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Abstract 

A class of local nonlinear stationary subdivision schemes that interpolate equidistant data and that preserve monotonicity 
in the data is examined. The limit function obtained after repeated application of these schemes exists and is monotone for 
arbitrary monotone initial data. Next a class of rational subdivision schemes is investigated. These schemes generate limit 
functions that are continuously differentiable for any strictly monotone data. The approximation order of the schemes is 
four. Some generalisations, such as preservation of piecewise monotonicity and application to homogeneous grid refinement, 
are briefly discussed. (~) 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

In this article, we examine four-point interpolatory monotonicity preserving subdivision schemes. 
These schemes are used for interpolation of  univariate data that are uniform and monotone increasing 
(or decreasing). 

Interpolatory subdivision schemes are based on iterative refinement of  a data set. The usual subdi- 
vision schemes roughly double the number of  data points every iteration. Overviews on subdivision 
schemes can be found in, e.g., [3, 6, 7]. Many subdivision schemes however fail to preserve mono- 
tonicity in the data. Linear monotonicity preserving subdivision schemes are discussed in [19], but 
the schemes discussed there are not interpolatory. Monotonicity preservation of the interpolatory lin- 
ear four-point scheme [5] is discussed in [2]. The author determines ranges on the tension parameter 
such that the scheme is monotonicity preserving. Since the tension parameter depends on the initial 
data, the resulting subdivision scheme is stationary but data dependent. 
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We restrict ourselves to subdivision schemes that guarantee the preservation of  monotonicity in 
the data. It is stressed that there is an analogy with [16] (and [15]) in which convexity preserving 
interpolatory subdivision schemes are examined. The same constructive approach is used, and so there 
is a similarity in some of  the proofs. The remark in [16] that convexity preserving interpolatory 
subdivision schemes generating C 1 limit functions must necessarily be nonlinear also holds for 
monotonicity preserving schemes. The schemes examined in this article are stationary and they do 
not contain any data-dependent tension parameter. 

The overview of this article is as follows. Section 2 states the problem and the class of schemes 
under investigation. The condition for preservation of  monotonicity is derived in Section 3, and in 
Section 4 convergence to a limit function is examined. The analysis for convexity preservation in 
[16] led to a scheme that is unique in some sense, if convergence to a C 1 function is required. 
Requiting convergence to a C~-smooth monotone function leads to a larger class of  subdivision 
schemes however. Sufficient conditions for convergence to a C 1 limit function are given in Section 5, 
and since these conditions are too complex for constructing explicit subdivision schemes, we restrict 
ourselves to a specific class of  schemes, namely rational subdivision schemes, see Section 6. Section 7 
shows that these schemes have the property that ratios of  adjacent first order differences tend to 1 as k 
tends to infinity. For any initial monotone data these schemes converge to continuously differentiable 
limit functions (see Section 8) and have approximation order four (Section 9). Some generalisations 
are briefly discussed in Section 10: e.g., piecewise monotonicity and application to homogeneous 
grid refinement which is a useful property for subdivision schemes for functional nonuniform data. 

2. Problem definition 

First, we state the problem that is examined in this article. 

Definition 1 (Problem definition). Given is a finite bounded data set {(t~°),x} °)) E R2}N=0, where the 
data are uniform, i.e., t} ° )= ih, where h > 0 is the mesh size. The data are assumed to be monotone, 
i.e., x} °) ~< ~i+l,"(°) Vi, or x} °) ~> X~+l,(°) Vi. Subdivision in t is defined as t~ k) = 2-kih, i = 0,. .. ,2kN. The aim 
is to characterise a class of subdivision schemes that are interpolatory and monotonicity preserving 
if the data are monotone. The second goal is to restrict this class of  subdivision schemes to schemes 
that generate continuously differentiable limit functions and are fourth order accurate. 

First we make a remark how to treat the boundaries, see [16]. Every initial monotone data set 
t'÷(0) v( 0)'t'(N fz÷(0) ~(0)-t-i N+2 ~,i ,~; JJi=0 can be extended in an arbitrary but monotonicity preserving way to tt'~ ,~; )fi=-2, 

such that the limit function is defined in the whole interval I = [to(°), t(N0)]. This means that all relevant 
index set {0, . . . ,  2 N}. Thus, all relevant properties on the kth iterate are easily shown to hold for the k 

r,(°) t(O)l rt(k) t (k) 1 properties are consistently proved on the original domain 1 = t-0 , "N J = k'0 ' "2*NJ" 
A constructive approach is used to derive monotonicity preserving subdivision schemes. Without 

loss of  generality, we consider monotone increasing data, briefly denoted as monotone data. 
We restrict ourselves to the following class of  schemes: 

.x(k+~) _ ~(k) 
2i - -  A i  , 

(k+l )  1 ~(k)__ (k) ~_ Z~(k) _(*) v(~) ~(t)  ~ ( 1 )  
X2i+l 5(Ai ) -[- = "- '~Xi+ 1 V l l . ~ i _ l , . ~  i , . ~ i + l , . ~ i + 2 } ,  
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for some function GI. This implies that 
1. the subdivision schemes are interpolatory, 
2. the subdivision schemes are local, using four points. 

