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Abstract 

We present O(n’R + n3R3) time algorithms to compute the treewidth, pathwidth, minimum 
fill-in and minimum interval graph completion of asteroidal triple-free graphs, where n is the 
number of vertices and R is the number of minimal separators of the input graph. This yields 

polynomial time algorithms for the four NP-complete graph problems on any subclass of the 
asteroidal triple-free graphs that has a polynomially bounded number of minimal separators, as 

e.g. cocomparability graphs of bounded dimension and d-trapezoid graphs for any fixed d > 1. 

1. Introduction 

We present algorithms solving the problems TREEWIDTH, PATHWIDTH, MINIMUM FILL- 

IN and INTERVAL GRAPH COMPLETION, when they are restricted to the class of AT-free 

graphs. All four problems are NP-complete even when restricted to cobipartite graphs, 

a subclass of the AT-free graphs [ 1,221. Hence they remain NP-complete on AT-free 

graphs and there cannot be a polynomial time algorithm on A-r-free graphs for any 

of these problems unless P = NP. Our algorithms have running time 0(n5 R + n3 R3), 

where n is the number of vertices and R is the number of minimal separators of 

the input graph. This implies polynomial time algorithms for all the four problems 

on any subclass of the AT-free graphs that has a polynomially bounded number of 

minimal separators as e.g. permutation graphs, trapezoid graphs, cocomparability graphs 

of bounded dimension and d-trapezoid graphs for any fixed d > 1. 

It has been shown in [4] that treewidth and pathwidth as well as minimum fill-in and 

minimum interval graph completion can be computed by polynomial time algorithms 

for d-trapezoid graphs, d a fixed positive integer, if the graph and a d-trapezoid diagram 
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of it are given as input. (For earlier algorithms see [3, 171.) However, if we only allow 

the standard input, i.e., the graph is given as input, then this does not yield polynomial 

time algorithms, since we cannot compute the intersection model efficiently, if only the 

graph is given. Thus, it was left open whether the four problems become easy because 

the class of graphs, i.e., the d-trapezoid graphs for any fixed d 2 3, is well behaved, 

or because having the d-trapezoid diagram (which is the solution to an NP-complete 

problem for any fixed d 3 3 [23]) is such a powerfi_d tool, that it gives the solution. 

Now we are able to answer this question, since we obtain 0(n3d+3) algorithms for 

the four problems, when they are restricted to d-trapezoid graphs, for any fixed d 2 1. 

Furthermore, these algorithms do not require a d-trapezoid diagram as part of the input. 

Of course, as one would expect, the running times of these algorithms are much worse 

than those of the best known algorithms computing treewidth and minimum fill-in 

of d-trapezoid graphs, which is O(nn~(G)~-l) and O(nd) [4]. Notice that the latter 

algorithms heavily exploit the d-trapezoid diagram. Nevertheless, the algorithms given 

in our paper are polynomial time algorithms for d-trapezoid graphs, and hence also 

for cocomparability graphs of dimension at most d, for any fixed positive integer d, 
although they do not require an intersection model as part of the input. 

This answers a tempting theoretical question, since it shows that small interval di- 

mension and small dimension is capturing a property, which makes all these four 

problems simpler. Yannakakis has shown that the DIMENSION problem ‘Given a par- 

tially ordered set P, is the dimension of P at most d’ and the INTERVAL DIMENSION 

problem ‘Given a partially ordered set P, is the interval dimension of P at most d’ 

are both NP-complete for any fixed d > 3 [23]. Therefore we are not able to run 

a recognition algorithm to determine for fixed d 2 3, whether our input graph is in 

the class of d-trapezoid graphs (respectively cocomparability graphs of dimension at 

most d). 
Nevertheless the results of our algorithms can be used reliably, even if we do not 

know a priori that the input graph G is a d-trapezoid graph (respectively cocompara- 

bility graph of dimension at most d). This is possible since both algorithms work as 

follows. If the input graph G is not a cocomparability graph, then the algorithm re- 

ports this. If G is a cocomparability graph, then the algorithm solves the corresponding 

problem for G correctly, or reports, that G is not a d-trapezoid graph (respectively that 

G has dimension larger than d), since G has ‘too many’ minimal separators. 

2. Preliminaries 

All graphs in this paper are simple and undirected. We denote the number of vertices 

of a graph G = (V,E) by n, and the size of a maximum clique in G by o(G). G[ W] 

denotes the subgraph of G = (V, E) induced by the vertices of W C V. For simplicity 

we abuse notation using the same notation for a connected component and its vertex 

set. 
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2.1. Graph classes 

We list the definition of some graph classes that are relevant to the paper. For more 

information on graph classes we refer to [8] and for more information on partially 

ordered sets we refer to [21]. 

Definition 1. A graph G is said to be chordal if any cycle of length at least four has 

a chord. 

Definition 2. A graph G = (V, E) is an interval graph if the vertices of G can be put 

into one-to-one correspondence with intervals on the real line, such that two vertices are 

adjacent in G if and only if the corresponding intervals have a nonempty intersection. 

Lemma 2.1. G = (V,E) is an interval graph if and only if the maximal cliques of 

G can be ordered A,,A2, . . . ,A, such that for every vertex v the maximal cliques 
containing v occur consecutively. 

Such an ordering of the maximal cliques is said to be a consecutive clique arrange- 
ment of G. 

Recently many interesting structural properties of AT-free graphs have been estab- 

lished by Corneil et al. [5,6]. 

Definition 3. A set of three independent vertices x, y,z of a graph G is called an 

asteroidal triple (AT) if for any two of these vertices there exists a path joining them 

that avoids the (closed) neighbourhood of the third. A graph G is called an asteroidal 
triple-free (AT-free) graph if G does not contain an asteroidal triple. 

Asteroidal triple-free graphs are a class of graphs containing well-known classes of 

perfect graphs as e.g. interval, permutation, trapezoid and cocomparability graphs. 

Definition 4. A graph G = (V, E) is said to be a cocomparability graph if there is 

a partially ordered set P = ( V, -+) such that {u, v} E E if and only if u and v are 

incomparable in P (i.e. neither u -+ v nor v +p u). 

The d-trapezoid graphs form a subclass of the cocomparability graphs that is of 

interest for our considerations. 

Definition 5. Let d be a fixed positive integer. Then a d-trapezoid diagram D(G) of 

a graph G = (V, E) assigns to each vertex v of G a collection of d intervals 

S(u)=([l~,r$: Z~,r~E{1,2 ,..., 2n},lk <rt,iE{1,2 ,... d}) 

such that for each i E { 1,2, . . . , d} and any pair of vertices v, w E V the intervals [IL, r-t] 
and [Ii, r-h] have no endpoint in common. Furthermore, {II, w} E E if and only if either 
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there is an i~{1,2, . . . . d} such that [Zt,rL] and [Zt,rL] have nonempty intersection or 

there are i,j~{1,2, . . . . d} such that 1; < r-L < li < ri and Ii < r; < 1: < d. 

The following visualizing of a d-trapezoid diagram is useful. Draw d parallel hori- 

zontal lines labelled Di , D2,. . . , Dd from bottom to the top. Mark slots 1,2,. . . ,2n in 

unit distance from left to right on each of the horizontal lines. Then for any vertex 

v E V we obtain a polygon QU by drawing line segments between consecutive points in 

the chain 1’ I2 Id ,.d yd--l 
“7 1)3.*.3 “3 “7 ” , ..., r:, 1:. The polygon QU is said to be a d-trapezoid. 

Consequently, {v, w} E E if and only if QU and QW have nonempty intersection. 

Definition 6. A graph G is a d-trapezoid graph if it has a d-trapezoid diagram. 

It is worth mentioning that for any positive integer d, the d-trapezoid graphs are 

exactly the cocomparability graphs of partially ordered sets of interval dimension at 

most d. 

2.2. Minimal separators 

Minimal separators are one of the fundamental concepts of this paper. They will 

play a central role in our algorithms. 

Definition 7. Given a graph G = (V, E) and two nonadjacent vertices a and b, a set 

S 2 V is an a, b-separator if the removal of S separates a and b in distinct connected 

components. If no proper subset of an a, b-separator S is also an a, b-separator then S 

is a minimal a, b-separator. A minimal separator is a set of vertices S for which there 

exist nonadjacent vertices a and b such that S is a minimal a, b-separator. 

The following lemma provides an easy algorithm to recognize minimal separators 

(cf. F31>. 

