402

INFORMS Journal on Computing
Vol. 8, No. 4, Fall 1996

0899-1499/ 96 /0804-0402 $01 25
© 1996 INFORMS

A Branch-and-Bound Algorithm for Single-Machine
Earliness-Tardiness Scheduling with Idle Time

J. A. HOOGEVEEN / Department of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands, Email address: slam@uwin.tue.nl

S.L. VAN DE VELDE / Department of Mechanical Engineering, University of Twente, P.O. Box 217, 7500 AE Enschede,
The Netherlands, Email address: s.l.vandevelde@wb.utwente.nl

(Received: February 1992; revised: September 1995; accepted: October 1995)

We address the NP-hard single-machine problem of scheduling
n independent jobs so as to minimize the sum of « times total
completion time and B times total earliness with B > «, which
can be rewritten as an earliness-tardiness problem. Postponing
jobs by leaving the machine idle may then be advantageous.
The allowance of machine idle time between the execution of
jobs singles out our problem from most concurrent research on
problems with earliness penalties. Solving the problem to opti-
mality poses a computational challenge, since the possibility of
leaving the machine idle has a major effect on designing a
branch-and-bound algorithm in general, and on computing
lower bounds in particular. We present a branch-and-bound
algorithm which is based upon many dominance rules and
various lower bound approaches, including relaxation of the
machine capacity, data manipulation, and Lagrangian relax-
ation. The algorithm is shown to solve small instances with up
to 20 jobs.

Recently, we have seen much interest in machine schedul-
ing models that penalize both early and tardy completions
of jobs. We refer to Baker and Scudder™ for an overview.
These types of models are supposed to capture the just-in-
time concept, whose basic premise is to reduce costly inven-
tories by enforcing on-time deliveries throughout the entire
manufacturing process. In theory, on-time deliveries may be
achieved by allowing machine idle time. In practice, how-
ever, idle time is highly controversial, because of lost pro-
duction capacity, for instance.

In this paper, we consider an NP-hard single-machine
earliness—tardiness problem in which the insertion of ma-
chine idle time is allowed, and present a branch-and-bound
algorithm for its solution. As we will see later, the possibility
to leave the machine idle poses a computational challenge
and affects significantly the design of a branch-and-bound
algorithm.

We consider the following problem. Aset $ = {J;, ...,]}
of n independent jobs has to be scheduled on a single ma-
chine that is continuously available from time zero onward.
The machine can handle at most one job at a time. Job], (j =
1,..., n) requires a positive integral uninterrupted process-
ing time p, and should ideally be completed exactly on its
due date d,. A schedule specifies for each job], a completion

Subject classifications: Single-machine scheduling.
Other key words.

time C, such that the jobs do not overlap in their execution.
The order in which the machine processes the jobs is called
the job sequence. For a given schedule, the earliness of J, is
defined as E, = max{0, 4, - C]} and its tardiness as T, =
max{0, C] - d]}. In addition, we define maximum earliness as
Epax = MaXy<,<, E, and maximum tardiness as Tna, =
max; <, I, Accordingly, J, is called early, just-in-time, or
tardy if C, <d, C,=d, or C, > d, respectively. The cost of a
schedule o is the weighted sum of total completion time and
total earliness, that is,

flo)=a X, C,+B X E,

=1 =1

where a and B are given positive weights with g > a.
Without loss of generality, we also assume a and 8 to be
integral and relatively prime. We are interested in the case
B > q, since insertion of machine idle time may be advan-
tageous only in this case. The cost function f(co) arguably
measures inventory costs in a machine scheduling environ-
ment: total completion time measures the work-in-process
inventories, and total earliness measures the storage inven-
tories due to early completions. The problem, referred to as
problem (P), is to find a feasible schedule o that minimizes
f(a).

Problem (P) is NP-hard. By definition we have that T, =
C,+E —dforj=1,...,n and the cost function can
therefore alternatively be written as

(@—y) 2 C+(B-a) X E+y

=1

2 T, +y Z d,
=1 =1 7=1
for any 0 < vy < a. Garey, Tarjan, and Wilfong' prove that
minimizing this cost function with y = « and 8 > a is
NP-hard.

Problem (P) was identified by Kanet and Christie"® and
studied by Fry and Leong.!® They formulated it as an inte-
ger linear problem and used a standard code to find an
optimal schedule. Not surprisingly, this method already
requires excessive computation times for small instances.