First order differences sl k) are defined by 

slk) . _  _(k) . (k) 
" - - A ' / + I  - -  '&i " ( 2 )  

Subdivision scheme (1) can then be rewritten in the following form: 

x ( k + l )  . (k) 
2i = Ai  , 

x(k+l) I ~(k) ,.(k) ~ (k) -- (k). (k) (k) (k). (3) 
2i+1 ~('~ +~+1)  + GE(~(X~ --__ --1- Xi+ 1)~si_l~Si ~Si+l), 

where G2 is another function representing the same class of subdivision schemes. 
The third condition on the subdivision schemes deals with invariance under addition of  constants: 

3. The subdivision scheme is invariant under addition of constant functions, i.e., if the data 
_(o) (o). t i ,xi ) generate subdivision points (t~k),Xlk)), then the data ,~(0) (0) t.t~ ,x i + #), with g E • yield subdi- 

vision points (t~k),x~ k) + #). 

Imposing this condition yields 

x ( k + l )  1," (k) -t- . . (k)  "t l (k) __ (k) -, (k) (k) (k) x 
2i+1 -~- ]2= ~[,Xi " ~i+l }"~ g " ~  G2( ~(Xi "1- Xi+l ) "31- ]2, S i - l , S i  ,Si+l ) 

It follows that G2 cannot depend on its first argument. Condition 3 therefore yields that subdivision 
scheme (3) must be of  the following form: 

x ( k + l )  o (k )  
2i = xi , (4) 

x ( k + l )  1 ~ (k )  . (k) x ~ ,- (k) (k) (k) 
2i+1 ~--- 2(A' i  - 4 - ' ~ ' i + l ) ' q -  t 'J3tSi-l 'Si  ' S i + I ) "  

Next we add a natural requirement on the subdivision schemes: 

4. The subdivision scheme is homogeneous, i.e., if initial data ,¢t ¢°).i , ~;"(°)') give subdivision points 
(,(k) ,,(k)~ then initial data (t~ °~, 2x~ °~) yield points (t~ k), 2x~k)). 

A direct consequence of  homogeneity of the subdivision schemes is that the function G3 is homo- 
geneous: 

Ga(2a, 2b, 2c) = 2Ga(a, b, c), V2. (5) 

Subdivision scheme (4) then necessarily reproduces constant functions, i.e., if  x~°)= got then x~k)=/~0 
(take 2 = 0 in (5)). 

Further simplification of  the representation of subdivision scheme (4) is obtained by using the 
homogeneity of  G3 in (5) as follows: 

G : (k) (k) (k) x ~(k)[- 2 [~(k) 1 ]p(k)  ~ _ _  le(k)(-7.(~.(k ) D(k) 
3~Si-l ,Si  ,S i+l)- - '~ i  "-J31,ti , ~',~t"i+ll-- 2°i ~ \ ' i  ~ a " i + l ) ~  
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where ratios of adjacent first differences are defined by 

r~ k):=s~)l/s~k) and R~ k)= 1/r~ k), (6) 

and the function G is defined by G(r,R):=2G3(r,  1,R). 
Since it follows in the next sections that G is a bounded function, this reformulation of G does 

not cause problems in case s}k)= 0. 
The class of subdivision schemes (1) is rewritten in the form: 

x(k+l) (k) 
2i ~ X i  , 

(7) 
x(~+l) i ~(k)_ (k) ls(k)~f,.(k) rT(k) 

2i+1 2(a'i ) "q- ) '  "l- X i + l  2 i ""'~," i '*~'i+1 

and it is this subdivision scheme that is examined in this article. 

Remark 2. Note that the class of subdivision schemes (7) automatically satisfies conditions 1-4. 

The next general assumption on the subdivision scheme concerns with invariance under affine trans- 
formations of the variable t: 

5. The subdivision scheme is invariant under affine transformations o f  the variable t, i.e., if the 
initial data (t~°),x} °)) yield subdivision points (t/{k),X}k)), then the data (2t}°)+ #0,x}°)), with/~0E~ 
yield subdivision points (2t}k)+/~0,x} k)) for 2>0,  and (2t}k)+/~0,-x~ k~) for 2<0.  

By taking 2 = - 1 and/t0 = 0 in Condition 5, it follows that G is anti-symmetric under interchanging 
its arguments, i.e., it is obtained that 

G(r ,R )=  - G(R,r),  Vr, R, (8) 

which directly implies G(r, r) = O, gr. Under this condition on G, subdivision scheme (7) necessarily 
reproduces linear functions, i.e., if x}°)= 21t~°)+/q, then x} k)= 21t~k)+ #t (as sl~)= 21h, r} k)= 1, Vi). 

Remark 3. Invariance under addition of linear functions is not a natural condition in case of mono- 
tonicity preservation, in contrast with convexity preservation (see [16]). 

In the following sections, we discuss conditions for monotonicity preservation and smoothness 
properties of subdivision scheme (7) satisfying (8), which requires additional conditions on the 
function G. 