Lemma 2.2. Let S be a separator of the graph G = (V,E). Then S is a minimal 
separator of G if and only if there are two connected components of G[V\S] such 
that every vertex of S has a neighbour in both of these components. 

Dirac was the first to discover a relation between minimal separators and chordal 

graphs [7]. 

Theorem 2.3. A graph G is chordal if and only if every minimal separator is a clique. 

Any interval graph G = (V, E) has a consecutive clique arrangement by Lemma 2.1. 

This allows us to characterize the minimal separators of an interval graph. 

Theorem 2.4. Let Al,A2, . , . , A, be a consecutive clique arrangement of an interval 
graph G. Then the minimal separators of G are the sets Ai n Ai+,, i l { 1,. . . , q - 1). 
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Proof. Since each Ai is a maximal clique, we have that for each 1 < i < t: Ai\Ai+l # 8 

and Ai+l\Ai # 8. Let x E Ai\Ai+l and y l Ai+i\Ai. Then clearly Ai n Ai+l is a minimal 

x, y-separator. 

Now consider non-adjacent vertices a and b and let S be a minimal a, b-separator. As- 

sume a appears before b in the consecutive clique arrangement. Let Ai be the last clique 

that contains a and let Ai be the first clique that contains b. If, for all 8 E {i,. . . , j- l}, 

there is a vertex in Al n &+I which is not in S, then there is a path from a to b in 

G[ V\S]. Hence there is an e E {i,. . . , j - 1) such that At n Ae+i C S. El 

Lemma 2.5. Let S be a minimal separator and a clique of G. Let C be a connected 

component of G[V\S] and let x and y be non-adjacent vertices of G[S U C]. Then 
every minimal x, y-separator S* of G is a proper subset of S u C. 

Proof. Let S’ be a minimal x, y-separator of G and let C, and C, be the components 

of G[V\S*] containing x and y, respectively. 

C, and C, cannot both have non-empty intersection with S, since S is a clique. 

Without loss of generality we may assume that C, n S = 0. Hence x is a vertex of C 

and it is trivially also a vertex of C,. This implies C, C C. Any vertex z E V\(S U C) 

belongs to a component of G[V \S] different from C and cannot have a neighbour 

in C,. Hence z 6 S* by Lemma 2.2. Finally, S* is a proper subset of S U C since 

x,y$.?s*. 0 

In the sequel we adopt the convention that if Si C S,, then the vertex set of every 

connected component of G[V \(Sl U &)I and Si\& are contained in one connected 

component of G[V\&] (since S,\& = 0). 

Definition 8. Two minimal separators Si and S2 are said to be non-crossing if all 

vertices of Si\ S2 are contained in one connected component of G[ V \ $1 and all 

vertices of &\Si are contained in one connected component of G[ V\Sl]. 

Lemma 2.6. Let G=( V, E) be a chordal graph. Then every pair of minimal separators 

in G is non-crossing. 

Proof. Let Si and S2 be minimal separators of the graph G. Since G is chordal, Si and 

,I$ are cliques by Theorem 2.3. It follows that Si\S2 is contained in the one connected 

component of G[ V \,‘&I, and that &\Si is contained in the one connected component 

of G[V\S,]. 0 

2.3. Triangulations 

Triangulations and minimal triangulations of graphs have already been studied for 

about 30 years. 

Definition 9. A triangulation of a graph G is a graph H with the same vertex set as 

G such that H is a chordal graph and G is a subgraph of H. In that case we say that 

G is triangulated into H. 
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Minimal triangulations have been considered in relation to Gaussian elimination of 

matrices, as well as minimal elimination orderings of graphs and the MINIMUM FILL-IN 

problem [16, 18, 191. 

Definition 10. A triangulation H of a graph G = (V, E) is a minimal triangulation of 

G if no proper subgraph of H is a triangulation of G. 

The first characterization of minimal triangulations has been given in 1976. Rose et 

al. [ 193 have shown the following theorem and its corollary. 

Theorem 2.7. Let H be a triangulation of a graph G. Then H is a minimal trian- 
gulation of G tf and only if, for all edges e E E(H)\ E(G), the graph H - e is not 

chordal. 

Corollary 2.8. Let H be a triangulation of a graph G. Then H is a minimal trian- 

gulation of G tf and only tf each edge e E E(H)\E(G) is the unique chord of a cycle 
of length four in H. 

Another characterization of minimal triangulations is given by Parra and Scheffler 

in [17]. Now we give a new characterization of minimal triangulations related to the 

one by efficient triangulations in [ 121 (see also [lo]). 

Definition 11. For any subset 6 G ‘$3 (V) let GE be the graph obtained from G by 

adding edges between all pairs of nonadjacent vertices x and y of G for which an 

S E @I with {x, y} 2 S exists. 

We denote the set of all minimal separators of a graph G = (V,E) by &p(G). 

Theorem 2.9. Let H be a triangulation of the graph G =( V, E). Then H is a minimal 

triangulation of G tf and only tf H = GG~(~). 

Proof. Assume H is a minimal triangulation of G. By Theorem 2.3 every minimal 

separator of H is a clique. Thus Go+, is a subgraph of H. 

Now let {a, b} E E(H)v(G). Then {a, b} IS unique chord of a cycle of length four in 

H by Corollary 2.8. Hence removing the edge {a, b} from H gives a square (a, p, b, q). 
Then clearly, every minimal p, q-separator of H contains a and b. Hence {a, b} Z S 
for some S E Gep(H), thus {a, b} is an edge of Gc~(H). Consequently H = G+,(n). 

Assume H is not a minimal triangulation of G. By Theorem 2.7, there is an edge 

{a, b] E E(H)\E(G) such that H’ = H - {a, b} is a triangulation of G. 

We claim that there is no minimal separator S of H such that {a, b} C S. Suppose 

on the contrary that S is a minimal p, q-separator of H with {a, b} C S. Then S is a 

minimal p,q-separator of H’ by Lemma 2.2. Since S is not a clique in H’, H’ is not 

chordal by Theorem 2.3, a contradiction. Hence {a, b} is not an edge of Go+,, thus 

H # GB~,(H). 0 
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The following property of minimal triangulations has been given in [ 10, 121. 

Theorem 2.10. Let H be a minimal triangulation of a graph G = (V, E). Then the 

following conditions are satisJied. 
1. If a and b are nonadjacent vertices in H then every minimal a, b-separator in 

H is also a minimal a, b-separator in G. 
2. If S is a minimal separator in H and C is a connected component of H[V\S] 

then G[C] is a connected component of G[V\S]. 

It is worth mentioning that the above theorem is crucial for our paper. 

Lemma 2.11. Let H be a minimal triangulation of G and let Sl,S2 be minimal sep- 
arators in H. Then S1 and & are non-crossing minimal separators in G. 

Proof. S1 and S2 are non-crossing in the chordal graph H by Lemma 2.6. H is a min- 

imal triangulation of G, thus Si and S2 are minimal separators in G by Theorem 2.10. 

Furthermore, the vertex sets of the connected components of H[V\S;] are the same as 

those of G[ V\Si], i E { 1,2}. It follows that Sr and SZ are also non-crossing minimal 

separators in G. 0 

2.4. Treewidth, pathwidth, minimum Jill-in and minimum interval graph completion 

There are different ways to define the treewidth of a graph. The original definition 

uses the concept of a tree-decomposition. For more information on tree-decompositions 

the reader is referred to the survey paper [2]. Here we introduce the treewidth by means 

of triangulations. This turned out to be a fruitful approach for many of the recently 

designed efficient treewidth algorithms for special graph classes (see e.g. [lo]). 

Definition 12. The treewidth of a graph G, denoted by &V(G), is the smallest value 

of w(H) - 1, where the minimum is taken over all triangulations H of G. 

The following lemma shows the equivalence of the above definition of treewidth and 

the original one by Robertson and Seymour. For a proof see, for example, [14]. 

Lemma 2.12. A graph G = (V, E) has a tree-decomposition of width at most k if and 
only tf there is a triangulation H of G with w(H) < k + 1. 

Observation 1. For any graph G there exists a minimal triangulation H with tw( G) = 

o(H) - 1. 

Hence solving the TREEWIDTH problem for an input graph G = (V,E) is equivalent to 

determining the smallest size of a maximum clique of H over all minimal triangulations 

H of G. The pathwidth of a graph can be defined in terms of triangulations into an 

interval graph. 
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Definition 13. The pathwidth of a graph G, denoted by pw(G), is the smallest value 

of CD(H) - 1, where thee minimum is taken over all triangulations H of G for which 

H is an interval graph. 