Earliness, tardiness, machine idle-time, branch and bound algorithm, Lagrangian relaxation.

copyright © 2001 All Rights Reserved

403

Branch-and-Bound Algorithm for Single-Machine Earliness-Tardiness Scheduling

Their formulation is ‘weak’ in that the linear programming
relaxation gives weak lower bounds, which seriously im-
pairs the performance of any standard integer linear pro-
gram solver. Also, a general code does not take advantage of
the problem structure. Fry, Leong, and Rakes!*! compare the
performance of the integer linear programming approach
with the performance of a rudimentary branch-and-bound
algorithm for the problem 1|2, (aC, + BE, + vT)) in which
idle time is allowed; indeed, they find that their branch-and-
bound algorithm is much faster. Inspecting the alternative
rendition of the cost function we see that their problem is
equivalent with ours.

Both our algorithm and the branch-and-bound algorithm
by Fry, Leong, and Rakes hinge upon the observation that
the search for an optimal schedule can be reduced to a
search over the n! different job sequences. This is possible,
since there is a clear-cut method to insert machine idle time
to minimize total cost for any given sequence. This method,
which requires O(#%) time, is described in Section 1. In
Section 2, we discuss the design of the branch-and-bound
algorithm, including the upper bound, the branching rule,
the search strategy, and the dominance rules. The derivation
of lower bounds is significantly complicated by the possi-
bility of machine idle time. The range of the due dates in
proportion to the processing times mainly determines how
much idle time is desired. To cope with the different prob-
lem instances, we present five approaches for lower bound
computation, including Lagrangian relaxation, in Section 3.
The branch-and-bound algorithm is based upon many dom-
inance rules and various lower bound approaches. Unfortu-
nately, it can handle only small problem sizes; the computa-
tional results presented in Section 4 exhibit that we can solve
instances with up to 20 jobs. Conclusions are given in Section 5.

Throughout the paper, we follow the three-field notation
of Graham, Lawler, Lenstra, and Rinnooy Kan!® to classify
scheduling problems.

1. The Insertion of Idle Time for a Given Sequence
In this section, we describe a procedure to insert machine
idle time so as to minimize total cost for a given sequence.
This procedure is not new. Similar methods have been pre-
sented (cf. Baker and Scudder!")), including those presented
by Fry, Leong, and Rakes' for the 1|2, (aC, + BE, + vT))
problem and by Garey, Tarjan, and Wilfong™' for the 1|2/_,
(E, + T,) problem. This is not surprising: as we have already
noted, T, =C, + E, - d, for all j; for specific choices for a and
B, our problem is equivalent with theirs. Since the basis of the
procedure is well known, we just present our implementation.
For a proof of correctness, see Hoogeveen and van de Velde!*"\.
Suppose that the scheduling order is ¢ = (J,, ..., J1)-
Since no job can start before time zero, we need the con-
straint that C, = 3, p forl = 1,..., n. We use an inductive
procedure for finding an optimal schedule for o. It finds an
optimal schedule for the subsequence (], ..., J;), given an
optimal schedule for the subsequence (J;_y, ..., J;), forl =
2, ..., n; we initiate the procedure by scheduling J, to be
completed at time max{d,, 2/, p,). When adding], to the
subsequence (J,_y, ..., J;), we first check whether 2", p, <

d, < C,_; — p;—q; if so, then putting C; = d, yields an optimal
schedule for (J, ..., J,)- Ifd, < 2L, p, then we obtain an
optimal schedule for (], ..., J,,) by putting C, = X p I
d, > C,_; — p,_1, then we tentatively put C, = C,_; — p;_1.
Define 9, as the set containing J, and its immediate followers,
that is, the group of jobs that are executed after J, with no
machine idle time in between. We now compute the optimal
delay of the jobs in 2, disregarding the jobs not in 2,. A
delay of one unit of time increases the completion time of
each job in 2, by one and decreases the earliness of each
early job in 2, by one; the total effect on the cost is equal to
the primitive directional derivative g, = a|2,| — Bn, where
|2,| denotes the number of jobs in 2, and n; denotes the
number of early jobs in 2,. Obviously, we defer the jobs in 2,
until g, becomes nonnegative, that is, as long as n; < al2,|/B.
Define a = a|2,|/ 8] k = |2,] — a, and Ey; as the kth smallest
value of the earliness of the jobs in 2,. If the jobs in 2, are
deferred by & = Ej, then at most a jobs in 9, remain early
and, due to the choice of 4, g, then becomes nonnegative.
Deferring the jobs by & is only feasible if 8 is no larger than
the length 8., of the period of idle time immediately after
the last job in 9,. If § < 8,,,,, then we get an optimal schedule
for (J,, ..., J1) by deferring the jobs in 2, by 8. If 8 > 5,
then we defer the jobs in &, by 8., At this point, we repeat
the process for J;: we update 2, and evaluate if additional
delay of the jobs in 2, is advantageous. We now give a
step-wise description of the idle time insertion algorithm.