3. Monotonicity preservation 

In this section, we examine monotonicity preservation of the class of four-point interpolatory 
subdivision schemes (7) satisfying (8). 
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Theorem 4 (Monotonicity preservation). Subdivision scheme (7) satisfying condition (8) preserves 
monotonicity if and only if the subdivision function G satisjes 

(G(r,R)I d 1, Vr,R 2 0. (9) 

Proof. Monotonic&y preservation is achieved if and only if the scheme generates differences that 
satisfy 

s?) > 0, Vi, Vk. 

Therefore assume that for some k, the data xjk’ satisfy .sy) 2 0, Vi. Necessary and sufficient for 
monotonicity preservation is that the differences in the data at level (k + 1) are also nonnegative, 
i e s!~+‘) > 0 vi * *, I 

Two diffkences s(!+‘) 7 21 and sgli’, have to be analysed: 

s(k+u =x(‘f+‘) 
21 22+1 - &$“) = i(~!k) + J$\ ) + fsik)G(v,(k), RI:‘, ) _ x?) 

= i(xi:‘, - ny)) + ~sjk’G(r,‘k’,R~~),) 

= $vik’( 1 + G(ry), RI:‘,)), (10) 

‘2ifl 
(k+‘) = -J@&) @+I) _!k) 

- x2i+l r+l - f(_xr’ + ,I$:‘,) - f,yjk’G(ri(k’,Rf~\) 

= i(~jt\ - xi(k)) - ~s~)G(r~k),R~~\) 

= fsy’( 1 - G(ry), R$‘, )). (11) 

Since sik) 2 0, it is necessary for monotonicity preservation that 

1 + G($‘), RI:‘,) 2 0 and 1 - G($), R$‘,) 2 0, 

which yields that condition (9) is sufficient for monotonicity preservation of subdivision scheme (7). 
Since we consider arbitrary monotone data, this condition is also necessary. q 

Remark 5 (Preservation of strict monotonicity). A sufficient condition for preservation of strict 
monotonicity is: 

3~<1 such that IG(r,R)I d p, Vr,R>O. 

Remark 6 (Nonlinearity). Observe that the function G must be necessarily nonlinear for monotonic- 
ity preservation and Cl-smoothness of subdivision scheme (7): the only scheme that is polynomial 
in its arguments and that satisfies (9) is given by GE 0. The resulting two-point subdivision scheme 
however, generates the piecewise linear interpolant as limit function, which is obviously only Co. 

Remark 7 (The linear four-point scheme). The well-known linear four-point scheme of Dyn, 
Gregory and Levin [5] with w = l/16 is given by the function 

C?(r, R) = i(r - R). (12) 

Since this function G is linear, it obviously cannot satisfy the monotonicity condition (9). 
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4. Convergence to a continuous function 

In this section convergence of  subdivision scheme (7) to continuous limit functions is investigated. 
The proof follows the lines of  the proof of  existence and continuity of  the limit curve generated by 
the linear four-point scheme in [5]. 

Theorem 8 (C°-convergence). Given is a monotone data set {(t~°),x~ °)) E R2}i, where t~ °) = ih. The 
k th  stage data l t t  (k) x (k)~l, defined at values tff ) =2-k ih .  t~ i , i j j i  a r e  

Repeated  application o f  subdivision scheme (7) satisfying 

3 # < 1  such that [G(r,R)[ <~ t~, Vr, R >~ O. (13) 

leads to a continuous funct ion  which is monotone and interpolates the initial data points  .~(o) (o), [[i ' X i  )" 

Proof. The interpolatory property of  the subdivision scheme is a direct consequence of the definition 
x(k+~) (k) 2i = xi . Preservation of  monotonicity of  the subdivision scheme was shown in the previous sec- 
tion. Therefore, the continuous function x (k), defined as the linear interpolant to the data {(tff),x}k))}i, 
is monotone. 

Remains to prove that the sequence of  functions x (k) converges, i.e., the limit function 

x (~) := lim x (k) 
k---~ oo  

exists and is continuous. Sufficient for convergence is that x (k) is a Cauchy sequence in k with limit 
0, i.e., it suffices to show that 

Ilx (k+l) -x<k)n~ ~< C02~ where C 0 < c c  and 20<1.  

The distance [Ix (k+l) -x(k)[[~¢ is calculated by 

[[X(k+l)__X(k)[[ = m / a x m a x { _ ( k + , ) x } k )  ..(k+,) , ~(k)X(k) , [~  A,2i - -  _ , • ' ~ 2 i + 1  ~(A, i -t- / + l j l .  [ 

,(k+2) = 2_k(i + ½)h for The maximal distance between the functions x ~k) and x ~k+~) occurs at a point ,2i+1 
some i, which thus gives, using condition (9) 

..(k+l) 1 ~(k) (k) 
= - +xi+l)  I 11 x ( k ÷ l )  - -  x(k) l [oo  mrx "&2i+l 2 ( A ' i  