Observation 2. There are graphs G that do not have a minimal triangulation H such 

that pw(G) = w(H) - 1, as e.g. any tree that is not a caterpillar. 

The problems MINIMUM FILL-IN and INTERVAL GRAPH COMPLETION are closely related to 

the problems TREEWIDTH and PATHWIDTH since they also consider finding minimal trian- 

gulations (into an interval graph) that optimize a certain graph parameter. 

Definition 14. A fill-in of the graph G = (V,E) is a set F of edges of G such that 

H = (V, E U F) is chordal. The minimum jill-in of a graph G, denoted by mfi(G), is the 

smallest value of IE(H)I - (E(G)/, w h ere the minimum is taken over all triangulations 

H of G. 

Observation 3. For any graph G there exists a minimal triangulation H such that 

mfi(G) = IE(H)I - IE(G)I. 

Hence solving the MINIMUM FILL-IN problem on a graph G is equivalent to finding a 

minimal triangulation H of G, that has smallest number of edges among all minimal 

triangulations of G. Such a triangulation H of G is sometimes called a minimum 

triangulation. 

Definition 15. An interval graph completion of the graph G = (V,E) is a set F of 

edges of G such that H = (V, E U F) is an interval graph. The minimum interval graph 
completion of a graph G, denoted by mic(G), is the smallest value of IE(H)I - IE(G)(, 

where the minimum is taken over all triangulations H of G such that H is an interval 

graph. 

Mijhring has shown the following important theorem on minimal triangulations of 

AT-free graphs and its corollary in [15]. (For earlier related results see [3,9].) 

Theorem 2.13. Any minimal triangulation H of an AT-free graph G = (V, E) is an 

interval graph. 

Corollary 2.14. tw(G)=pw(G) and mfi(G)=mic(G) for any AT-free graph G=( V,E). 

Therefore we may concentrate on designing an algorithm solving the TREEWIDTH (and 

hence the PATHWIDTH) problem as well as an algorithm solving the MINIMUM FILL-IN (and 

hence the INTERVAL GRAPH COMPLETION) problem, as long as we consider the problems 

restricted to AT-free graphs. 

By Observations 1 and 3, there are minimal triangulations H’ and H” of G such 

that tw(G) = w(H’) - 1 and mfi(G) = IE(H”)I - IE(G)I. By Theorem 2.13, H’ and 
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H” are interval graphs, if the graph G is AT-free. It is important to keep in mind that 

one of the major goals of our algorithms is to find minimal triangulations with the 

properties of H’ and H”. 
Now let the input graph G=( V,E) be an arbitrary graph. The idea of both algorithms 

is to break any (potential) minimal triangulation H of G for which H is an interval 

graph, into ‘parts’, so-called blocks, which allows the recursive computation of w(H) 

and IE(H)I, respectively. Our algorithms guarantee that w(H) and IE(H)I are computed 

correctly (at least) for all minimal triangulations H of G into an interval graph. This 

leads to two algorithms. 

The algorithm computing the treewidth of the input graph G is correct, if there is 

a minimal triangulation H of the input graph G such that H is an interval graph and 

&v(G) = o(H) - 1. Note that z%(G) = pw(G) under these assumptions. 

The algorithm computing the minimum fill-in of the input graph G is correct, if there 

is a minimal triangulation H of the input graph G such that H is an interval graph 

and m&G) = [E(H)1 - IE(G)I. Note that mfi(G) = mic(G) under these assumptions. 

Indeed we shall see later that the condition that H is an interval graph can be slightly 

relaxed. 

3. l-Blocks 

Blocks and realizations of blocks are useful concepts for designing treewidth and 

minimum fill-in algorithms. 

Definition 16. A l-block of a graph G=( V, E) is a pair B=(S, C), where S is a minimal 

separator of G and C is a connected component of G[V\S]. The graph obtained from 

G[S U C] by adding edges such that S becomes a clique is said to be the realization 
of B and is denoted by R(S, C). 

The following lemma indicates how to exploit l-blocks and their realizations. 

Lemma 3.1. Let S E E@(G) and let Cl,Cz, . . . , C, be the components of G[V \S]. 
Suppose Hj is a minimal triangulation of R(S, Cj) for any j E { 1,2,. . . , r}. Then the 
graph H = (V(H),E(H)) with V(H) = V(G) and E(H) = & E(Hi) is a minimal 

triangulation of G. 
Conversely, let H be a minimal triangulation of G with S E Gep(H). Then H[SUC] 

is a minimal triangulation of the realization R(S, C) for each component C of G[v\s]. 

Proof. Let S E &p(G) and let Cl,& . . . , C, be the components of G[V\S]. For each 

j E {1,2,..., r}, let Hj be a minimal triangulation of R(S, C’j), thus S is a clique in 

Hj. 
We claim that the graph H with the same vertex set as G and with edge set 

UiZl E(Hj) is a chordal graph. Suppose not and let 9’ be a chordiess cycle in H 
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of length greater than three. Since Hj is chordal for each j E { 1,2,. . . , r}, there are 

two vertices u and v of 9 belonging to different components C and C’ of G[V\S]. 

By the construction of H, S is a minimal separator of H and u, v belong to different 

components of H[V\S]. Consequently there are two non consecutive vertices s,s’ E S 

in ZX and {s,s’} E E(H) would be a chord in 9, a contradiction. Thus H is chordal 

and therefore a triangulation of G. 

Suppose H is not a minimal triangulation of G. Thus by Corollary 2.8, there is an 

edge e E E(H)\E(G) that is not the unique chord of a cycle of length four in H. Let 

e = {x, y}. Since Hj is a minimal triangulation of R(S, Cj) for any j E { 1,2,. . . , r}, x 

and y must belong to different components of H[ V \ S], a contradiction. Consequently 

H is a minimal triangulation of G. 

Let H be a minimal triangulation of G. Let S be a minimal separator of the chordal 

graph H. Hence S is a clique in H. Since H is a minimal triangulation of G, The- 

orem 2.10 implies that S is also a minimal separator of G and that the vertex sets 

of the components of G[ V \S] and of the components of H[V \S] are the same. Let 

CI,C2,..., C, be the components of G[ V\S] and let Ci, Cl,. . . , C: be the components 

of H[ V \S] such that Cj and Cj have the same vertex set for all j E { 1,2,. . . , r}. 

H is chordal, hence the graph H[S U Cj] is chordal for each component Cj of 

H[ V\S]. Furthermore S is a clique of H[S U Cj], hence H[S U Cj] is a triangulation of 

R(S,C’), for each j E {1,2 ,..., r}. Suppose H[S U Cj] is not a minimal triangulation 

of R(S, Cj) for some j E { 1,2,. . . , r}. Then choosing minimal triangulations Hi’ of 

R(S,Cj) such that Hi’ is a subgraph of H[S U Cj] for all j E { 1,2,. . .,Y}, we obtain 

a minimal triangulation H’ of G with E(H’) = & E(Hi), by the first part of the 

lemma. Therefore H’ is a proper subgraph of H, a contradiction. 0 

Lemma 3.1 allows us to obtain the following theorem that gives an equation for 

computing the treewidth of a graph from the treewidth of the realizations of all 

l-blocks of the graph. For a similar result dealing with separators of bounded size 

we refer to [l]. 

Theorem 3.2. Let G = (V, E) be a non-complete graph. Then 

z’w(G) = SEginGj m:x tw(R(S, Cl), (1) 

where the maximum is taken over all connected components C of G[V\S]. 

Proof. Let H be a minimal triangulation of G with ZW( G) = w(H) - 1, that exists by 

Observation 2.4. Let S be any minimal separator of H. By Lemma 3.1, H[S U C] is 

a minimal triangulation of R(S, C) for each component C of G[V\S]. Each maximal 

clique of H is a maximal clique of H[S U C] for some component C, since a clique 

of H cannot contain vertices of different components of H[ V\S]. Therefore z%(G) = 

maxc tw(R(S, C)). 

Conversely, let S E &p(G) and let Cl,&. . ,C, be the components of G[V\S]. 
By Observation 1, there is a minimal triangulation Hj of R(S, Cj) with ti(R(S, Cj)) = 
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o(Hj) - 1, for each j E { 1,2,. . . , r}. By Lemma 3.1, the graph H = (V(H),E(H)) 

with V(H) = V(G) and E(H) = UizI E(Hj) is a minimal triangulation of G. Thus 

m(G) Q maxj=t,2,...,r r’WW, Cj)). 0 

Corollary 3.3. Let G = (V, E) be a non-complete graph. Then 

tw( G) = m;x tw(R(S, C)), 

for each S E Gep(G) satisfying that S is a minimal separator of some minimal 
triangulation H of G with tw(G)=w(H)- 1. The maximum is taken over all connected 
components C of G[V\S]. 

