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Abstract 

A multilevel solver for the circular contact was extended to elliptical contact problems. After verification of its predictions 

by comparison with results presented in literature, it was used to study the variations of film thickness with varying operating 
conditions and aspect ratio of the contact ellipse. Detailed computational results are presented and observed tendencies are 
traced back to the modelling equations. Subsequently it is demonstrated how and when, for contacts with the entrainment 
directed perpendicular to the major principal axis of the contact ellipse, the pressure and film thickness on the centre-line 
of the contact can be predicted accurately from an equivalent line contact analysis. Finally, survey graphs of the minimum 
and the central film thickness are presented and a formula is given that predicts the central film thickness as a function of 
load and lubricant parameters, and the ratio of reduced radii of curvature of the surfaces. This formula incorporates asymptotic 
behaviour and as a result it can be applied for all conditions. In particular, its accuracy for contacts with the major principal 

axis of the contact ellipse perpendicular to the entraining direction is demonstrated in this paper. 
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1. Introduction 

Lubricated contacts in technical equipment and ma- 
chines often operate in the regime referred to as 
elastohydrodynamic lubrication (EHL), e.g. the contacts 
between gear teeth, between the rolling element and 
the inner or outer raceway in rolling element bearings, 
between an elastomeric seal and a rod or between a 
cam and follower. 

This type of lubrication has been studied intensively 
over the past decades, both theoretically and experi- 
mentally. Since the introduction of the digital computer, 
theoretical studies often involve the numerical solution 
of the pressure profile in the contact and the shape 
of the lubricant film from a set of differential and 
integral equations describing the lubricant flow, the 
lubricant behaviour and the surface deformation. In 
the early years this research was quite often hampered 
by computing time problems and poor stability behaviour 
of the numerical algorithms, particularly for the high 
loads occurring in practical contacts between steel 
surfaces. However, as a result of developments on the 
software side, more efficient and stable algorithms, 

aided by developments on the hardware side, faster 
computers and workstations, increasingly complex sim- 
ulations can be performed nowadays. Together with 
the experimental investigations, these theoretical studies 
have contributed to the current quite high level of 
understanding of the physical mechanisms determining 
operation and service life of EHL contacts. However, 
many questions are still to be answered, for example, 
with respect to elliptical contacts. 

Hamrock and Dowson [l] were among the first to 
present numerical results for these contacts. From their 
results they derived a formula to predict the film 
thickness as a function of the operating conditions. 
Using a similar numerical algorithm, Chittenden et al. 
[2] extended this work and presented an improved film 
thickness formula. However, as the formula does not 
include asymptotic behaviour, it is of relatively limited 
applicability. 

More recent are the numerical results presented by 
Seabra and Berthe [3,4], Kweh et al. [S], Barragan de 
Ling [6] and Evans and Snidle [7]. These studies, 
however, place emphasis on specific aspects, i.e. on 
surface features or on a particular gear design, and 
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results are presented for a limited range of conditions 
only. Alternatively, studies with the aim to obtain a 
survey of the film thickness behaviour as a function of 
load parameters, lubricant parameters and the geometry 
of the contact were carried out, for example, by Chit- 
tenden et al. [8] (elastic isoviscous regime) and by 
Hooke [9]. Assuming relatively soft contacts, Hooke 
considered different regions of the contact separately, 
i.e. the central region and the region of the so-called 
side-lobes. From these analyses, equations for the min- 
imum film thickness were derived. Later, charts for 
determining the minimum film thickness were presented 
by Hooke [lo]. 

In this paper the elliptic contact problem is revisited. 
The multilevel algorithm for the numerical solution of 
the circular contact problem introduced by Venner [ll] 
was extended to such contacts. For verification, two 
loading cases considered by Kweh et al. [5] were taken 
and the results were compared. Subsequently, the al- 
gorithm was used to investigate the variations in the 
film thickness with varying operating conditions and 
curvature ratio in contacts with the entrainment directed 
perpendicular to the major principal axis of the contact 
ellipse, i.e. so-called wide elliptical contacts. A selection 
of the numerical results will be presented and some 
tendencies observed are traced back to the basic equa- 
tions. Special attention is given to the asymptotic be- 
haviour with increasing width of the contact ellipse, 
i.e. it is investigated how accurately pressure profile 
and film thickness on the centre-line of the contact 
can be predicted from a (more simple) line contact 
analysis. 