1 (k ) . - , .  ( k ) n ( k )  
= -max: si trtri ,/~i+l)l 

1 (k) (k) 1 m/axs}k). (14) ~< g m/ax [G(ri ,Ri+l) I max 

We now prove that max~ s} k) converges to 0. Using (10), (11) and monotonicity condition (9), it is 
obtained that 

maxi 5"i : maxi . . . . .  t°Zi ' °2i+1 J = ~ max{s /  ( -1- G(r i ,Ri+ 1 ))} 

~< ½(1 + #)maxs} k). 
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Combining this result with (14) yields 

l .  max s (°) ( 1 +/~ ~k 

As # < 1, this proves convergence of  x (k), and since all functions x (k) are continuous by construction, 
the limit function x (~) is continuous. [] 

5. Convergence to a continuously differentiable function 

In the previous sections, we derived sufficient conditions on the function G such that the sub- 
division scheme preserves monotonicity and that a continuous limit function exists. An additional 
sufficient condition on the scheme such that it generates continuously differentiable functions is 
presented in this section. 

Theorem 9 (Cl-convergence). Given is a strictly monotone data set {(t}°),xl °)) E ~ 2 } i  , where t~ °) = 
ih, with h >0. The kth stage data {(t}k),X}k))}i are defined at values t} k) =2-~ih. 

Let the function G satisfy (13) and the Lipschitz condition 

3 >0, Vx, y: IG(x+e ,y+e2)-G(x,y)l B, Ilell =, Bl< . (15) 

Moreover, subdivision scheme (7) has the property that the ratios o f  adjacent first order differences, 
defined in (6), obey 

3 p < 1 :  max max r,. (k), - <~B2p k, B2<oo. (16) 

Repeated application of  such a subdivision scheme 9enerates a continuously differentiable function 
which is monotone and interpolates the initial data points (t}°),xl°)). 

Proof. Starting from a strictly monotone data set {(t~k),X}k))}i, first order divided differences yl k) in 
the data are defined by 

,.(k) ~(k) 
- -  "~i 2k t~c (k  ) 

'a ' i+ 1 - -  (17) y},) . . . .  x } %  = 2k s k) 
t <k) - t~ k) h k ~ i + l  h i • 
i+ l  

The function y(~) is defined as the linear interpolant of the data points (t~++~),ylk)). All functions 
y(k) are therefore continuous by construction. 

It has to be proved that the functions y(k) converge to a function y(~), and secondly this y(~) 
must be the derivative of x (~), defined in the previous section. 

Sufficient for convergence of  the sequence of  functions y(k) is that they form a Cauchy sequence 
in k with limit O, i.e., there must exist a 21 < 1 and C~ E ~ such that 

Ily (k+') - y(*)ll  cl .l k. (18)  
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By construction, the maximal distance between the functions y(k+l) and y(k) occurs at a point 
,~(k+l) satisfy ,(k+2) = 2_k(i + j/4)h, for some i and j ,  and these distances -4i+j ~4i+j 

d(k+~) v(k+~)t~(k+2)~ ,,(k)tt(k+2)~l (19) 4i+j ~ : k~4i+j  ] - -  .7 ~. 4i+j 11" 

Subsequent application of  (19), (17), and the subdivision relations (10) and (11 ), for example yields 
~/(k+l). for the distance -4i+~ • 

d ( k + l ) ' ( k + l ) { l ( k ) ]  )1 = ~ -  2~2i 4 i - 1  3 4i+1 = Yzi --  ~ Y i - ,  + Yl k) 2k _ ( k + l ) _  l s (k )  _ Slk) 

2 k 1: (k) s(k) ~ (k).-,. (k) ,.(k) .1 
h 4 tsi i-1 : + . ~ _ _  - -  S i l r ~ r  i , /1[i+1 ) 

2kS(k) ]1 p(k)) 
= -h- i (1 - r/(k)) + G(r/(k),..i+ 1 , 

and the other distances are determined similarly: 

2 k 1 (k).-.. (k) R(k). 1 ~(~) ~:r(k) R(k)~l 
' ° r ( k + l ) - -  -2Si I'ff( i , i + l ) - -  -4i  - - - h  , '1 

4i+1 - -  h -  i ( 1  - ~ ( k ) )  + (7~[..(k) D(k)  - -  ~.~ ~ l~  ~ / ' r t i +  1 , 

d(k+~) 4i+2 ~-- 0~ 

ct 4i+3 . / ( k+  l) : T i 2 k s ( k ) [ ~  (1 _ ~t~'i+ 1 -* j~(k) ~ __ (-r~rir"~" (k ) , /X i+  1 n (k )  ) . 