To facilitate the presentation of the equations concerning the computation of the 

treewidth in subsequent sections, we introduce the following abbreviation. 

Definition 17. Let S be a minimal separator of G. Define 

ny( G; S) : = m;x ~Y(R(S, C)), (2) 

where the maximum is taken over all connected components C of G[ V\S]. 

Remark 1. Let S be a minimal separator of the graph G. Then tw(G; S) is equal to 

the treewidth of the graph obtained from G by adding edges such that S becomes a 

clique. 

Remark 2. Let G be a non-complete graph. Then 

m(G) = g& MG; S). (3) 

A statement similar to Theorem 3.2 can be obtained for the minimum fill-in of a 

graph. 

Definition 18. For any graph G = (V,E) and any SC V, fill(S) : =(‘i’) - ]E(G[S])j 

denotes the number of edges to be added to G[S] such that S becomes a clique. 

Theorem 3.4. Let G = (V, E) be a non-complete graph. 

mfi(G) = min 
SE@‘(G) 

(fill(S) + $ mfi(W C))), 

where the summation is over all connected components 

Then 

C of G[V\S]. 

(4) 

Proof. Let H be a minimum triangulation of G, i.e., mfi(G)= IE(H)I - IE(G)( and H 
is a minimal triangulation of G. Let S be any minimal separator of H. By Lemma 3.1, 

H[SUC] is a minimal triangulation of R(S, C) for each component C of G[ QS]. There- 

fore mfi(G) = ]E(H)I - [E(G)] =fill(S) + Cc (]E(H[S u Cl)] - ]E(R(S, C))l). Further- 

more, there is a minimal triangulation Hj of R(S, Cj) with mfi(R(S, Cj)) = ]E(Hj)I - 
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]E(R(S, Cj))l, for any j E { 1,2,. . . , r}, where Ci, Cz,. . . , C, are the components of 

G[ V \ S]. By Lemma 3.1, the graph with vertex set V(G) and edge set lJJ=, E(Hj) 
is a minimal triangulation of G. Therefore, since H is a minimum triangulation, the 

induced subgraph H[SUCj] is a minimum triangulation of R(S, Cj) for each component 

Cj of G[V\S], j E {1,2,..., r}. Consequently mfi(G) = IE(H)I - IE(G)I =fiZZ(S) + 

Cl=, mfi(R(X Cj)). 
On the other hand, consider any S E &p(G) and let Ci, CZ, . . . , C, be the components 

of G[V\S]. By Observation 3, there is a minimal triangulation Hj of R(S, Cj) with 

WXR(X Cj)) = IE(Hj)I - IE(R(S Cj))], f or any j E {1,2 ,..., r}. By Lemma 3.1, the 

graph H = (V(H),E(H)) with V(H) = V(G) and E(H) = UJzl E(Hj) is a minimal 

triangulation of G. Thus mfi(G) <fill(S) + cJ’=l mfi(R(S,Cj))) for any S E &p(G). 

0 

Corollary 3.5. Let G = (V,E) be a graph. Then 

mfi(G) =fill(S) + C mfi(R(S, C)) 
C 

for each S E &y(G) that is a minimal separator of some minimum triangulation H 
of G. The summation is over all connected components C of G[V\S]. 

The important fact is, that the treewidth of a graph and the minimum fill-in of a 

graph can in principle be computed by recursive algorithms that inspect all minimal 

separators. In general, such an algorithm does not have a polynomially bounded running 

time. However for various graph classes refinements of this approach lead to efficient 

algorithms. 

It turns out that the recursion solving the MINIMUM FILL-IN problem can be done more 

efficiently, if a related graph parameter is computed. 

Definition 19. Let G = (V, E) be a graph. Then met(G) denotes the minimum number 

of edges in H where the minimum is taken over all triangulations H of the graph G. 

Consequently, met(G) = mfi(G) + [El f or any graph G = (V, E). Thus Theorem 3.4 

and Corollary 3.5 imply 

Corollary 3.6. Let G = (V, E) be a non-complete graph. Then 

where C,,Cz,..., C, are the connected components of G[V\S]. 

Corollary 3.7. Let G = (V, E) be a graph. Then 

(5) 

PI met(G)=(l -t) 2 +kmet(R(S,Ci)) 
0 i=l 
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for each S E &p(G) satisfying that S is a minimal separator of some minimum 

triangulation H, where Cl,&,. . ., C, are the components of G[V\S]. 

Definition 20. Let S be a minimal separator of G and Cl, (22,. . . , C, the connected 

components of G[V\S]. Define 

+ kmet(R(S,C,)). 
i=l 

(6) 

Remark 3. For any minimal separator S of the graph G, met(G; S) is the minimum 

number of edges in a triangulation H of G, for which S is a clique in H. 

Remark 4. Let G be a non-complete graph. Then 

met(G) = SE~~Gj met(G; S). (7) 

We mention that our algorithms are based on the Corollaries 3.3 and 3.7 in the 

following sense. The algorithms correctly compute the treewidth (and minimum fill-in) 

of a given graph G= (V,E) if G has a minimal triangulation H’ (and H”), that satisfies 

N(G) = w(H’) - 1 (and met(G) = IE(H”)I), by looking for the minimal separators 

S of H’ (and H”). Therefore we need a collection of technical lemmas saying how 

the components of l-blocks or of certain subgraphs of a minimal triangulation of G 

look like when a minimal separator S* has been removed. We consider this in detail 

in Sections 5 and 7. 

4. 2-Blocks 

Now we introduce another type of block. 

Definition 21. Let St and SZ be two non-crossing minimal separators of the graph 

G = (V,E). A connected component D of G[V \(&‘I U Sz)] is said to be between S1 
and S2, if &\St and the vertex set of D are contained in one connected component of 

G[ V\Sl] and St\& and the vertex set of D are contained in one connected component 

of G[ V\&]. 

Recall the convention that if St C Sz then the vertex set of every connected com- 

ponent of G[V \(Sl U &)I and St\& are contained in one connected component of 

W’\S21. 

Definition 22. Let St and S2 be non-crossing minimal separators of the graph 

G = (V,E). The 2-block 23(,!$,&) of G is the subset of V consisting of Sr, S2 

and the vertex sets of all connected components of G[ V \ (Sl U Sz)] between St 

and SZ. 
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Lemma 4.1. Let S1 and S, be non-crossing minimal separators in G. Let H be a 

minimal triangulation of G such that Sl,S, E &p(H). Then the 2-block of SI and 
Sz in G and the a-block of S1 and S2 in H are equal. 

Proof. Let D be a connected component of H[V\(S, US,)] such that D is contained 

in the 2-block of Sr and S, in H. Since H is a minimal triangulation of G, the vertex 

sets of the connected components of H[ V\Sl] and G[ V\Sr ] are the same. Hence D 
is contained in the same connected component as Sx\Sr in G[V\Sr]. Similarly, D and 

Sr\& are contained in one connected component of G[V\&]. Thus the 2-block of St 

and S, in H is a subset of the 2-block of S1 and Sz in G. 

Analogously it can be shown that the 2-block of SI and SZ in G is a subset of the 

2-block of Sr and S, in H. 0 

Remark 5. We have shown that the 2-blocks of Sr and S2 in G and in any minimal 

triangulation H of G are equal, if Sr,S2 E &p(H). On the other hand, in general, it 

is not true that the vertex sets of the connected components of G[V \(Si U Si)] and 

H[V\(SI u $11 are equal for all Si, Si E &p(G). 

Definition 23. Let B(Sr,S2) be a 2-block of a graph G = (V,E). The realization 
93 (Sl,S2) is the graph obtained from G[B(Sr,S2)] by adding all edges between non- 

adjacent vertices of St and all edges between non-adjacent vertices of S2. 

We distinguish between two types of 2-blocks. 

Definition 24. A 2-block %(Sr , &) of G is degenerate if Sr c S2 or S2 c St. Otherwise 

the 2-block is proper. 

Our major goal in the next three sections is twofold. On one hand we show that the 

l-blocks of any realization of a l-block or 2-block of the given graph G = ( V, E) is 

again a l-block or a 2-block of G, assuming that certain conditions are fulfilled. On 

the other hand, we establish equations for the recursive computation of the treewidth 

and the minimum fill-in. 

