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Abstract: The L2-gain almost disturbance decoupling problem for SISO nonlinear systems is formulated. Sufficient conditions are 
identified for the existence of a parametrized state feedback controller such that the Le-gain from disturbances to output can be made 
arbitrarily small by increasing its gain. The controller is explicitly constructed using a Lyapunov-based recursive scheme. Sufficient 
conditions for the solvability of the ,,~® almost disturbance decoupling problem and the explicit construction of the controller are given 
for a more restrictive class of nonlinear systems. 
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1. Introduction 

The problem of (exact) disturbance decoupling for nonlinear systems is by now well studied; see the 
textbooks [4, 12] and the references quoted therein. The problem of almost disturbance decoupling for 
nonlinear systems, as originally introduced for linear systems by Willems [21], however has attracted much 
less attention. Loosely speaking the aim for this latter problem is to characterize those systems for which 
disturbance decoupling can be achieved approximately with an arbitrary degree of accuracy. This is rather 
vague; however it has been shown in [21], see also [9, 16], that for linear systems nearly all 'reasonable' 
mathematical formulations of the almost disturbance decoupling problem lead to the same necessary and 
sufficient (geometric) conditions. On the other hand, in the nonlinear case one can distinguish between 
different feasible mathematical formulations of the problem which are not equivalent, and which lead to 
different problems requiring different mathematical techniques for solving them. In a previous paper [10] we 
have addressed the nonlinear almost disturbance decoupling problem by using singular perturbation 
methods, in particular (an infinite-time-interval version of) Tikhonov's theorem. A Lyapunov-based ap- 
proach to the problem of tracking with arbitrary disturbance attenuation from any initial condition has been 
recently proposed in [11]. Both treatments of the problem basically consider the induced norm from L~ 
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disturbance functions to Lo~ output functions, i.e., for a given Loo-bound on the disturbance function one 
seeks for a state feedback which, by increasing the gain, attenuates to any desired degree of accuracy the Loo 
norm of the difference between the actual output and the output for zero disturbances. On the other hand, it 
is well known from nonlinear stability theory that also the L2-induced norm (or, more classically, the 
L2-gain) is a natural and powerful tool in the analysis of nonlinear systems. Furthermore, the well-known 
ougoo optimal control problem for linear systems, although originally formulated in the frequency domain, 
amounts in its time-domain formulation to the optimal attenuation of the L2-induced norm from distur- 
bances to a set of to-be-controlled variables with internal stability. Very recently, cf. [1, 5, 19, 20] it has been 
shown that this time-domain interpretation of the Jf~ optimal control problem extends naturally to 
nonlinear systems, and that its solution involves the solution of partial differential equations or inequalities. 

Motivated by these developments we consider here the problem of nonlinear almost disturbance decou- 
piing in the L2-induced norm from zero initial condition, and call it the nonlinear L2-gain almost disturbance 
decoupling problem. (Recall that for linear systems the almost disturbance decoupling problem is equivalent 
for every Lp-induced norm, p = 1, 2 . . . . .  oc, see [21]. Note also that in the linear case there is no loss of 
generality in restricting to zero initial conditions.) We then impose the additional condition of internal 
stability and call such a problem nonlinear ogto~ almost disturbance decoupling. 

The outline of the paper is as follows. In Section 2 we state and prove the first results (Theorems 2.1 and 
2.2) concerning nonlinear L2-gain almost disturbance decoupling for single-input single-output nonlinear 
systems. The sufficient conditions given in Theorem 2.1 are related to those given in [6] for the solution of an 
adaptive tracking problem. The sufficient conditions for solvability of the problem given in Theorem 2.2 are 
the same as the ones given in [11], and are thus more general than those of [10]. The proofs do not involve 
the solution of PDEs: a nonlinear state feedback controller parametrized by a constant 'gain' k is explicitly 
constructed such that the L2-gain is proportional to 1/k and hence can be made arbitrarily small. The 
approach taken in this paper has the advantage over the one taken in [11] that disturbances are not required 
to have known L~-bounds. On the other hand, the result only applies to zero initial conditions, while the 
results obtained in [11] hold for any initial conditions. We then state, on the basis of Theorem 2.1, a result 
(Theorem 2.3) concerning the L2-gain almost disturbance decoupling with internal stability of the closed- 
loop system (o~°~ almost disturbance decoupling). 