Finally, survey charts of both the minimum and the 
central film thickness are presented and a formula is 
derived from the results, which predicts the central 
film thickness as a function of the operating conditions 
and curvature ratio. An advantage of this formula over 
existing formulas is that it incorporates asymptotic 
behaviour and thereby has the prospect of validity over 
the widest possible range of conditions. In this paper 
its accuracy for the aforementioned class of elliptical 
contacts is demonstrated. 

2. Theory 

Below, the physical-mathematical model for an el- 
liptical contact that has been applied will be introduced, 
followed by a brief discussion dealing with the dimen- 
sionless parameters that can be used to characterise 
load situations. The model is based upon Reynolds’ 
equation [12] and the theory of deformation of elastic 
half-spaces, see Love [13]. The lubricant is characterised 
by its (pressure-dependent) viscosity and density. Hence, 
its behaviour is assumed to be Newtonian, an assumption 
that is justified because in the present study emphasis 

is on the pressure and the film thickness and not on 
the prediction of friction. 

2.1. Equations 

Defining the following dimensionless variables: 

X=x/ax Y=yla, 

P=plp, H = hR,la, 

77 = e/o ti = PIP” 

Reynolds’ equation for a steady state, isothermal 
point contact with lubricant entrainment along the x- 
direction can be written as: 

with the cavitation condition Pa0 throughout the do- 
main and the boundary conditions P(X,, I’) = P(X,, Y) = 0 

and P(X, - Y,) = P(X, Y,) = 0. The coefficient E is defined 
by: 

fiH3 
E= - 

rlh 

where h denotes a dimensionless speed parameter: 

For theviscosity-pressure relation, the Barus equation 
[14] and the Roelands equation [15] will be used. The 
lubricant compressibility is modelled with the Dowson 
and Higginson equation [16]. 

In terms of the dimensionless variables the film 
thickness equation reads: 

H(X, Y)=H,+ $ +D F 

l+D 
+- 

s 

P(X’, Y’)dX’ dY’ 

2rE, * J(X-xl)‘+ (Y-Y’), 
(2) 

In this equation D =RJR,, denotes the ratio of the 
reduced radii of curvature of the contacting surfaces 
(see Appendix A), E, the Legendre normal, or complete 
elliptic integral of the second kind as used in the 
Hertzian dry contact theory [17] (see Appendix B), and 
H, an integration constant. 

The solution is subject to the following global con- 
dition of force balance: 

ss P(X, Y)dXdY- g =0 (3) 
=CC =, 

where ~=aJa,, denotes the aspect ratio of the contact 
ellipse. K can be computed once D is known; see 
Appendix B. 
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2.2. Parameters 

For the physical-mathematical model as presented 
above, the number of dimensionless groups needed to 
characterise the contact fully depends on the viscos- 
ity-pressure and density-pressure relations used. If the 
lubricant is assumed to be incompressible and Bar-us’ 
equation is used, three dimensionless parameters are 
sufficient, i.e. D and A, as given above, and &!=c~p~. 

Instead of & and h, alternatively the dimensionless 
parameters M and L introduced by Moes [18] can be 
used: 

- 314 

In this paper the latter parameters (in addition to 
D) will be used for characterising the load situations. 
The relation between h4, L and &, A can be found in 
Appendix C. If Bar-us’ equation is replaced by Roelands’ 
equation and compressibility (e.g. according to Dowson 
and Higginson) is taken into account, two additional 
parameters should be introduced. However, if in that 
case the pressure-viscosity coefficient a and the pres- 
sure-viscosity index z are assumed to be given, once 
again three parameters suffice (M, L, and 0). This 
approach has been followed here and, unless explicitly 
stated otherwise (see section 4), results obtained using 
Roelands’ equation and Dowson and Higginson’s equa- 
tion apply to c*l=2.2~ low8 Pa-l and z=O.68. 

3. Numerical solution 

The equations to be solved, i.e. Eqs. (l), (2) and 
(3), are not essentially different from the equations 
describing the circular contact problem (D= 1). Ob- 
viously, they can be discretised in the same way but, 
more importantly, the principal terms determining how 
to solve the problem numerically, remain the same. 
Consequently, the analysis as presented by Venner [ll] 
also applies here, and with some minor modifications 
the same numerical solution algorithm can be used. 
For details with respect to this algorithm the reader 
is referred to Refs. [ll] and [19]; however, for com- 
pleteness a brief general description is given below. 
The equations are discretised on a uniform grid and 
the resulting system of equations is solved using multigrid 
techniques. An introduction to these techniques is given 
by Briggs [20]. Applications to a variety of problems 
can be found in Ref. [21], whereas the implementation 
for EHL problems is discussed in detail by Venner 
[l l] and by Lubrecht [22]. 