Recall the strong relation between a graph G and a minimal triangulation H of G 

with respect to their minimal separators and the vertex sets of components as described 

in Theorem 2.10. 

5. Decomposing l-blocks 

Consider any minimal triangulation H of a given graph G=(V,E). Let S E Gep(H) 
and let B = (S, C) be a l-block with realization R(S, C). Let x and y be non-adjacent 

vertices in H[S U C] and let S* be a minimal x, y-separator in H. Then S* C S U C by 

Lemmas 2.5. Moreover S and S” are non-crossing minimal separators of H and G by 

Lemmas 2.6 and 2.11. 
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We study how the removal of S* can decompose the realization of a l-block 

B = (S, C). The next three lemmas describe all possible cases and give equations for 

calculating the treewidth and the minimum number of edges in a triangulation. 

Lemma 5.1. Let B = (S, C) be a l-block of the graph G = (V, E). Let S’ c S. Then 
for any minimal triangulation H of G with S*,S E GepfH) and S* minimal separator 

of H[S u C], H[(S u C)\S*] h as exactly two connected components, namely, H[S\S*] 

and C. Hence 

tw(R(S, C); S”) = max (ISI - 1, tw(R(S*, C))) (8) 

and 

met(R(S,C);S*) = met(R(S*,C)) + (‘z’) - (:“;I). (9) 

Proof. C and H[S\S*] are each connected induced subgraphs of H[V\S*]. Thus an 

edge between a vertex of C and a vertex of S \S* would indicate that S’ is not a 

separator of H[S U C]. 

Thus for any minimal triangulation H of G with S,S* E Gep(H), the components of 

H[(SUC)\S*] are H[S\S*] and C. Since H[SUC] is a minimal triangulation of R(S, C) 

by Lemma 3.1 and since S’ is a minimal separator of H[S U C], Theorem 2.10 implies 

that S* is also a minimal separator of R(S, C) and the vertex sets of the connected 

components of R(S, C)[(S U C)\S*] and H[(S U C)\S*] are the same. 

Thus the l-blocks of the graph R(S, C) with respect to the minimal separator S’ 

are B1 = (S*,R(S,C)[S \ S*]) and B2 = (S*,C). Notice that the realization RI = 

(S’, R(S, C)[S\S*]) of B 1 is the complete graph on vertex set S. 

The definition of tw(G; S) implies tw(R(S, C); S*)=rna~j=1,2,...,~ tw(R(S*, Cj)), where 

Cl, c2, . . . , C, are the components of R(S, C)[(SUC)\S*]. Consequently, tw(R(S, C); S* ) 
= max( ISI - 1, tw(R(S*, C))). 

The definition of met(G; S) implies met(R(S, C); S’) = (1 - t)(lsZ*l) + 

xi=, met(R(S*, Ci)), where Cl, C2, . . . C, are the components of R(S,C)[(S U C)\S*]. 

Consequently, we obtain met(R(S, C); S*) = met(R(S*, C)) + (‘:I) - (Is; I). 0 

We have demonstrated in this proof how the knowledge of the connected compo- 

nents of H[(S U C)\S*] for all minimal triangulations H of G with S,S* E Gep(H) 

and S’ a minimal separator of H[S U C] can be used to compute tw(R(S, C);S*) 
and met(R(S, C);S*). Using the definitions of tw(G; S) and met(G;S) this only re- 

quires to know all the l-blocks of R(S, C) with respect to the minimal separator S’. 

This part is omitted in the proofs of the Lemmas 5.2 and 5.3, since it can be done 

analogously. 

Lemma 5.2. Let B = (S, C) be a l-block of the graph G = (V, E). Let S c S. Then 
for any minimal triangulation H of G with S*,S E &p(H) and S’ minimal separator 
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of H[S u C], the connected components of H[(S U C)\S] are exactly those connected 

components Cl, CZ, . . . , Ct of H[ V\S*] for which Cj C C, j E { 1,2,. . . , t}. Hence 

tw(R(S, C); S*) = max tw(R(S*, C,)) 
i=1,2,...,f 

(10) 

and 

IS”1 met(R(S,C);S*)=(l -t) 2 
( > 

+ 5 met(R(S*, Ci)). 
i=l 

(11) 

Proof. S c S* implies that the vertex set of any component of H[V \S*] is either a 

subset of C or disjoint from S U C. 0 

Lemma 5.3. Let B = (S, C) be a l-block of the graph G = (V,E). Let S g S and 

S* g S. Then for any minimal triangulation H of G with S*,S E Gq(H) and S* 

minimal separator of H[S U C], the connected components of H[(S U C)\S*] are 
H[8(S,S*)\S*] and the components C1,C2,...,Ct of H[V\S*] with CjcC, j E 

{1,2 ,..., t}. Hence 

WW3, Cl; S*) = max (W% (S,S* >I, ,=‘p;~ I WW”, Ci)>) , , 1 

(12) 

and 

IS*1 met(R(S,C);S*)=met(%(S,S*)) - t 2 
( > 

+ & met(R(S*, Ci)). 
i=l 

(13) 

Proof. First we show that 23(&S*) c S U C. Let z E !B(S,S*). Assume z $Z S. Then z 

and S*\S are contained in one connected component of H[V\S]. Since S*\S # 0, and 

S* c S U C, it follows that z is a vertex of C. 

S* is a minimal x, y-separator in H. Since S and S* are non-crossing minimal 

separators of H, S\S* is contained in one component of H[V\S*]. Therefore x and 

y cannot both belong to %3(&S*). It follows that 23(S, S’) #S U C. Hence 23(&S*) C 

su c. 

Now we prove that %(S,S*)\S* is indeed the vertex set of a component of H[(S U 

C)\S*]. S g S* implies that there is one connected component A of H[V\S*] containing 

S\S*. Moreover, ‘B(S,S*) \ S* is also contained in A. 

Let X be an arbitrary component of H[C\S*]. Assume that the vertices of X are 

contained in a connected component Y of H[V\S*]. Clearly X = Y implies that X is 

a component of H[V\S*] with X 2 C. If X # Y, then Y must contain S\S*, hence 

X LA. Moreover there is exactly one component X of H[C\S*] with X # Y. On 

the other hand, X is contained in C which is the component of H[ V \ S] containing 

S” \S # 0. Therefore in this case we have X U S U S* = B(S,S*). 0 

Notice that the above lemma requires the study of 2-blocks. 
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6. Degenerate 2-blocks 

Degenerate 2-blocks are very easy to handle. Here we obtain simple equations for 

the computation of ny(‘% (St,&)) and met(% (St,&)). First we consider the case that 

St and S2 are not equal. 

Lemma 6.1. Let B(St,&) be a degenerate 2-block of G with S1 c&. Then 

MS (S1,S2)) = max NW&G)) 
i=1,2,...,t 

(14) 

and 

met@ C%,S2)) = (1 - t) 
IS21 

( > 
2 + kmeWW2,G)), (15) 

i=l 

where Cl,Cz,..., C, are the connected components of G[V\S2], for which the vertex 

set is contained in the component of G[V\S,], that contains S2\S1. 

Proof. ‘B(S1, S2) consists of a minimal separator St and the vertex set of the connected 

component A of H[V\St] that contains Sz\St. Hence 23(St,&)=S1 UA, where B=(St,A) 

is a l-block of H and G. However, the realizations of %(St, S2) and B = (St, A) may 

not be equal, since S2 is a clique in ‘33 (St, S2) but Sz is not necessarily a clique 

in R(St, A). Nevertheless, S2 is a minimal separator of G with S2 c St U A. Hence 

&v(%(St,S2)) = tw(R(&,A);S2) and met(% (Sl,Sz)) = met(R($,A);&). Lemma 5.2 

implies Equation 14 and 15. 0 

For the case St = S2, the following lemma can be obtained. 

Lemma 6.2. Let !B(S,S) be a degenerate 2-block of the graph G = (V, E). Then 
% (S,S) is the graph obtained from G by making a clique of S. Hence 

tw(‘R (S, S)) = max 
i=1,2,..., f 

W(R(S, Ci)) (16) 

and 

met(% (S, S)) = (1 - t) 
ISI 

( ) 
2 + h met(R(S, Ci)), (17) 

i=l 

where Cl,&..., C, are the connected components of G[V\S]. 