2. Main results 

We consider the following single-input single-output system: 

p 

2 =  f (x)  + g(x)u + Y, qi(x)Oi(t), xe l~  ~, uE[~, 
i = 1  

y =  h(x), y ~ R .  
(1) 

In (1) f :  ~n ~ ~,,  g : Rn ~ ~n, qi: R n ~ ~ ,  h : ~n -o ~ are smooth functions, x is the state, u is the input, Oi, 
1 ~< i ~< p are the disturbances, whereas y is the output. We assume that f(0) = 0, h(0) = 0. 

In this note the following two problems will be addressed. 

Definition 2.1. The L2-gain almost disturbance decoupling problem is said to be solvable for system (1) if 
there exists a smooth parametrized state feedback control 

u=u(x ,k ) ,  k ~  + 

such that for every t, 0 ~< t ~< T, 

f 
t 1 f f  

y2(z)dz ~ k 0T(z)0(z)dz 
0 0 
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for the closed-loop system with initial condition x(0) = 0 and for any disturbance function 0(T) with [0, T) 
any open interval in which the corresponding solution exists. 

Definition 2.2. The ~¢f~ almost disturbance decoupling problem is said to be solvable for system (1) if the 
L2-gain almost disturbance decoupling problem is solvable by u = u(x, k), u(0, k) = 0, Vk e R + and the origin 
is globally asymptotically stable for the closed-loop system with O(t) = O, 

= f ( x )  + 9(x)u(x, k). 

Def in i t ion  2.3. Let the strong control characteristic index of system (1) be defined as the integer p such that 

LgL~h(x)=O,  O ~ i < . p - 2 ,  Vx~R" ,  

LoL~- lh (x )  5 0 ,  VxeR" .  

If LoL~h(x  ) = O, Vi, V x e R " ,  then p = ~ .  

Def in i t ion  2.4. Let the disturbance characteristic index v of system (1) be defined as the integer such that 

LqjL~h(x)=O,  1 <~j<~p,O<~i<~ v - 2 ,  Vxeff~", 

Lq jL~- lh(x)  5 0 ,  for s o m e x ~ R " , s o m e j ,  1 <~ j <~ p. 

We assume in the following that p is well defined. In this case it is well known [4, 12] that the exact 
disturbance decoupling problem is solvable if and only if v > p. Hence we will assume throughout in the 
sequel that v ~< p. 

We now give sufficient conditions for the solvability of the L2-gain almost disturbance decoupling 
problem. 

T h e o r e m  2.1. I f  for system (1): 
(i) p is well defined, 

(ii) ffp-x = span{g, adfg, . . . ,  ad~-lO} is involutive and of constant rank p in R", 
(iii) adq,~, c ~., 1 ~< i ~< p, 0 ~<j ~< p - 2, with ffj = span{9 . . . . .  ad~9 }, 
(iv) the vector fields 

1 1 
f = f L g L ~ - l h  LPf h, O = L o L ~ - l h  9 

are complete, then the L2-gain almost disturbance deeoupling problem is solvable. 

Proof. It is well known ([2, 4, 10, 12]) that under the assumptions (i), (ii) and (iv) we can globally define in R" 
a change of coordinates 

z l = h(x), 

zp = L°f - i h(x), 

Zp + 1 = ~bp + x (x), (2) 

z .  = q~. (x) ,  

with ~b/(x), p + 1 ~< i ~< n, ~bi(O) = O, such that 

(d~bl, f~p-1) = 0 
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and a state feedback 

v = L~L~.-  ~h(x)u + LPrh(x) 

which globally transform (1) into 

P 

z-1 -~ z2 + ~ OiLq, h(x)~=z2 + WI(z)O, 
i = l  
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P 
~p_, = zp + ~ OiLq, L~-Zh(x)~=zp + WXo_,(z)O, 

i = I  

P 

zo = v + Z OiLq,L~-Xh(x) &v + WX( z)O, 
i=1 

~r = ~o(zl, z,) + ~T(Z)0, 

y = Z1, 

with z, = (zp+ 1 . . . . .  Zn) and 0 = (01 . . . .  , Op). In z-coordinates we have 

fC~=span< (- -? ~zo}, 0 ~ < j ~ < p - - 1  (~zp_j  . . . . .  