The core of the algorithm is a relaxation scheme 
that, by exploiting the local behaviour of the problem, 
i.e. its integral character in regions of small pressure 
flow and its differential character in regions of dom- 
inating pressure flow, is stable for a wide range of 
loading conditions. This relaxation is embedded in a 
full multigrid algorithm (FMG), where the so-called 
full approximation scheme (FAS) is used to deal with 
the non-linearity, see Ref. [21]. In such an FMG 
algorithm, in addition to the grid on which the solution 
is desired, a set of coarser grids is used for two purposes. 
Firstly, they are used to generate an accurate first 
approximation on the finest grid. Secondly, in a process 
referred to as the coarse grid correction cycle, they 
serve to obtain a speed of convergence that is inde- 
pendent of mesh size. Because of the multi-summations 
resulting from the discretisation of the elastic defor- 
mation integrals, the above procedure is not yet sufficient 
to obtain optimal efficiency. The final step to achieve 
that goal is the use of the coarser grids to fulfil an 
additional task, i.e. multilevel multi-integration, a mul- 
tigrid technique for the fast evaluation of these sum- 
mations; see Ref. [23]. The resulting algorithm enables 
solution of the problem in 0(n Inn) operations if n is 
the number of nodes on the grid. Consequently, even 
on small capacity computers, dense grids may be used 
and extensive parameter studies may be carried out. 
For the circular contact this is shown in detail by 
Venner [ll] and by Venner and ten Nape1 [19,24]. 

4. Verification 

Using a mixed inverse-direct numerical solution al- 
gorithm on a single grid, Kweh et al. [5] presented 
solutions for elliptical contacts with surface disturbances. 
The pressure profile and the film thickness were com- 
puted using the Barus viscosity-pressure equation, and 
the Dowson and Higginson density-pressure equation. 
From their paper two contact situations were taken as 
test cases to verify the algorithm developed. For com- 
pleteness the values of the different parameters de- 
scribing these two cases and the resulting values of the 
various dimensionless parameters are listed in Table 
1. 

For the present study both cases were solved using 
a domain extending from - 2.5 to 1.5 in the X direction 
and from -8 to 8 in the Y direction. The finest grid 
(highest level) used in the FMG algorithm consisted 
of 257 x 1025 points. Table 2 lists the values for the 
minimum and central film thickness obtained on the 
different grids, together with the values presented for 
these cases by Kweh et al. [5]. Each time the grid is 
refined, the mesh size halves. This enables verification 
of the accuracy of the discretisation, i.e. of the con- 
vergence of the numerical solution to the continuous 



Table I 

Load conditil 311s as used by Kweh et al. [19, Table I] 

Parameter Value Unit 

0.01905 m 

992.4 N 

49.74 ms-’ 

2.068 10” N m2 

0.3 

17.9 lo-’ 

1.48 IO-’ 

0.125 

221.56 

12.74 

15.686 

2.4 IO-’ 

0.96 lo-” 

0.125 

1000 

5 

10.174 

Pa s 

Pa-’ 

0.0470 0.0063 Fig. 1. Dimensionless pressure P as a function of X and Y’ for 

M- 1000. I> == 10 and D-0.4. 

Table 2 

Minimum and central film thickness in micrometres obtained in grids 

with decreasing mesh size, and values presented by Kweh et al. [19, 

Table 31. 

Level Case A Case B 

h,i, h ccn hmi. h ES” 

5 1.104 1.364 0.194 0.276 

6 1.193 1.401 0.233 0.270 

7 1.246 1.424 0.243 0.282 

8 1.257 1.430 0.246 0.285 

Kweh et al. 1.256 1.341 0.249 0.283 

solution of the problem. Table 2 shows that the values 
of minimum and central film thickness converge in a 
first-order manner to a limiting value. This is in ac- 
cordance with the fact that the algorithm is based upon 
a first-order discretisation. From Table 2 it can be 
concluded that the accuracy of the final solution (level 
8) is about 1%. 

Notice the close agreement between the values ob- 
tained with the algorithm developed and those presented 
by Kweh et al. for these loading cases. 

5. Results 

Figs. 1 and 2 show the calculated dimensionless 
pressure profile P and the associated dimensionless film 
thickness H for M= 1000, L = 10 and D = 0.4. Similarly, 
Figs. 3 and 4 show P and H for the same M and L 
but with D =0.2. The solutions were obtained using 
the Roelands equation and assuming a compressible 
lubricant. Both figures show the well-known features 
for medium to highly loaded EHL contacts. The pressure 
profile approximates the Hertzian dry contact semi- 
ellipsoid, significantly deviating from it only in the inlet 
region of pressure build-up and in the region preceding 
the cavitated zone, where the pressure spike occurs. 