Consequently, the treewidth and the minimum number of edges in any triangulation 

of a graph G can be computed as follows: 

(18) 

(19) 

WG) = SGz$Gj ~PW, S)), 

met(G) = s~n~~~o) met(%(S,S)). 
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7. Decomposing proper 2-blocks 

This section shows how realizations of proper 2-blocks are decomposed when a 

minimal separator (of a certain type) is removed. The lemmas give equations for 

calculating the treewidth and the minimum number of edges in a triangulation of the 

realization of a proper 2-block. Recall that 23(Si, &) is a proper 2-block if Si e SZ and 

82 $zSl. 

Lemma 7.1. Let 23(&,&) be a proper 2-block of the graph G = (V,E) and let H 

be any minimal triangulation of G such that &,S2 E Gq(H). Let x, y be non- 

adjacent vertices of H[B(&,&)] and let S’ be a minimal x, y-separator of H. Then 
the following holds: 

1. s* c B(S,,Sz) . 

2. S1 and S are non-crossing in G and also S2 and S’ are non-crossing in G. 

3. S* #S, and S’ # S2. 

Proof. By Lemma 4.1, the 2-blocks of Si and S2 in G and in H are equal which 

enables us to analyse H instead of G. By assumption Sz\Si # 0. Consider the connected 

component A of H[ V \S,] that contains &\Si . Clearly x and y are both contained in 

!B(Si,Sz) 2 Si U A. It follows by Lemma 2.5 that S* is also contained in Si U A. 
Hence S*\(Si U &) and &\Si are both contained in the component A. One can show 

analogously that S*\(Si U &) and Si\S2 are contained in one connected component of 

H[V\&]. This implies S* c 23(Sl,S2). 
Since Si, S2 and S* are minimal separators in H they are pairwise non-crossing in 

G by Lemma 2.11. 

Consider again the connected component A of H[ V\Sl] which contains &\Sl . Since 

x and y are both contained in Si U A, S1 cannot be a minimal x, y-separator. Hence 

Si # S*. Analogously S2 # S*. 0 

The following assumptions of Lemma 7.1 are also made in all the subsequent lemmas 

of this section without mentioning all of them explicitly in each lemma. We assume 

that 23(&, S2) is a proper 2-block of the graph G = (V, E) and that H is any mini- 

mal triangulation of G such that Si,S2 E &p(H). Furthermore we assume that x and 

y are non-adjacent vertices of H[B(Si,Sz)] and that S* is a minimal x, y-separator 

of H. 
Lemmas 7.2-7.4 consider the degenerate cases for the decomposition of the realiza- 

tion of a proper 2-block B(Si, &) by the removal of a minimal x, y-separator S* of G 

with x, y E %3(St, SZ). 

Lemma 7.2. Let B(S1, &) be a proper 2-block of the graph G =( V,E). Let Sl, S2 c S’. 
Then for any minimal triangulation H of G with S*, Sl, Sz E &p(H) and S* a 
minimal separator of H[B(S,,&)], the connected components of H[!B(Sl,&)\S*] 
are those connected components D1, . . . , Dt of H[V\S*] for which DjcB(S,,S2), 
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j E {1,2 ,..., t}. Hence 

tW(%(S~,&);S*) = max tw(R(S*,Di)) 
i=1,2,..., f 

and 

IS*1 met(%(St,S2);S*)=(l -t) 2 ( > + 5 DZt?t(R(S*,Di)). 
i=l 

(20) 

(21) 

Proof. Let A be a connected component of H[V \ S*]. Either A c %(Sl,&) \ S* or 

A n (fW1,~2)\S*) = 0, since A is a connected induced subgraph of H[V\(S, U &)I. 

Thus the connected components of H[23(&, &)\S*] are those components Dt,. . . , II, 

of H[V\S*] for which Dj C S(St,&), j E { 1,2,. . . , t}. 

We claim that the chordal graph H[B(&,&)] is a minimal triangulation of %(SI, S2). 

Since H is a minimal triangulation of G, each edge e E E(H)\E(G) is unique chord of 

a cycle of length four in H, by Corollary 2.8. Let e={a,b} be an edge of H[%(SI,S~)] 
and suppose a vertex z of the cycle with unique chord e does not belong to b(St , S2). 

Without loss of generality z is not in the component of G[V\St] containing &\St . 

Since a and b cannot both belong to the clique Sr of %(St,&), they are not both 

adjacent to z, a contradiction. 

Since H[B(St,&)] is a minimal triangulation of %(Sl,S2) and since S* is a min- 

imal separator of H[B(,$,&)], S* is also a minimal separator of %(Sr,S2) and the 

components of H[~~(SI,&)\S*] and %(S~,S2)[23(St,&)\S*] are the same. 

Therefore the l-blocks of the graph %(Sr, S2) with respect to the minimal separator 

S* are BI=(S*,DI),B~=(S*,D~) ,..., Bt=(S*,DI). 
Now the Eqs. 20 and 21 follow immediately from the definitions of tw(G; S) and 

met(G; S), analogously to the proof of Lemma 5.1. 0 

We have demonstrated in this proof how the Eqs. (20) and (21) can be obtained 

easily, if the components of H[B(&,&)\S*] are known. This part is omitted in all 

subsequent proofs, since it can be done analogously. 

Lemma 7.3. Let 23(St,S2) be a proper 2-block of the graph G = (V,E). Let S1 c S’ 
and &\S* # 0. Then for any minimal triangulation H of G with S*,S1,& E &p(H) 
and S’ a minimal separator of H[d(S1,S2)], the connected components of 
H[23(S1,&)\S*] are the connected components Dl,..., D1 of H[V\S*] with Dj & 

wv,S,), _I- E {LZ..., t}, and H[23(&,S*)\S*]. Hence 

tw(!R(St,&);S*) = max (tw(‘WS2,S*)), izyf~. t MR(S*tDi))) 
, , > 

(22) 

and 

met(%(&,&);S*) = -t + met(%(&,S*)) + 5 met(R(S*,Di)). 
i=l 

(23) 
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Proof. Consider the connected components of H[V\S*]. One of these, say A, con- 

tains Sx\S*. The vertex set of any other component of H[ V\S*] is either completely 

contained in %3(Si,Sz) or disjoint from it. 

Let z E %3(Si,Sz) n A. We show that z E %(&,S*). If z E &\S* this is clear, hence 

assume z E A\&. Since z E 23(Si, Sz), it is contained in the connected component of 

H[V\Sz], that contains St\&. By Lemma 7.1 S* c B(Sl,&), hence also S*\S2 is in the 

component of H[V\&], that contains Si\&. Hence z is in the component of H[V\&] 

that contains St\&. Since z is also in the component of H[ V\S*] that contains &\S*, 

it follows that z E !ZJ(&,S*). 

Finally, we have to show that 23(S*,S2) C B(St,&). Let z E 23(S*,&). If z E S* US2 

then clearly z E 23(Si,S;!). Hence assume z 6 S* U &. Then z is a vertex of A. Since 

Si c S’, the vertex set of A is contained in the connected component of H[ V\Si] that 

contains &\ Si . 

Furthermore, z is in the connected components of H[V\&] that contains S*\&. This 

component also contains Si\&. Consequently, z E 23(Si, S2). q 

Lemma 7.4. Let B(S,,&) be a proper 2-block of the graph G = (V,E). Let S* c SI 

and S* c S2. Then for any minimal triangulation H of G with S*, SI,& E Gep(H) and 
S* a minimal separator ofH[B(Sl,&)], 23(S1,&)=S1~!$ and the graph H[B(SI,&)] 

has exactly two maximal cliques, namely, SI and S2. Hence 

tw(%(S1,S2)) = max(lSll - 1, IS21 - 1) (24) 

and 

met(%(SI,&);S*)= (‘:I) + (‘:I) - (I”;). (25) 

Proof. For i E { 1,2}, let Ai be the connected component of H[V\S*], that contains 

Si\S*. Notice that the connected component of H[V\Sl] that contains &\Si is exactly 

AZ, that the connected component of H[V\&] that contains S1\S2 is exactly Al and 

that Al # AZ, since otherwise S” would not be a minimal separator of H[23(&,&)]. 