The distance a(k+l) is easily estimated with "~4i 

2 k 
.4(k+1) k) m IG(r/(~), ~'(k) L~4i ~ - -  max s~ x )[, 

and thus, it is obtained that 

2 k J iG(r(k),R~k+~)l, 1 r(k)) + .-,. (k) ,,(k) ~l max I. - (1  o ( r  i , t t i+l: l ,  max d) k÷~) ~< - - m a x  s}~)max 
J h ~ " 4 

~(1 o(~) °(k) ) } • "i+1 ) - -  G(r/(~), (20) - -  * ~ ' i + 1  " 

Subsequently, we apply assumptions (15) and (16), and also use the fact that G(1, 1 ) = 0 ,  see (8). 
The function G can now be estimated as follows: 

- ~(k) 
• -'Vi~t"(k),*'i+~O(k) )l = Gtr'(~), R ( k ) ~  i i+1 : ~ - G(1, 1)l ~< B~ [[(r~ (~) - 1,aXi+l - 1)11 ~ 

<<. B3p ~, 

where B3 < o c .  According to (10) and (11), the first part of  (20) can be estimated as 

( Gr'(~),R(~) ) -(~) _(k+l)  1 l + m / a x  I ( i  i+,)l m/axsi <~t(l+B3p~k)miaxs} ~), max a.,. ~< i 
i 
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which yields 

k k--I 

f=0 

Since 1 + x ~< e x, we obtain 

I'[(1 +Bap ~t) <~ 1-Iexp(B3p~e)= exp B3 p ~  
~=0 f=0 ~=0 / 

= exp B31 i - ~-7 ~< exp =: B4 < ~ ,  

and hence 

_(k) ~< B4 max _(0) max a i ~ a i • 

The second part of (20) is estimated as 

(k) (k) l ,,-~r (k) n(k) ~1 max max{lG(r~ ,Ri+l) [, [~(1 - -  F/(k)) -~ ~.r~r/ , /~ i+1/ I ,  1¼(1 - a~-i+t°(k) J~ - Gtr(k), R ( k ) ~  i i+1JiJal~ ~< BsI) k, 

where 

/5:= m a x ( p , p ~ } < l  and B s : =  max(2Bl,1 ~B2,B3}. 

We complete the proof of  (18) with 

[[y (~+') - y~k)ll~ = g B4B5 m a x  sI°)¢3 k =B6/~ k 

with 

B4B5 m a x  ~(0) < c ~ ,  
B 6 : =  ----if- 2i i 

211 

Remark 10 (The linear four-point scheme). Note that minimisation of the second part of (20) 
yields the linear four-point scheme [5] given in (12), i.e., the linear four-point scheme is "as smooth 
as possible". 

as t5 < 1. The remaining part of  the proof is to show that also y ( ~ ) = x  (~)', i.e., y(k) converges to the 
derivative of  the limit function x (~). This can be done by the standard approach using the uniform 
convergence of Bernstein polynomials: the derivative of  the Bemstein polynomial determined by the 
data {xlk)}i on the interval [x~°),x~ )] is the Bemstein polynomial of  the data {y}k)}i on the same 
interval. This is described in [5]. The limit derivative y(~) is C °, so the limit function x (~) is C t, 
which completes the proof. [] 
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6. Construction of rational subdivision schemes 

In this section we restrict the class of subdivision schemes to schemes that generate continuously 
differentiable limit functions. 

Since G cannot be polynomial, see Remark 6, a relatively simple restriction is achieved by choos- 
ing the function G of a specific nonlinear form: a rational function. Observe that the convexity 
preserving subdivision scheme in [16] is also rational. 

Theorem 11. Let the data x} °) be drawn from a strictly monotone and four times continuously 
differentiable function g, as follows: 

x~ °) = g(ih). 

Assume that the function G is rational and bilinear in the numerator and the denominator, and 
additionally require that G satisfies monotonicity condition (9). 

Then, subdivision scheme (7) can only have approximation order four if  G is of  the form 

r - R  
G(r,R) = (fl ,  f2, •3) E £2, (21) 

g° 1 "]- ( 1  "]- ~ 2 ) ( r  "~- R )  "31- f3rR 

where the triangular domain f2 is defined as 

£2= {(¢l,t~2,g3), such that ¢1,(2,¢3 >~ 0 and ¢1 +2t~2 + ~'3 =6} .  (22) 

Proof. The class of  rational functions G where the numerator and the denominator are bilinear 
functions in r and R is denoted by 

bl + b2r + b3R -'k b4rR 
G(r,R) = b5 + b6r + b7R + b8rR where bj E •. (23) 

First, we impose conditions on the parameters bj that are necessary for fourth order accuracy of the 
subdivision scheme. Necessary conditions are achieved by application to initial data that by definition 
satisfy ~0)=~0)  and therefore r~ (°) =~o),  using the rational function G as in (23) compared with 
the linear function (~ as in (12). It is easily checked that the following condition is necessary for 
fourth-order accuracy (see also Section 9): 

(1) _.-r(l) ls(0) ~t,.C0) oc0) ~ ~ [ r  (°) R (°) ~1 = O(h4), 
X2i+ l  - - 3 ~ 2 i + t [  ~--- 2 i ""k*i  , a t i + l /  - -  k i , i + l ] r  

where 

r c0)= g(ih) - o((i - 1)h) and p(0) g((i + 2)h) - 9((i + 1)h) 
* ' i+1  g((i + 1)h) - g(ih) g((i + 1)h) - g(ih) 

Since _(0)_ O(h), it must hold that d~" i - -  

Gt--C°) ,co) ~(r/(O), RlO~ ) = O ( h  3 ). 
\ l i  ~ 1~-i+1 ) - -  

Combining these constraints on the parameters bj with condition (8), one easily obtains that the 
function G can be written in the form 

r - R  
G(r,R) = gl + Eo(r + R) + rR(8 - 2Y0 - fl  )" (24) 
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Additional necessary conditions on the values of [o and [l in (24) are determined by condition 
(9) and the requirement that G may not contain poles for positive values of r and R. A simple 
calculation shows that necessarily 

[o~> 1, [1 ~>0, 8 - 2 1 o - [ t  ~>0. 