Fig. 2. Dimensionless film thickness H as a function of X and Y for 

M= 1000, L= 10 and D=0.4. 

Fig. 3. Dimensionless pressure P as a function of X and Y for 

M=lOOO, L=lO and D=O.Z. 

The film thickness is nearly uniform in the centre, 
shows a horseshoe-shaped restriction on the downstream 
side of the contact, and reaches its minimum value in 
the so-called side-lobes near Y= k UK. Note that the 
size of these side-lobes, relative to the size of the 
contact, is smaller for D =0.2 than for D=O.4. 
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Fig. 4. Dimensionless film thickness H as a function of X and Y for 

M=lOOO, L=lO and D=O.Z. 

5.1. Varying load and lubricant parameter 

Pressure profiles and associated film thickness maps 
were computed for a wide range of operating conditions 
and for two curvature ratios, i.e. D=O.4 and D =0.2. 
Figs. 5 and 6 show the contour plots of the film thickness 
for a selection of solutions of varyingM and L (obtained 
using Roelands’ equation and a compressible lubricant). 
These contour plots are a convenient way to show the 
changes in the film thickness with changing M and L. 
Both Fig. 5 and Fig. 6 show the same tendencies as 
observed for the circular contact (see Ref. [ll], Fig. 

9.13, and Ref. [24], Fig. 7). With increasing M and L 
the film profile in the centre of the contact flattens 
and side-lobes are formed. For low M and L the overall 
minimum film thickness occurs near the exit at the 
centre-line of the contact. However, once the side-lobes 
have formed, they become the location where the 
minimum film thickness occurs. As a result the ratio 
between the central and minimum film thicknesses is 
not a constant but depends on the load, as will be 
discussed in more detail in section 6. 

Note that, compared with the solutions with D = 0.4, 
larger M and L are needed for the side-lobes to appear 
when D = 0.2. Similarly, in contacts with D = 0.4, larger 
M and L are required for the side-lobes to appear 
than for D = 1.0 (circular contact). A likely explanation 
for this behaviour is that the formation of the side- 
lobes is related to the elastic deformation of the surfaces 
and thereby to the maximum Hertzian pressurep,. The 
side-lobes will just show up once the deformation is 
sufficiently large, i.e. once p,, exceeds a certain level. 
From Appendix C it can be inferred that ph increases 
with increasing M and L and decreases with decreasing 
D. Therefore, to reach the same level of (maximum 
Hertzian) pressure and deformation, and thus for the 
side-lobes to appear, larger M and L are required for 
smaller D. 

Focusing on the central region of the contact, Figs. 
5 and 6 show that a larger ellipticity of the contact 
causes an increased region of nearly uniform film thick- 

Fig. 5. Contour plots of the dimensionless film thickness H for D=O.4. 
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Fig. 6. Contour plots of the dimensionless film thickness H for D=O.2. 

ness. This is indicated by the low density of contour 
lines in this region. Furthermore, by taking a closer 
look an additional subtle change can be observed. When 
D=O.4, as for the circular contacts (D= 1) [11,24], the 
contour lines near the centre are concave with respect 
to the line Y=O. This implies that the film thickness 
decreases with increasing Y. However, for the same A4 
and L but D = 0.2, the contour lines in the centre of 
the contact may become elliptical. This suggests the 
occurrence of a local minimum in the film thickness 
at X= 0 and Y= 0. This phenomenon is investigated in 
more detail in the next section. 

, 

0.12 

0.10 

0.08 

-0.06 

0.04 

0.02 
i 

H 

\----_ 0,l 

T-J 
/ 

I 

------ 0.2 

0.4 

1 

5.2. Influence of D O., W 
-5.00 -4.w -3.00 -2LI.l -LOO 0.00 Leo ml ?Fr-z- w 

For one set of parameters, i.e. M= 500 and L =5, 
Y 

the curvature ratio D is varied. Fig. 7 shows the film Fig. 7. Dimensionless film thickness H as a function of Y (X=0) 

thickness as a function of Y on the line X= 0 for D = 1. 
for M=500, L=5 and D=l, 0.4, 0.2 and 0.1. 

0.4,0.2 and 0.1. These graphs confirm what is suggested 
by the contour plots, i.e. below a certain value of D 
the film thickness shows a local minimum in the centre 
of contact. 