so that (see also [6]) conditions (iii) imply 

W~(z )  = W T ( z l  . . . . .  z , ,  z,),  1 <~ i <~ p, 

7'T(z) = ~UT(zl, z,), 

i.e. (4) becomes 

~ i = Z i + l +  WXi(zl . . . . .  zi, zr)O, l < . i < . p - 1 ,  

~ = v + W~(z~ . . . . .  z o, z,)O, 

~, = ¢p(zl, z , )  + ~ T ( z l ,  z,)O. 

Define 

z~; = - z ,  - ¼kz , (1  + W T ( z , ,  z,) W , ( z , ,  zr)) 

and consider 

1 / 1 1  2 ~Zl. 

Its time derivative with z2 = z; (z , ,  z ,  k) in (5) is given by 

(z = _ z ~ -  ¼kz~(1 + WIW1) + zaWIO 

= - z~ - k ~ z~(1 + w T w , )  - -~ w ~ o  + k~(1 + w I w , ) J  + k(1 + w I w , )  

= - z  2 - k  z, d l  + w I W ,  k x / l  + WX~W,/ +k(1  + WTW,) 

( w ~ o )  ~ 1 II w~ II z 
<~ -- z2 + k(1 + W~W~) ~< - z ~  + k 1 + ]] W~ JJ2 I[01]2 

1 
- z  ~, + ~  II011 ~. 

(3) 

(4) 

(5) 

(6) 

(7) 

(s) 
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I fp  = 1, we set v -= z2*(zx, z,, k) and from (7) and (8), when z(O) = O, we have, since I:1(0) = 0 and Vl(x) >~ O, 

fO -- Y2(z) dz + -k o II 0(~)II 2 dz >>. gl (x(t)) - Vx (0) ~> O, 

which implies 

fo 1;0 y2(z) d'~ ~ ~ OT(z)O(z)dz" 

If p > 1, we prove the following claim (see [3, 7, 17] for similar arguments in the construction of Lyapunov 
functions for cascade systems). 

Claim. Assume that for a given index i, 1 <~ i <~ p, for the system 

i I = Z 2 + WTI(Z1, Zr)O, 

: (9) 

~i = zi+l + Wri(zl . . . . .  zi, z,)O 

there exist i functions 

z * = z * ( z , , . . . , z j _ ~ , z r ,  k), z~(O . . . .  , O , k ) = O ,  2 ~ < j ~ < i +  1, (10) 

such that in new coordinates 

zl = Zl, 2 j = z j - z * ( z x  . . . . .  z j _ l , z , , k ) ,  2<~j<~i (11) 

the function 

i 
~2 v, = ½ y, (12) 

j = l  

has time derivative, with zi+ ~ = z*+ ~ in (9), satisfyino the inequality for some positive real c 

i 
~2 C 

~ < - -  ~ zj +~[[Ol[ 2 (13) 
j = l  

Then, for the system 

~1 = z2 + WI(zl, z,)O, 

: (14) 

i i+ ,  = zi+2 + WT+,(z,  . . . . .  z~+l,z,)O 

there exists a function 

z*+2(zt . . . . .  zi+l, z,, k), zi+2(O , . . . ,  O, k) = 0 (15) 

such that in new coordinates 

~j,  l < ~ j < ~ i ,  Z i + I = Z i + I - - Z ~ + I ( Z l  . . . . .  zi, z , , k )  (16) 

the function 

i + l  
~2 

V/+I = ½ ~ zj (17) 
j = l  
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has time derivative, with z~+ 2 = z*+ 2 in (14), satisfying the inequality 

i+~ c + l  
~2 2 ~+~ ~< - X z~ + - - ~  Iloll 

j = l  
08) 