Defining [ 2 = ¢ 0  - 1 and ¢3 = 6 -  [1 -2[2 yields that the function G can be written as (21). [] 

Remark 12. A simple calculation shows that the subdivision scheme with G in (21) reproduces 
quadratic polynomials if [3 =0 ,  i.e., [1 + 2¢2 =6,[1 , (2  ~> 0. 

Remark 13. It is easily checked that G in (21) satisfies condition 5 from Section 2. 
In addition, note that G in (21) automatically satisfies the following natural property: 

• G(r ,R*)  is strict monotone increasing in r, at fixed R* >/0. 
• G(r* ,R)  is strict monotone decreasing in R, at fixed r* /> 0. 
Applying (8) yields that such a function G also satisfies the natural condition 

G(r,R)>O, Vr>R>O.  

Remark 14. In the special case ¢~ =2 ,  [2 = 1 and ¢3 =2 ,  the function G in (21) reduces to 

G c ( r , R ) =  ~ I + R l + r " 

In this case, the subdivision function (21) can be factorised as a difference of two univariate functions 
in r and in R respectively. This factorisation is only possible for this specific choice of the parameters 
gl, E2 and [3. 

In this section, we showed that the class of subdivision schemes (7) with (21) satisfies neces- 
sary conditions for approximation order four. It is proved in Section 9 that this class of rational 
monotonicity preserving interpolatory subdivision schemes has indeed approximation order four. 

To be able to prove the smoothness properties and approximation order four, we use some ad- 
ditional properties on subdivision scheme (7) with (21). These properties are discussed in the next 
section. 

7. Ratios of first-order differences 

In this section we investigate the behaviour of ratios of first-order differences obtained after ap- 
plication of subdivision scheme (7) with G as in (21). 

7.1. Boundedness o f  difference ratios 

In this section we prove that the ratios of adjacent differences in iteration step k + 1 are bounded 
by the maximum of the ratios of differences in iteration k. 
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Theorem 15. Define numbers q}k) and q(k) by 

q~k):=max r / (k ) ,~  and q(k):=maxqlk)'i (26) 

Then, application o f  subdivision scheme (7) with (21) yields 

q(k+~) ~< q(k). (27) 

Proof. Let the data x} k~ be given and its ratios of differences r~ (k~ as defined in (6). Since r2(~+~ l) can 
..(k) be written as a function of Ft.(k) and ,i+~,"(k) and r:(f +~) as a function of r~ I, r~ (k) and ,;+~, we prove here 

that ratios of first-order differences at level k + 1 are bounded as follows: 

, ..(k+~) ~< max r~ (k), r~k ), 'i+~,"(k) ~ 1  
~2i+1 ri+l 

and 

.< m a x  

F t' Ft'+ 1 ) 

We illustrate the proof by the treatment o f  F2(/k+~ 1). Since the properties that must be proved contain 
maximum functions, the proof has to enumerate several situations depending on the size of the t) (k). 
We, therefore, order the ratios ~)(k) in size. The proof is based on treating all partitions separately. 

Consider the case that "" (k) ~/Ft+t is maximal, i.e., one of the following two partitions is valid: 

r(k) ~< Ft.(k) 1 1 (28) +~ ~ ~ 1 ~< r/- ~ ~< ..(k) 
/i+1 

o r  

Ft(k) 1 Ft(k) 1 +l ~< ~ ~<1 ~< ~< ~ .  (29) 

Then it must be proved that 

1 . (k+l) 1 1 
. (k) r2 i+ l  i> 0 and . . (k) r2(/k+~l ) ~> 0. (30) 
5+~ r/+l 

AS an example we give the construction for the second partition (29). A convenient transformation 
of variables, 

Ft.(k)_ 1 and r~(k)= 1 + x 1 1 where x, y />  0, 
+ l - - l + x  + y  

is substituted in (30). Inequalities (30) then result in rational expressions that must hold for all 
x,y>~O. 