The occurrence of this local minimum can be ex- 
plained by the influence of the compressibility. As 
explained above, by fixing M and L the contact load 
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is fixed. Consequently, decreasingD implies a decreasing 
maximum (Hertzian) pressure. For example the max- 
imum Hertzian contact pressure for the cases shown 
in Fig. 7 decreases from 0.66 GPa (D= 1) to about 
0.35 GPa (D =O.l). Now, as long as the pressure in 
the major part of the central region exceeds the level 
where Dowson and Higginson’s equation allows sig- 
nificant density changes, the contact form will remain 
the same as for D= 1. However, once the pressure 
drops into the range where pressure variations cause 
significant density variations, this local minimum will 
show up. This phenomenon is rooted in the fact that, 
owing to a small (and for sufficiently large loads even 
negligible) pressure flow, the Reynolds equation in this 
region enforces fiH=c(Y), as a result of which density 
changes tend to be fully compensated by film changes. 
For a detailed explanation the reader is referred to 
Venner and Bos [25]. 

5.3. Equivalent line contact 

For the class of contacts considered here, i.e. D < 1, 
with increasing ellipticity, i.e. decreasingD, the lubricant 
flow perpendicular to the entraining velocity (side- 
leakage) will decrease. Consequently for sufficiently 
small values of D, at least at the centre-line (Y=O), 
one may intuitively expect the solution to approximate 
the solution as predicted by a line contact type of 
analysis. This expectation is investigated below. First 
for a given elliptical contact an equivalent line contact 
is defined by taking the same maximum Hertzian pres- 
sure and half-width of the contact. In that way, from 
the dimensionless parametersi%& L, andD characterising 

the elliptical contact, dimensionless line contact pa- 
rameters M, and L characterising the equivalent line 
contact are obtained, see Appendix D. For the same 
set of solutions as presented in section 5.2, Fig. 8 
displays the dimensionless minimum and central film 
thickness together with the values as obtained from 
solving the equivalent line contact problem using the 
algorithm presented in Ref. [26]. 

Starting out from a circular contact (D = l), both the 
minimum and the central film thickness increase with 
decreasing D. As could be anticipated, because side- 
leakage is neglected, the equivalent line contact pre- 
diction overestimates the film thickness, particularly its 
minimum value (which for these point contact cases 
occurs in the side-lobes). However, with decreasing D 
the difference between the elliptical and the line contact 
values decreases and from D -0.1 onwards, the pre- 
diction from the equivalent line contact becomes very 
accurate. This is, for example, illustrated in Fig. 9, 
which shows the pressure profile and film thickness on 
the centre-line of the contact for D = 0.1, and also the 
pressure profile and film thickness as obtained from 
numerically solving the equivalent line problem for 44, 
and L,. Obviously both results closely agree. 

At this point it is noted that the onset of this close 
agreement between the equivalent line contact pre- 
dictions and the actual point contact results coincides 
with the disappearance of the side-lobes. As a result, 
the minimum film thickness in the point contact occurs, 
as in a line contact, at the centre-line near the exit. 
Consequently, below this onset value of D, the ratio 
between central and minimum film thickness assumes 
values obtained for the line contact problem. (1.2 for 
the present loading case using Dowson and Higginson’s 

-9 
h ten 

0 = equivalent line contact 

* = elliptical contact 

1.0 0.4 0.2 0.133 0.1 0.08 0.067 

D 
Fig. 8. Dimensionless minimum (&J and central film thickness (/I,..) as functions of D obtained for the full elliptic contact solution, and 

the values obtained from solving the equivalent line contact problem (M=SOO, L =5). 
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Fig. 9. Dimensionless film thickness H and dimensionless pressure 

profile P as functions of X (Y= 0) for the full elliptic contact solution, 

and the result obtained by solving the equivalent line contact problem 

(M=500, L=5, D=O.O67). 

equation and 4/3 for an incompressible lubricant, see 
also Ref. [26]). 

Finally, the derivation of the equivalent line contact 
parameters uses results from the Hertzian contact the- 
ory. Consequently predictions based on this equivalent 
line contact will be poor in regions of small deformation, 
i.e. near the rigid isoviscous regime (asymptote). As a 
rough estimate, it can be said that the concept of an 
equivalent line contact with M as given here should 
only be used for M> 20. 

6. Film thickness survey diagrams 

In the previous section the changes of the film 
thickness map with varying load, lubricant and ellipticity 
parameter were investigated. Next, as a first step towards 
a film thickness formula, calculated values of dimen- 
sionless minimum and central film thickness are pre- 
sented in survey diagrams. To facilitate comparison 
with existing film thickness formulae and asymptotic 
solutions these results were computed using Bar-us’ 
equation and assuming an incompressible lubricant. 