Proof of the Claim. Consider the function 

i+1  

Zj.  
j = l  

When z~+z = z*+2(z~, . . . ,  z~+~, z~, k) in system (14), we have by virtue of the assumption in the claim 

i 
~2 C ¢,+~ <<.- y .  z~ + ~ l l o l l  2 

j = I  

j:~ --(~z~ (z,+~ + w ~ o )  - ~ (~o + ~'TO) + z*+2 • 

Defining 

~(z~  . . . . .  z~+~,z,) = ~ -  
&*+l &*+l 

j= I ~ Zj+ 1 ~Z r q), 

± 
. . . . .  -bT/z  t ] j = l  

.., " - ' k ~ , + , 0  + ~ ) ,  z*+2(z~,, z~+~,z , )=  - ~ -  z~+~ 

equation (19) becomes 

i+1  

j = l  

j = !  

j = l  

i+1  

j = l  

C 
-z ~ T 0  _ 1 kff2+,(1 + =~=2) + ~ 110112 Zj "It- Zi+ 

Zj --  

z j  

~2 c + l  zj + - - ~ - I l O I I  2 

e , + ,  _ T o  2 ] 

~ 0  12 + 

(~To)2 
k(l + ~x0c2) 

( ~ 0 )  2 c 
k(1 + 0~2T@2) q- k [10112 

C 
~ II °112 

which concludes the proof of the claim. [] 

(19) 

Proof of Theorem 2.1 (Conclusion). Since the assumptions of the claim were shown to hold with c = 1 for the 
system 

2~ = z2 + WT(z l ,  z,)O, 

we apply the claim (p - 1) times so that a state feedback control 

v = z o + , ( z l , . . . ,  zo, z , ,  k) 

is iteratively 

P ~2 t 0 
~ ~ - y .  z~ + ; LIOLt 2 

j = l  

built. For the closed-loop system, we have 

(20) 

(21} 
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with 

P 

v~ ½ Z  -~ = Z j .  
j = l  

When z(0) = 0 from (21) and (22), we obtain 

- yZ(z)dr - e~('Odr + 
0 j = 2  0 0 

(22) 

0T(r)0(r)d~ /> E ( x ( t ) )  -- V,(O) >i O, (23) 

which implies, since Vp(0) = 0, 

;o :o ' P OT(r)O(z)d~. (24) 

Since k can be arbitrarily chosen, we have shown that the L2-gain almost disturbance decoupling problem is 
solvable. [] 

Remark 2.1. For nonzero initial condition x(0) we immediately obtain from (23) the inequality 

' y2(r) d~ ~ ~P 0T(r)0(0dr  + Vp(x(0)) (25) 
0 0 

with Vp as given in (22). 

Remark 2.2. Conditions (i)-(iii) have been used in [6] as sufficient conditions in order to solve an adaptive 
tracking problem when O(t) are constant parameters (condition (iii) is called strict feedback condition in [6]). 

The constructive proof of Theorem 2.1 leads also to a different set of sufficient conditions for the solvability 
of the Lz-gain almost disturbance decoupling problem. 

Theorem 2.2. I f  for system (1): 
(i) p is well defined, 

(ii) d(L, jL}h)espan{dh,  d(L:h) . . . . .  d(L}h)}, v -  1 ~< i~< p - 1, 1 ~<j~< p, VxeN", 
(iii) the vector fields 

1 L°y h, 0 = i 
f = f L~L~-Ih L g L } - l h  O 

are complete, then the L2-gain almost disturbance decoupling problem is solvable. 

Proof. Conditions (i)-(iii) allow us to define the global change of coordinates 

zl = h(x), 

z o = L} -  lh(x), 

zp + I = Cp + l(x), 

z.  = O.(x), 
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with ~b~(O) = 0, (d4~, g) = 0, p + 1 ~< i ~< n, and the state feedback (3) which globally transform (1) into (see 
also [18]) 

2 i = z i + l +  W ~ ( z l , . . . , z l ) O ,  l < < . i < ~ p - l ,  

T ~.p = v + Wp(z l  . . . . .  z;)O, (26) 

~, = ~o(z) + ~T(z) O, 

with z, = (z o + 1, . . . ,  z,). At this point the proof follows the steps of the proof of Theorem 2.1 with (5) replaced 
by (26). [] 

Remark 2.3. Condition (ii) of Theorem 2.2 requires functions W1, . . . ,  Wp not to depend on zr while condi- 
tions (ii), (iii) of Theorem 2.1 require the zr-dynamics to be independent of z2 . . . . .  zp. 

