)

P(11,02) = P(01,12) = t2 + r2 � t4 � r4 �2t2r2{1+ Ioverlap(d t)[1+ cosa]}, (36)

P(01,02) = 1�2(t2 + r2)+ t4 + r4 +2t2r2{1+ Ioverlap(d t)[1+ cosa]}. (37)

The coincidence probability P(11,12) varies sinusoidally with a . For a lossless and balanced
beamsplitter, a = p and the coincidence probability is zero, corresponding to the well-known
Hong-Ou-Mandel bunching of photons. However in a lossy beam splitter, the coincidence
probability between perfectly indistinguishable photons varies with a from (t2�r2)2 to (t2+r2)2,
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Fig. 4. The figure depicts the coincidence probability P(11,12) as a function of delay time
(d t) at various values of a in a lossy symmetric balanced beamspliter with t = t = r = r
= 0.5. The coincidence probability P(11,12) varies like a cosine with a for perfectly
indistinguishable photons d t = 0. The conventional Hong-Ou-Mandel dip (red curve) is seen
at a = p which becomes a peak at a = 0 or 2p . The triangular shape of the Hong-Ou-Mandel
dip or peak is a consequence of the photon pair generation process.

assuming Da = 2p . Further, it is interesting to note that the probability of photon bunching at the
first output port, P(21,02) or the second output port, P(01,22) is independent of a .

Figure 3(a) depicts the maximal coincidence rate maxa P(11,12) which occurs at a = p �
Da
2 ,d t = 0 as a function of transmittance t2 and reflectance r2. The cross-sections along the

solid lines in Fig. 3(a) are shown in Fig. 3(b) in corresponding colors. The cross-sections
correspond to different imbalance ratios t2/r2. A common feature among all the curves is a
point of inflexion along the dotted curve and termination on the dashed curve. In the limiting
cases of t2/r2 ! • or t2/r2 ! 0, the two points coincide. The dashed curve corresponds to the
coincidence probability in a lossless beam splitter, which varies as (1�2t2)2. The dotted line
corresponds to the coincidence rate at largest value of t2 that allows full programmability, i.e.
Da = 2p .

4. Hong-Ou-Mandel like interference

In an experiment, the quantum interference can be measured by performing a Hong-Ou-Mandel-
like experiment, where the distinguishability of the photons is varied by adding a time delay d t.
Let us suppose that the two photons are generated using collinear type-II spontaneous parametric
down conversion in a periodically poled potassium titanyl phosphate (PPKTP) under pulsed
pumping (the center frequency and Fourier-transformed pulse width of the pump are wp and tp
respectively). The resulting bi-photon amplitude of the idler (wi) and signal (ws) photons is [25]

y(wi,ws) = sinc

 
kp � ki � ks � 2p

L
p

L
2

!
exp
⇢
�
h
(ws +wi �wp)

tp

2

i2
�
, (38)

where L and L are the poling period and length of crystal, respectively. From the above bi-
photon amplitude, the overlap integral Ioverlap(d t) can be calculated, which gives the coincidence
probability P(11,12). Figure 4 elucidates the expected Hong-Ou-Mandel-like curve at various
values of a for a symmetric balanced beam splitter with t = r = r = t = 1/2. The delay time
is normalized to the coherence time Dtc of the single photons generated by the source. For a
= p , a Hong-Ou-Mandel like dip (red curve) is evident which slowly evolves into a peak as a
approaches 0 or 2p , indicating increased antibunching of photons. The sinusoidal variation of
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representative contours at values indicated beside them. The black dashed curve represents
t + r = 1. The lossless beam splitters have DP(11,12) = 0, while the balanced lossy beam
splitters satisfying t + r < 1 have maximal programmability with DP(11,12) = 2.

the coincidence probability P(11,12) for perfectly indistinguishable photons, i.e. d t = 0, with
the phase a indicates the programmability of quantum interference at these beam splitters.

5. Discussion and conclusions

Through the above theoretical analysis of a general two-port circuit, we demonstrated that losses
introduced in a beam splitter allow the tunability of a and hence of the quantum interference. We
can quantify the programmability of quantum interference by defining the parameter DP(11,12)
which is the programmable range of coincidence probability, defined as

DP(11,12)⌘
maxa P(11,12)�mina P(11,12)

P(11,12;distinguisable)
, (39)

where, the numerator is the difference between maximum and minimum coincidence probabilities
(see Fig. 4) with indistinguishable photons (d t = 0) and the denominator is the coincidence
rate with distinguishable photons (d t ! ±•). Figure 5 depicts DP(11,12) as a function of
transmittance and reflectance with few representative contours shown in red. The lossless beam
splitters, which lie on the diagonal separating the allowed and the forbidden regions, show no
programmability. Maximal programmability of DP(11,12) = 2, is allowed by lossy balanced beam
splitters for perfectly indistinguishable photons. The black dashed line in the figure corresponds
to t + r = 1. While Da = 2p in the region t + r < 1, the programmability is not uniform. This
arises from the imbalance t2/r2 6= 1 in unbalanced beam splitters.

Our theoretical calculations explain the recent experimental demonstrations of programmable
quantum interference in opaque scattering media and multimode fibers [6,7]. In these experiments,
two-port circuits were constructed using wavefront shaping that selects two modes from an
underlying large number of modes [26,27]. Light that is not directed into the two selected modes
due to imperfect control or noise can be modeled as loss. Typical transmission of ⇠10% in
opaque scattering media ensures the full programmability when a balanced two-port circuit is
constructed [28, 29].

In summary, we theoretically analyzed the most general passive linear two-port circuit from

                                                                                                  Vol. 24, No. 15 / 25 Jul 2016 / OPTICS EXPRESS   16448



only energy considerations. We establish the programmability of quantum interference between
two single photons in the context of recent experimental demonstrations in massively multichan-
nel linear optical networks. These networks with the envisaged programmability of quantum
interference has the potential for large-scale implementation of quantum simulators and pro-
grammable quantum logic gates. In this context, the theoretical analysis presented in this article
establishes that imperfections or dissipation in optical networks, which are unavoidable in exper-
iments, are not detrimental. In fact, the losses introduce a novel dimensionality to the networks,
in that the quantum interference is programmable. The theoretical framework presented here can
be extended to model larger programmable multiport devices [30, 31], which are required in a
variety of useful quantum information processing and simulation protocols [19, 20].
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