First Figs. 10 and 11 display the dimensionless min- 
imum film thickness as function of M and L for D = 0.4 
and D =0.2. The most extreme load situation repre- 
sented in the diagrams is M= 1000, L = 25. This results 
in a maximum Hertzian contact pressure of ph=3.1 
GPa for D = 0.4, and P,, = 2.6 GPa for D = 0.2. The lines 
drawn in these figures indicate the values that can be 
obtained from an analysis assuming rigid surfaces and 
an isoviscous lubricant (see section 7, Eq. (4)). 

Figs. 12 and 13 present the central film thickness as 
function of M and L for D = 0.4 and D = 0.2. The broken 
lines in the figures represent the central film thickness 
as predicted by the formula of Chittenden et al. [2]. 
Notice that the predictions agree quite well with the 

numerical results in the range away from the asymptotic 
regions, i.e. in the range Ma 20, 2.5 GL G 10, although 
the slope with increasing load M is too steep. The full 
curves in the Figs. 12 and 13 are the predictions of 
the central film thickness formula as described below, 
see section 7. 

A detailed comparison of Fig. 10 with Fig. 12 and 
of Fig. 11 with Fig. 13 shows that, as mentioned in 
section 5.1, the ratio between the central and minimum 
film thicknesses in a point contact is not a constant 
but depends on the load. For the computational results 
presented in Figs. 10-13 this is shown in more detail 
in Table 3. For relatively low A4 and L the ratio is 
about 4/3, which indicates that the minimum film thick- 
ness appears on the centre-line near the exit, see section 
5.3. For larger values of M and L the ratio between 
the central and the minimum film thickness increases 
with increasing load, the onset of this behaviour being 
the appearance of the side-lobes. Consequently for 
deviations from this value to occur for the smaller value 
of D requires larger M and L, see also section 5.1. 

One of the objectives of the present study is to obtain 
a film thickness formula for practical use. The question 
then arises what film thickness value should be used 
to characterise the contact, the minimum or the central 
film thickness. In many cases the aim in design is to 
achieve full separation of the surfaces. Generally this 
is assumed to be ensured if the minimum film thickness 
predicted by the smooth surface analysis is sufficiently 
large compared with the combined roughness of the 
surfaces. For the line contact problem this choice of 
the minimum film thickness as a selection criterion is 
quite obvious, i.e. because the problem is one dimen- 
sional, any feature present on one of the surfaces will 
have to pass the location of the minimum film thickness. 
Besides, also because the problem is one dimensional, 
once the minimum film thickness is known, the central 
film thickness can be computed and vice versa as the 
mass flow through the contact roughly fixes the ratio 
between these two film thicknesses at 4/3 for the 
incompressible case and at this value divided by 
$(p,) if a compressible lubricant is assumed. 

However, in the case of a point contact, using the 
minimum film thickness is no longer obvious. In that 
case the film thickness is roughly uniform at the value 
of the central film thickness throughout the major part 
of the Hertzian contact region. The film thickness drops 
below this value only in the side-lobes (highly loaded 
contacts) or near the exit (lowly loaded contacts or 
wide contact ellipses). In the first case obviously the 
side-lobes cover only a small part of the total contact 
region and because of their location the chances that 
a particular surface feature will have to pass the min- 
imum film thickness are relatively small. Hence in these 
cases the central film thickness may be a more realistic 
parameter to characterise the contact. 
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Fig. 10. Survey diagram 

Fig. 11. Survey diagram 
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Fig. 12. Survey diagram of the dimensionless central fifm thickness h,, as a function of M and L for D-0.4. The broken curves represent 
the predictions of Chittenden et al. [2]. The full curves represent the predictions of EZq. (9). 
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Fig. 13. Survey diagram of the dimensionless central film thickness h,., as a function of M and L for D=O.2. The broken curves represent 

the predictions of Chittenden et al. [2]. The full curves represent the predictions of E!q. (9). 