The next result shows that if in addition to the assumptions required by Theorem 2.1 the zero dynamics 
(see [4, 12] for its coordinate-free definition) are independent of 0, namely 

5, = ~o(0, z,) 

and are such that the origin z, = 0 is globally asymptotically stable, then a solution exists for the problem 
given in Definition 2.2. 

Theorem 2.3. If, in addition to conditions (i)-(iv) of  Theorem 2.1, system (1) is such that (v) the zero dynamics 
are independent of  O and globally asymptotically stable, then the ~ almost disturbance decoupling problem is 
solvable. 

Proof. We follow the proof of Theorem 2.1 up to (5) which, since the zero dynamics are independent of 0, 
may be rewritten as 

z i = z i + l +  W~(z l  . . . . .  zi, z~)O, 1 <~i<<.p-  1, 

T zr)O, Zp = V "~- W p ( z 1 ,  . . . ,  Zp,  

~, = ~0(0, z,) + zl(~01(zl, z,)  + 7'T(z~, z,)O), 

with ~ol and q'~ suitable functions. Since the zero dynamics are globally asymptotically stable, by a converse 
Lyapunov theorem (see [8, p. 31]) there exists a radially unbounded Lyapunov function Vo(z,) such that 
(d Vo, ~o(0, z,)) is negative definite. Consider the function 

Vol = Vo(z~) + ½ z~,. 

Its time derivative is 

Vo~ = (dVo, q~(0, z , ) )  + z,(dVo, tp,) + z~z2 + z~(W~ + (dVo, 7iT))0. (27) 

Let 

f f '~(zl ,  zr) = W~(z l ,  zr) + (dVo(z,), IP~(zl, z,)) 

and define 

z*2(z, ,  z,) = -- (dVo, ~o,) - z ,  - ¼ kz,(1 + W~ W,) 

which when substituted in (27) gives (recall the proof of Theorem 2.1) 

~< - z  2 + 1  H01[ 2 + (dVo, q~(0, z,)). 
K 
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Since (dV0, tp(0, z , ) )  is negative definite, this implies that 

1 
I7ol ~< - z~ + ~ 110112 (28) 

Following the argument used in Theorem 2.1 the L2-gain almost disturbance decoupling problem is solved 
for systems with p = 1. Moreover, from (28) it follows global asymptotic stability of the origin when 0 = 0. 
Therefore, when p = 1 the control v = z*2(zl ,  z,)  solves the ~¢g~ almost disturbance decoupling problem. The 
proof for p > 1 is a straightforward extension of the proof given in Theorem 2.1. [] 

Finally, the connection with nonlinear ~'~  control [1, 5, 19, 20] is as follows. Consider a nonlinear system 

= f (x ,  u) + q(x)O, f(O, O) = O, 

z = h(x, u), h(O, O) = O. 

The state feedback W~ optimal control problem consists in finding the constant 7" ~> 0 having the property 
that for every 7 > 7" we can construct a state feedback u = ~(x) ,  ~r(0) = 0, such that the closed-loop system 
is internally stable and the L2-gain from 0 to z becomes ~< 7, i.e. 

f ;o zT(~)z(r)dr ~< 7 2 0T(T)0(~)d~ 
o 

for all t/> 0 and 0 e  L2(0, t), and where z(r) is the zero-state response. The problem can be called regular if 
Oh/Ou(x, u) has full column-rank; otherwise it is called sinoular. It is well known that the singular ~ o  control 
problem is intrinsically more difficult than the regular problem, see e.g. [13-15]  for the linear case. In the 
present situation we have z( = y) = h(x) and thus the o ~  optimal control problem is totally singular, while 
solvability of the o ~  almost disturbance decoupling problem amounts to the condition 7* = 0; see [15, 16] 
for the linear case. 
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