Idle Time Insertion Algorithm

Stepl. C; <~ max{d;, 2, ph 1 < 2.

Step 2. If I = n + 1, then go to Step 10.

Step 3. If d, <=, p, then C, < 27, p; otherwise, put C, <
min{d, C,_; — p,_,}. f C, = d,, then go to Step 9.

Step 4. Determine 9, and evaluate g,. If g, = 0, then go to
Step 9.

Step 5. Compute E, for each job], € ;.

Step 6. Compute 8,,,, i.e., the length of the period of idle
time immediately after the last job in 2,.

Step 7. Leta < L|9]a/B), and k < |2,| = 4. Determine 8 as
the kth smallest earliness value for the jobs in 9,.

Step 8. Defer the jobs in 2, by min{$, 8,,,,.}. If 8 > §,,,.,, then
go to Step 4.

Step9. I <1 + 1; go to Step 2.

Step 10. Stop: an optimal schedule for the sequence (J,,, . .
has been determined.

'/]l)

Theorem 1: The idle time insertion algorithm generates an op-
timal schedule for a given sequence.

For a proof, see [10]. As to the complexity of the algorithm,
we have that a complete run through the main part of the
algorithm, i.e., Steps 4 through 8, takes O(n) time: this is
needed to identify the set 2, to compute the primitive
directional derivative g, the values 8,,,, and 8, and to defer
the jobs, if necessary. The value & is determined in O(n) time
through a median-finding technique. After each run through
the main part of the algorithm, a gap between two succes-
sive jobs is closed. As at most n — 2 such gaps exist, the
algorithm runs in O(n*) time. For the case 2a = B, i.e., for the
problem 1|7, (E, + T)), Garey, Tarjan, and Wilfong® show

Copyright © 2001 All Rights Reserved

12

Hoogeveen and van de Velde

Shipments are Forbidden. Computers and Operations Research 14,
363-368.

. T.D. FrRY, GK. LEONG, and T.R. RAKES (1987). Single Machine
Scheduling: A Comparison of Two Solution Procedures. Omega
15, 277-282.

. M.R. GAREY, RE. TARJAN, and G.T. WILFONG (1988). One-pro-
cessor Scheduling with Symmetric Earliness and Tardiness Pen-
alties. Mathematics of Operations Research 13, 330-348.

. RLL. GRAHAM, E.L. LAWLER,].K. LENSTRA, and A.H.G. RINNOOY
KAN (1979). Optimization and Approximation in Deterministic
Sequencing and Scheduling: A Survey. Annals of Discrete Math-
ematics 5, 287-326.

. N.G. HALL, W. KUBIAK, and S.P. SETHI (1991). Earliness-Tardi-
ness Scheduling Problems II. Deviation of Completion Times
about a Restrictive Common Due Date. Operations Research 39,
847-856.

. J.A. HOOGEVEEN, H. OOSTERHOUT, and S.L. VAN DE VELDE
(1994). New Lower and Upper Bounds for Scheduling around a
Small Common Due Date. Operations Research 42, 102-110.

. J.A. HOOGEVEEN and S.L. VAN DE VELDE (1991). Scheduling

11.

12

13.

14.

15.

Around a Small Common Due Date. European Journal of Opera-
tional Research 55, 237-242.

. J.A. HOOGEVEEN and S.L. VAN DE VELDE (1992). Minimizing Total

Inventory Cost on a Single Machine in Just-in-Time Manufacturing,
Memorandum COSOR 9220, Eindhoven University of Technol-
ogy, Eindhoven, The Netherlands.

J.A. HOOGEVEEN and S.L. VAN DE VELDE (1996). Earliness-tardi-
ness Scheduling Around Almost Equal Due Dates. INFORMS
Journal on Computing, to appear.

JJ. KANET and D.P. CHRISTY (1984). Manufacturing Systems
with Forbidden Early Order Departure. International Journal of
Production Research 22, 41-50.

C.N. POTTS and L.N. VAN WASSENHOVE (1985). A Branch-and-
Bound Algorithm for the Total Weighted Tardiness Problem.
Operations Research 33, 363-377.

W_.E. SMITH (1956). Various optimizers for single-stage produc-
tion. Naval Research Logistics Quarterly 1, 59—66.

S.L. VAN DE VELDE (1991). Machine Scheduling and Lagrangian
Relaxation, Doctoral Thesis, CWI, Amsterdam.

Copyright© 2001 Al RIghtsS Reserved