By requiring that both the numerator and the denominator of such an expression is positive (or 
negative), it is sufficient for positiveness of the rational expression that the coefficients in both the 
numerator and the denominator have the same sign. 
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The construction for the even ratios &?‘) requires a more sophisticated substitution for three 
variables (I;?{, $) and $,‘) in each partition. As an example for the partition 

the substitution 

$4 1 _ 2+1 _- 1 +x’ $+lfX- 1 1+y’ ,Jk) _ 1 z -1+x& where X, y,z 3 0, 

has been used. Again it is required that the coefficient in the numerator and the denominator have 

the same sign. 
The coefficients however depend on the parameters 8, and 42 (note that L3 = 6 - e, - 2e2). By 

enumeration over all different expressions to be proved and all different partitions, a large set of 
constraints ci(e,, 4,) > 0 is constructed in this way. Since we have to prove the validity of many 
constraints, the calculations are performed using algebraic manipulation software. We used Maple [4] 
to generate all equations and to solve the constraints. It is algebraically checked that all constraints 
lie outside the domain 0 defined in (22) or on its boundary. As an illustration, all constraints 
cj(e,, e,) = 0 are shown in Fig. 1. Since in addition cj(2,l) > 0, Vj, it is thus proved that cj(8,, L’,) 
> 0, V(e,, L2) E Q\aQ. The conclusion also holds for Q including its boundaries, since all rational 
expressions are continuous. 

It is thus shown in this proof that 

&:) < max{qfk),q$),}, Vi, 

&+‘) < max{qj?,, qjk’, q$‘I}, Vi 

which completes the proof. 0 

This result is also maximal in a single step relation between two subsequent subdivision iterations: 

Theorem 16. Let the numbers q ck) be defined as in Theorem 1.5. Then, in general, there does not 
exist a p< 1 such that 

4 ck+‘) - 1 <p(q’Q - 1). 

Proof. Consider the data xi’) with differences sy) satisfying 

&O) - a s(O) = b -1-9 0 > $‘)=a and $‘=b where a>b>O. 

The maximum ratio q(O) is equal to 

p 

4 (~L+$>l, 
SO 
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~,.~'~,~1~ . ~ J / T i ~ ~ \ \ \ l  

_ 2  I I I I I I 

- ,  -2  0 2 4 6 ~Pl 8 10 

Fig. 1. The constraints c ; ( ( l , f2)=0.  

and because of  the symmetry of  the scheme, one subdivision yields 

s~l) b S~')= a q(') S~ 1~ a = q(O). 
=2' 2 ~ - -U--b 

This counterexample shows that the maximum ratio in general does not become smaller in a single 
subdivision iteration. [] 

Next it is proved, using a double step strategy, that the ratios r~ k) converge to 1. 

7.2. Strict convergence o f  difference ratios 

In the previous subsection, Theorem 16 indicates that we cannot establish convergence of  the 
difference ratios to 1 using a single step strategy. In this section, we prove that ratios converge to 
1 using a double step strategy. 

Theorem 17. Let  the numbers q(k) be defined as in Theorem 15. Then 

q(k+2) _ 1 <<. 3(q(k) _ 1 ). (31) 
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Proof. It is proved that the q~k+2) satisfy 

q(k+2) 5 (k) 
4i--1 -- 1 ~< ig (max{qi_ l, ql k), qi+l.r-(k) 1 _ 1), 

q(k+2) 3 ~ r (k) (k) (k) ~ 1), 4i - -  1 <~ xtmax'tqi_l ,q~ ,qi+ll  - 

q(k+2) 5 -  r (k) (k) (k) 
4i+1 - 1 <-..-gl.max~tqi_l,qi , q i + l l -  1), 

q(k+2) ~ lz____ f_(k)  _(k) (k) (k) 
4i+2 - 1 -.~ ~lmax-tq i_ 1, qi , qi+l, qi+2.~ - -  1 ). 

To illustrate the proof, we examine the first pair of  inequalities: 

..(k+2) _(k+2) 
5 rai- 1 -- 1 5 r4i- 1 - 1 
16 ~ (k) (k) (k) >/0 and + ~>0. 

max ' tq i - l ,q i  , q;+l } - 1 1-6 maxl~,(k)t~li_l,tli~,(k),tti+lf~(k) a _ 1 
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Using the same approach as in the proof of  Theorem 15, constraints on fl  and ~2 have been 
generated. Again, it is algebraically checked that all constraints lie outside the domain f2, see (22), 
or on its boundary. This proves that the theorem holds for all ( f l , f 2 ) E  f2. The result can be written 
a s  

m j a x { r ' k + 2 ) , r , l + 2 ) ) - - l < < . 3 ( m ~ a x { r ' k ) , + } - - i  ) 

and this completes the proof. [] 

The factors 5/16, 3/4 and 1/4 have been conjectured by an asymptotic analysis on arbitrarily 
chosen data xi (0) with r~°)= 1 + 6ie, where 0 < e  << 1 and (~i E [--1, 1]. The proofs however, are given 
for general data. 

3 Remark 18. Numerical experiments show that the factor ~ cannot be improved by optimising the 
parameters Yl and f2: all parameter choices within the triangle f2 give the same contraction factor. 

8. Convergence of rational subdivision schemes 

It is proved in this section that subdivision scheme (7) with (21) preserves monotonicity and 
generates continuously differentiable limit functions. 

Theorem 19 (Monotonicity preservation). Subdivision scheme (7) with G given in (21) preserves 
monotonici ty .  