Hence Si n S2 = S* and 23(Sr,S2)\(S1 U S2) = Ai n A2 = 0. 0 

Lemma 7.5. Let B(&,&) be a proper 2-block of the graph G = (V, E). Let S* c SI, 
S’ g S2 and S2 g S*. Then for any minimal triangulation H of G with S,S1,& E 
Gep(H) and S’ a minimal separator of H[B(&,&)], the connected components of 
H[B(&,&)\S*] are H[&\S*] and H[B(&S*)\S*]. Hence 

WW%,S2);S*) =max (IS,1 - Lf+GW2,S*))) (26) 

and 

met(%(&,&);S*) = met(%(&,S*)) + (I”;‘> _ (IT/). (27) 
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Proof. For i E { 1,2}, let Ai be the connected component of H[ V\S*] that contains 

Si\S*. The connected component of H[V\Si] that contains Sz\Sl is AZ. It follows that 

‘23(Si,&)\Si CAZ, hence 93(Si,S;!)~A2 uSi. 
Let z E 23(Si,&)\s1. We show that z E %(S*,&). By definition, z is in the component 

of H[ v\s2] that contains Si\csi. This component also contains S*pz, since S* c B(S,, &). 

Since z is a vertex of AZ, it follows that z E %3(S*,&). 

It remains to show that B(S*,&) C S(Si,&). Let z E 23(S*,&)\(S* u S2). Then z 

is in AZ. Hence z is in the component of H[V\Sr] that contains &\Si. 

Furthermore, z belongs to the connected component of H[ I’\&] that contains S*\&. 

Since S*\& # 8, this component is uniquely determined and contains also SJ \S2, since 

Si is a clique containing S*. Consequently, z E %(Si, S2). 0 

Recall that any minimal triangulation H of an AT-free graph G is an interval graph 

by Theorem 2.13. 

Lemma 7.6. Let H be a minimal triangulation of G into an interval graph. Let 

Sl,& E Gep(H), SI # S2, S* a minimal separator of H[23(Sl,&)] and &\S* # 0, 
S&S # 0. Then &\S* and S&Y* are contained in diflerent connected components of 
H[ V\S*]. 

Proof. Since H is an interval graph, there is a consecutive clique arrangement 

A,,A2, . . . , A, of H. By Theorem 2.4, there are indices i and j such that Si = Ai n A,+1 

and &=AjnAj+i. Assume i < j. Then the 2-block of Si and S2 is contained in 

lJj,_+, Ak. Let S* be a minimal x,y-separator of H[!B(Sl,&)]. Hence x and y belong 

to %(S1,S2). Thus there is an index i < k < j such that S* =Ak nAk+,. Consequently, 

Sr g S* and S2 g S* implies that S’ separates Si\S* and &\S*. 0 

The following lemma treats the last and the most important case for the decom- 

position of the realization of a proper 2-block by the removal of a suitable minimal 

separator S* of G. It is the only lemma requiring an additional assumption on the 

minimal triangulations H to which the lemma can be applied. This forces indeed a 

significant restriction for possible applications of our approach. 

Lemma 7.7. Let ‘B(Sl,&) be a proper 2-block of the graph G = (V, E). Let Si g S* 
and S* g Si for i E { 1,2}. Then for any minimal triangulation H of G with S’, S1,S2 E 
Gep(H) and S* a minimal separator of H[B(S,,S2)], that separates S,\S and S2\S* 

into d@erent components of H[V\S*], the connected components of H[B(Sl, S2)\S*] 
are H[23(Sl,S*)\S*], H[B(&,S*)\S*] and the connected components Dl,. . . , Dt of 

H[V\S*] with DjcB(S1,&), j E {1,2 ,..., t}, that are contained neither in the 
component of H[V\S*] containing Sl\S* nor in the component of H[V\S*] containing 
&\S*. Then 
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and 

met(%(S~,S2);S*) = (-4 - 1) IS*1 

( > 
2 + met(%(S,,S*)) 

+met(%(S2,S*)) + h met(R(S*,Di)). 
I=1 

(29) 

Proof. For i E { 1,2}, let Ai be the connected component of H[ V\S*] which contains 

Si \ S* . By our assumptions, S2\ S’ and Si\ S* are contained in different connected 

components of H[V\S*]. Hence Al and A2 are indeed two different components of 

H[ V \ S’]. Then the vertex set of any connected component of H[V \ S*] different 

from Al and A2 is either a subset of 23(St,&) or disjoint from 23(&,&). Notice that 

23(Sr,S*)\S* CA1 and B(&,S*)\S* cA2. 

Now let z E AI n 23(S1,S2). We show that z E 8(Si,S*). Since z and S’ \Si are 

both in ?I3(Si, &), and since S’ \Si # 8, it follows that z and S* \Sr are contained 

in one connected component of H[V\Si]. Since z is a vertex of Al, it follows that 

z E %(S*,S’). 

We now show that 23(Si, S*) C 23(Si, SZ). Let z E B(Si, S’). Since Si&S’* # 0 it follows 

that z E S’ UA,. If z E S* US, then z E %3(Si, S2). Hence we may assume that z E AI\&. 

Now z and S*\Si are in one connected component of H[V\Si] since z E !-8(Si,S*). 

Since S* c !ZJ(Si,&) and S*\Si # 8, this component of H[V\Si] also contains &\Si. It 

follows that z and S@i are in the same connected component of H[ vi]. z E Al implies 

that z is a vertex of the component of H[V\&] that contains Si. Thus z E 23(Si,&). 

Consequently, Al n !XJ(Si,&) = B(S*,S1)\S*. 

Al n 23(4, &) = 23(&, S* )\S* can be shown analogously. 0 

Note that the assumption of the lemma is fulfilled for all minimal triangulations of 

an AT-free graph G by Lemma 7.6 and since any minimal triangulation of an AT-free 

graph is an interval graph. 

8. The algorithms 

We present algorithms for computing the treewidth and the minimum fill-in of the 

input graph. The algorithm computing the treewidth works correctly, if there is a mini- 

mal triangulation of the input graph G into an interval graph H with tw( G) = o(H) - 1. 

The algorithm computing the minimum fill-in of the input graph G works correctly, if 

there is a minimal triangulation of the input graph G into an interval graph H with 

met(G) = IE(H)I. H ence both algorithms work correctly for AT-free graphs. 

Both algorithms are very similar. They only differ in the equations, that have to be 

used in the recursion phase (step 5). First we describe the algorithm computing the 

treewidth. 

Step 1: List all minimal separators of the input graph G = ( I’, E) using the algorithm 

of [I 11. 
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Step 2: For every minimal separator S of G and every connected component C of 

G[Y\S], compute the l-block B = (SC) and IS U C(, i.e., the number of vertices of 

R(S, C). 
Step 3: For each pair of minimal separators St and SZ of G, check whether St and & 

are non-crossing. If so, compute the 2-block 23(S1,&) and I‘B(Sr,S2)\, i.e., the number 

of vertices of ‘%(St,&). 

Step 4: Order the blocks by increasing number of vertices (no matter whether they 

are l-blocks or 2-blocks). 

Step 5: In the order of step 4, compute for each block the treewidth of its realization. 

If the realization of the block is a complete graph then its treewidth is the number of 

vertices of the block decreased by one. Otherwise, there are three possible cases. 

Step 5.1: The current block is the l-block B = (S, C). 

For each minimal separator S* of G, check whether S’ is also a minimal separator of 

G[S U C]. If so, compute tw(R(S, C); S*) using the suitable equation of Section 5, i.e., 

Eqs. (8) (10) or (12). Finally, compute tw(R(S,C))=mins* tw(R(S,C);S*), where the 

minimization is over all minimal separators S* of G that are also minimal separators 

of G[S U C]. 

Step 5.2: The current block is the degenerate 2-block B(Sr,$). 

Compute tw(‘sz(S1, SZ)) using the suitable equation of Section 6, i.e., Eq. (14) or 

(16). 
Step 5.3: The current block is the proper 2-block B(St,&). 

For every minimal separator S* of G, check whether S* is a minimal separator of 

G[!B(S1,&)]. If Sr\S* # 0, S2\S* # 0, S*\St # 0 and S*\S2 # 0, then check 

whether St\S* and &\S* are in different components of G[V\S*]. For each S* that 

fulfills the conditions, compute tw(%(St, S2); S* ) using the suitable equation of Sec- 

tion 7, i.e., Eqs. (20), (22), (24), (26) or (28). Finally, compute tw(%(St,S2)) = 

mins. n~(‘%(St,Sz); S*), where the minimization is over all minimal separators S* 

of G that fulfill all the conditions (checked at the beginning of 

step 5.3). 

Step 6: Output rninsEGVp(o) ti(‘%(S,S)). 

The algorithm computing the minimum fill-in of the input graph G is quite similar. 

Therefore we only mention the differences to the treewidth algorithm. Clearly, in step 

5 of the algorithm the equations concerning the maximum number of edges in any 

triangulation of the realization of the block have to be used. Finally, the algorithm 

computes met(G)=minsccep(o) met(%(S,S)) by Eq. 19 and outputs mfi(G)=met(G)- 

lE(G)I. 