Table 3 

Ratio h,.lI& as a function of M and L for D = 0.4 and D = 0.2 

M 

L S 10 20 50 100 200 500 1000 

D=O.4 
0 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 

1 1.3 1.3 1.3 1.3 1.4 1.4 1.5 1.6 

2.5 1.3 1.3 1.3 1.4 1.5 1.6 1.7 1.8 

5 1.3 1.3 1.4 1.5 1.5 1.6 1.8 2.0 

10 1.3 1.4 1.4 1.5 1.5 1.6 1.8 2.0 

25 _ 1.4 1.3 1.5 1.6 1.6 1.7 1.9 

D=O.2 

0 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 

1 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.4 

2.5 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.4 

5 1.2 1.3 1.3 1.3 1.3 1.4 1.4 1.5 

10 1.2 1.3 1.3 1.4 1.4 1.4 1.5 1.5 

25 - 1.3 1.3 1.4 1.4 1.4 1.5 1.5 

In the second case, i.e. low load or wide contact 
ellipse, as for a line contact, almost any feature will 
have to pass a region with a film thickness close to 
the minimum film thickness. However, for these wide 
contact ellipses, owing to the small side-leakage, the 
central and minimum film thickness are coupled again 
by the mass flow as described above for the line contact 
problem. Hence, if in such cases the central film thick- 
ness is given, the minimum value can be obtained easily. 

Based on these arguments the authors have chosen 
to derive a formula giving the central film thickness 
as a function of load, lubricant parameters and the 
curvature ratio. 

7. Film thickness formula 

For the film thickness in a point contact the following 
asymptotic regimes can be distinguished. 

7.1. Rigid isoviscous (small M, and L = 0) 

For this regime 
yields 

hmin = C:‘(D)M-’ 

and 

h,,,=C,R’(D)M-’ 

a straightforward similarity analysis 

(4) 

(5) 

The values of Cz’ and CF’ as functions of D remain 
to be determined. Based on the work of Kapitza [27] 
Brewe et al. [28], and numerical solutions of the rigid 
isoviscous point contact equations for various values 
of D performed in the course of the present research, 
it was found that the following function fit solution 
applies: 

C,“’ = 145( 1 + 0.7960 14’15) - 15’7D - 1 

and CEf, = (3/4),R’. 

7.2, Elastic isovkcous (large M, and L = 0) 

This solution is characteristic of elastomeric seals. 
Based on the work of Hamrock and Dowson [29], Crook 
[30], and Kanters [31], the following formal expression 
may be derived for the central film thickness in this 
regime: 

&,,, = C:JD)M --2’15 (6) 

with the function fit solution 

C,“,:,=3.18(1+0.006 In D+0.63D4”)-‘4/25D-“15 

7.3. Rigid piezoviscous (small M, large L) 

For this regime the following formal equation was 
derived by Grubin [32]: 
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ii,,, = c::(D)Lz” (7) 
with the function fit solution 

C~;=l.29(1+0.691D)-U3 

This solution was based on the asymptotic solutions 
for D + 0 and D + CO as well as on numerical calculations 
for D=l. 

7.4. Elastic piezoviscous (large M, large L) 

The following formal equivalent of the Grubin solution 
[32] may be derived for elliptic contacts: 

h,,” = c:;(D)M- 1’12L3’4 (8) 

with the function fit solution 

Czr = 1.48(1+ 0.006 In D +0.63P/7)-7noD-1m 

7.5. Formula 

Introducing &r, &, h, and h,, for the film 
thickness values predicted by Eqs. (5) (6), (7) and (8), 
respectively, the following function fit formula for the 
dimensionless central film thickness is proposed: 

h,,, = {[@= + (Q + h&4) --3’*]2m 

+ (/& + &&) - s/8)l’E (9) 

with 

s=1.5[l+eap( -1.22)] 

~oo=l.8~-l (10) 

The last two parameters serve to ensure smooth tran- 
sitions according to the numerical calculations between 
the four asymptotic solutions. The values predicted by 
Eq. (9) for D = 0.4 and D =0.2 are shown in the Figs. 
12 and 13 by the full curves. From these figures it can 
be seen that Eq. (9) accurately predicts the dimen- 
sionless central film thickness also in the asymptotic 
regimes. Notice that Eq. (9) is in fact a generalisation 
of the film thickness formula presented by Venner and 
ten Nape1 [24] for D = 1, i.e. for circular contacts. 

8. Conclusions 

A multilevel algorithm for the smooth EHL circular 
contact problem has been extended to elliptical contact 
problems and applied in a parametric study of contacts 
with D = RJR,, G 1, i.e. to contacts with the entrainment 
direction perpendicular to the major principal axis of 
the contact ellipse. The variations of pressure profile 
and particularly of the film thickness with the load 

parameters and elliptic@ of the contact were studied. 
Also it was investigated when the film thickness on the 
centre-line of elliptical contact can be approximated 
with an equivalent line contact. For two curvature ratio 
solutions of the minimum and central film thicknesses 
are displayed in survey diagrams. With the aid of these 
results, a film thickness equation was derived for el- 
liptical contacts. Because this formula incorporates 
asymptotic behaviour it is valid for all load conditions. 
In this paper it is shown to be very accurate for elliptical 
contacts with D 6 1, leaving its accuracy for contacts 
with D> 1 to be investigated in future research. 
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Appendix A: Nomenclature 

a ha! Rydt! Hertzian (line contact), a = 
w 7 

Wear 176 (1994) 217-229 

c 
D 
E’ 

EC 
F 
h 

& 

ho0 
H 

HO 
AH 
L 

M 

Ml 

n 

P 
Ph 

P 
R 
s 

us 
W 

Y 
x, X’ 

Y 
Y, Y’ 
z 
ff 
ff 
K 

1 

17 

770 

77 

P 

PO 

P 

half-width Hertzian contact, x-direction, 
a, = (~R,FKE,/E’T(~ + D))1’3 
half-width Hertzian contact, y-direction, a,, = UJ 
K 

constant 
ratio of reduced radii of curvature, D =R,/R, 
reduced modulus of elasticity, 2/E ’ = (1 - v**)/ 
E, + (I- Q’)/E~ 
elliptic integral 
external load 
film thickness 
dimensionless film thickness (Moes), h = 
hlR,(E’RJg,u,)‘” 
side-leakage factor 
dimensionless film thickness, H = hR,/u,’ 
integration constant 
H increment in contour plot 
dimensionless lubricant parameter (Moes), 
L = aE’(~ouslE’RJ1’4 
dimensionless load parameter (Moes), M= 
(F/E’Rx2)(qouJE’R,)3’4 
dimensionless load parameter (Moes), 
M,=(w/E’R)(~,~~‘R)-~‘* 
number of grid points 
pressure 
maximum Hertzian pressure 
dimensionless pressure 
reduced radius of curvature 
curve fit factor 
sum velocity, U, = u1 + u2 
external load per unit width 
coordinate in rolling direction 
dimensionless coordinate, X=x/a,, X’ =x1/a, 
coordinate 
dimensionless coordinate 
viscosity index (Roelands equation) 
pressure-viscosity index 
dimensionless parameter, Cu = ap, 
elliptic@ ratio, K = aJay 
coefficient in Reynolds equation, E= $13/rjh 
dimensionless speed parameter, A = 6~u&2/ 

a&, 
viscosity 
viscosity at ambient pressure 
dimensionless viscosity, @ = 7/q. 
density 
density at ambient pressure 
dimensionless density, j5 = p/p0 

Submpts 

ten central (location aP/ax=aP/aY=O) or related to 
a variable at this location 

min minimum or related to a variable at this location 
X x-direction 

Y y-direction 
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Superscripts 

RI rigid isoviscous 
EI elastic isoviscous 
RP rigid piezoviscous 
EP elastic piezoviscous 

Appendix B: Hertzian parameters 

The Legendre normal integral (complete elliptic in- 
tegral) of the second kind, used in the Hertzian theory 
[17] is defined by 

n/z 

EC= 
s 

W 

o Jcosz*+ K’ sin’ * 

In the present work the following approximation has 
been used: 

-0.25 log K 

where K=u,/u~ denotes the ellipticity of the Hertzian 
contact and can be obtained from the following ap- 
proximation [ 171: 

For a given value of D, using K and E, as given above, 
the half-width of the contact width in the x-direction 
a, is given by 

Appendix C: Parameters 

@I) 

The dimensionless parameters (Y and h used in section 
2.1 are related to the Moes [18] dimensionless param- 
eters A4 and L in the following way: 

The relation between the dimensionless film thicknesses 
h and H is 

- 213 

H 

Appendix D: Definition of the equivalent line contact 

For a given elliptic contact the equivalent line contact 
is defined as the contact having a half-width a =a,, 
R =R, and the same maximum Hertzian contact pres- 
sure. In that case the dimensionless parameters char- 
acterising the equivalent line contact, i.e. Zkf, and L,, 
follow from the values of M, L and D for the elliptic 
contact: 

L,=L 

and 

(12) 

(13) 

Eq. (13) follows from substitution of R =R, and the 
equivalent line contact load per unit width w obtained 
by equating the Hertzian pressures with a =a,: 

-\ 

ne contact: pI;= Z!.! 
7M 

/ 

~FK 
WC - 

~FK % 
(14) 

elliptical contact: pti= s 
x 

J 

and a, from Eq. (11) in the definition of the line contact 
dimensionless load parameter: 