Theorem 8.1. There is an 0(n5R + n3R3) algorithm computing the treewidth and the 
pathwidth of any given graph G, that has a minimal triangulation H such that H is an 
interval graph and tw(G) =o(H) - 1. There is an 0(n5R+n3R3) algorithm computing 
minimum fill-in and minimum interval graph completion of any given graph G, that 
has a minimal triangulation H such that H is an interval graph and met(G)= [E(H)]. 
Here R is the number of minimal separators of the input graph G. 
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Proof. Let G = (V,E) be the input graph. Using the algorithm listing all minimal 

separators of any given graph, presented in [I 11, all minimal separators of G can 

be computed in time 0(n5R). G has at most nR different l-blocks and at most R2 

different 2-blocks. Clearly, steps 24 of the algorithm can be done within the stated 

timebound. 

The most time consuming step of the algorithm is step 5.3, that we consider now. 

For each of the at most R2 different proper 2-blocks B(&,&), there are R minimal 

separators S’ of G to check. The algorithm computes the components of G[B(Sl,&)\ 

S*] and checks whether S* is a minimal separator of G[B(&,&)] in time O(n + m). 

G[23(S,,&) \ S*] has at most n smaller components. For any component Di either 

B = (S*,Q) is a l-block of G or Q is subset of the 2-block B(&,S*) and B(Sz.S*), 

respectively. This depends on the inclusion relation of the three sets S1, S2 and S” 

and is specified in the corresponding lemma of Section 7. Hence the corresponding 

l-blocks and 2-blocks can be computed in time O(n2). 

For each of these smaller blocks, we can look up the treewidth of its realization in 

O(n) time using a suitable data structure. Thus we can find the treewidth of a proper 

2-block in 0(Rn3) time. Consequently, step 5.3 can be done in time 0(n3R3). 

It is not hard to see that steps 5.1 and 5.2 can be done in time 0(n3R3) in a similar 

fashion. Hence the algorithm computes the treewidth of G in time O(n3R3) from the 

list of all minimal separators of G. 

The time analysis of the algorithm computing the minimum fill-in can be done 

analogously, since the two algorithms differ only in the equations, which does not 

influence the running time. 

Consider the correctness of the treewidth algorithm. Except in the case of Lemma 7.7, 

the algorithm computes the correct value of the treewidth of the realization of the 

current block, if the treewidth of the realizations of all the smaller blocks is correct. This 

is shown for a l-block in Lemmas 5.1-5.3 and for a proper 2-block in Lemmas 7.2-7.5, 

and 7.7. 

Unfortunately, to make sure that tw(%($, S2); S*) is computed correctly, if S1, S2 

and S* are pairwise incomparable by inclusion, we must require that S* separates S,\S* 

and $\S*. If H is a minimal triangulation into an interval graph, then such a minimal 

separator S* exists by Lemma 7.6. If there is a minimal triangulation of G into an 

interval graph H with &J(G) = o(H) - 1, then the algorithm computes tw(‘%(S~,&>> 

correctly, since a minimal separator S” with hy(%(&, SZ)) = tw(%(Sl, S2); S) exists 

for all non-crossing separators SI,& E 6e+~(G), as long as S(&,&) is not a clique 

of G. Therefore the algorithm computes the treewidth of the realization of any block 

correctly and by Eq. (18) the output is indeed tw( G). 

Analogously, the correctness of the minimum fill-in algorithm can be shown. 

Finally, note that the two different assumptions on the input graph G imply m(G) = 

pw(G) and msi<G) = &c(G), respectively. 0 

Theorem 2.13 implies that the conditions of Theorem 8.1 are fUlfilled for all AT-free 

graphs. 
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Corollary 8.2. There are 0(n5R + n3R3) algorithms computing the treewidth, path- 

width, minimum Jill-in and minimum interval graph completion of a given A-c-free 
graph, where R is the number of minimal separators of the input graph. 

9. Conclusions 

Certainly, the 0(n5R+n3R3) algorithms to compute the treewidth and the pathwidth 

as well as the minimum fill-in and the minimum interval graph completion of a given 

AT-free graph are polynomial time algorithms if the class of input graphs is restricted to 

any subclass of the AT-free graphs that has a polynomially bounded number of minimal 

separators. Of course this does not lead to competitive timebounds for graph classes 

such as permutation graphs or trapezoid graphs. 

The situation is more interesting for the d-trapezoid graphs and their proper subclass, 

the cocomparability graphs of dimension at most d, for any fixed positive integer d b 3. 

Any d-trapezoid graph (with n > 2) has at most (2n-3)d minimal separators [17] (see 

also [lo, 131). Hence the running time of the two algorithms is O(n3d+3), if the input 

graph is a d-trapezoid graph, d > 3 a fixed integer. 

But there is still a problem. Unfortunately, the recognition problem for d-trapezoid 

graphs, and also the one for cocomparability graphs of dimension at most d, is NP- 

complete for any fixed d B 3 [23]. Even worse, no good approximation algorithms are 

known for the dimension and the interval dimension problem of partially ordered sets. 

Consequently, for each fixed d > 3, we cannot check whether the input graph is indeed 

a d-trapezoid graph in polynomial time. However exactly this assumption guarantees, 

that R is bounded by a polynomial in n and that we obtain polynomial time algorithms 

to compute the treewidth and the minimum fill-in. 

Nevertheless there is an easy solution to this dilemma. We emphasize that the cor- 

responding polynomial time algorithms do not require an intersection model as part of 

the input and that they will also not compute an intersection model. We describe how 

to modify the algorithm for d-trapezoid graphs, for any fixed d 2 3. The approach is 

similar for cocomparability graphs of dimension at most d. 
The input is a graph G = (I’,,!?) and no intersection model is required as part of 

the input. If the input graph G is not a d-trapezoid graph, there are three possi- 

ble outcomes. If G is not a cocomparability graph, which can be checked in time 

O(n’) [20], then the algorithm rejects the input. (Here O(n’) is the time for mul- 

tiplying two binary n x n matrices.) If G is a cocomparability graph, the algorithm 

lists t minimal separators of G in time 0(n5t), if G has at least t minimal separa- 

tors, using the algorithm of [ll]. We set t = (2n - 3)d + 1. If the number of min- 

imal separators is larger than (2n - 3)d, then the algorithm rejects the input, after 

finding t = (2n - 3)d + 1 minimal separators of G. If the number of minimal sep- 

arators is at most (2n - 3)d and G is a cocomparability graph, then the algorithm, 

computing the treewidth and pathwidth (or the minimum fill-in and the minimum 

interval graph completion) of AT-free graphs, presented in the previous section, is 
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applied to G and computes the parameter correctly, even if G is not a d-trapezoid 

graph. 

Corollary 9.1. For each d 2 3, there exist 0(n3df3 ) time bounded algorithms to com- 
pute the treewidth, pathwidth, minimum Jill-in and minimum interval graph completion 
of a given d-trapezoid graph, and hence also of any given cocomparability graph of 

dimension at most d. The algorithms do not require an intersection model as part of 

the input. 

Proof. The listing algorithm is used up to at most (2n - 3)d + 1 minimal separators, 

thus its running time is O(nd+5). Suppose the input graph is a cocomparability graph 

and has at most (2n - 3)d minimal separators. Then the corresponding algorithm of 

Theorem 8.1 is applied to G. This algorithm has running time 0(n5R + n3R3). Since 

the input graph has at most (2n - 3)d minimal separators, the algorithm works in time 

O(n sd+3). 0 

Finally we would like to emphasize the relation of our results to the dimension of 

partially ordered sets. The dimension is one of the most carefully studied parameters 

of a partially ordered set [21]. Yannakakis showed that determining whether a partially 

ordered set has dimension at most d is NP-complete for any fixed d 2 3 [23]. Many 

problems have been shown to be efficiently solvable on partially ordered sets of di- 

mension two. In fact the initial motivation for our research was that no NP-complete 

partially ordered set problem had been known, that is solvable by a polynomial time 

algorithm for partially ordered sets of some fixed dimension greater than two. 

We have shown that the problems TREEWIDTH, PATHWIDTH, MINIMUMFILL-IN and INTER- 

VAL GRAPH COMPLETION are problems, for which restricted dimension helps. On the other 

hand, the problems are NP-complete (for cobipartite graphs and hence) for cocompa- 

rability graphs, when the dimension is unbounded [ 1,221. 
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