Proof. The function G satisfies (9), which is a direct result from the construction in Section 6. [] 

With respect to convergence, the following theorem holds: 

Theorem 20 (C°-convergence). L e t  the same  conditions hoM as in Theorem 8. 
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Then, repeated application o f  subdivision scheme (7) with (21) leads to a continuous function 
which is monotone and interpolates the initial data points ( t~°),x} °)) i f  f2 > 0  or the initial data are 
strictly monotone. 

Proof. First, if  ~2 > 0, it is shown that G satisfies 

f f  l r - -  R E3rR r + R 
[a(r'R)l = + ( 1  + fT)-(r+ R) + ~ffl +(1 + f 2 ) ( r + R ) + E z r R  

r + R  1 
~< (1 + f2)(r + R )  - 1 + f ~  -- /~<1,  (32) 

i.e., G satisfies condition (13). If the initial data are strictly monotone, we remark that the ratios of  
first order differences r~ k) can be estimated using Theorem 15: 

/r, 1} l~<maxmax k ) , ~  ~<q(0)<ec. 
ri 

The function G defined in (21 ) is monotone in both arguments, see Remark 13, and hence is maximal 
in the case 

r}k) = q(O) and o(k) • -i+1 = 1/q (°), 

which yields that G can be estimated as 

(k) (k) (q(O))2 _ 1 
[G(ri ,Ri+I)I ~< (El + Y3)q (°) + (1 + f2)((q(°)) 2 + 1) = / ~ <  1, (33) 

which proves (13) for all ( ( l , f2,f3)E~2,  as q(°)<e~. [] 

Concerning C~-convergence, we can formulate the following result: 

Theorem 21 (Cl-convergence). Let  the same conditions hoM as in Theorem 9, and let the data be 
strictly monotone. 

Then repeated application o f  subdivision scheme (7) with (21) leads to a continuously differen- 
,J(o) (o). tiable function which is monotone and interpolates the initial data points (ti ,xi ). 

Proofi As the function G is continuously differentiable in r and R, for all r, R ~> 0, it satisfies Lipschitz 
condition (15). It is shown in Section 7 that this function G yields that ratios of  adjacent first-order 
differences converge to 1, i.e., the Cl-requirement (16) is satisfied. [] 

The analysis of  the subdivision scheme for monotone, but not strictly monotone data is more 
difficult to examine. At any diadic point the left and right derivative can be proved to be equal, 
but this is not sufficient for convergence to a continuously differentiable limit function. Numerical 
experiments however show that the subdivision scheme yields limit functions that are continuously 
differentiable even in such cases: 

Conjecture 22 (Always Cl). Let the same conditions hold as in Theorem 9, but let the data be 
monotone but not necessarily strictly monotone. 
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Table 1 
The data set used in the numerical example 

t~ °) - 2  - 1 0 1 2 3 4 5 6 7 8 

x(O) - 2  - 1  0 1/2 1 6 6 7 8 9 10 
i 

6 

5 

4 

3 

2 

1 

0 / "  i i i 

0 1 2 3 

t 

i i 

4 5 

f 
i i i i i 

1 2 3 4 5 6 

Fig. 2. The limit function obtained by the monotonicity preserving scheme (with dl = 2, d2 = 1, f3 = 2) and the linear 
four-point scheme. 

Repeated application of subdivision scheme (7) with (21) leads to a continuously differentiable 
function which is monotone and interpolates the initial data points (t}°),x}°)). 

In the following example we show the graphical capabilities of  the subdivision scheme and illus- 
trate tension control that is provided by the parameters Y~, E2 and (3. 

Example 23 (Numerical example). Consider the uniform data set defined in Table 23. Some visual 
results are shown after repeated application of subdivision scheme (7) with G in (21). 

First, the limit function is shown in the interval [t~ °), t~ °)] for the monotonicity preserving scheme 
with the parameter choice El = 2, E2 = 1 and E 3 = 2, see Remark 14, which has proved to generate 
results that are visually pleasing. This result is compared with the graphical performance of the 
linear four-point scheme [5], see (12), in Fig. 2, which clearly does not preserve monotonicity for 
this data set. 

In the next plots, see Fig. 3, we again display the limit function of  the monotonicity preserving 
subdivision scheme with E1 = 2, E 2 = 1 and E 3 = 2, together with its derivative, which is nonnegative 
in the whole interval. 

Finally, it is shown in Fig. 4 that the parameters ~ act as tension parameters. Two extreme choices 
are compared: E1 = 0, Ez = 0, E3 = 6 and El = 3, ¢2 = 3/2, ¢3 = 0 respectively. The first case leads to 
a limit function that is almost piecewise constant in difficult areas, whereas the second choice of  the 
tension parameters leads to an almost piecewise linear function. 
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Fig. 3. The limit function x (°°) and its derivative y(~)  obtained by the monotonicity preserving scheme (with f] = 2, 

g~2 ~-- 1, ~3 = 2). 
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Fig. 4. Tension control illustrated by the limit function obtained by the monotonicity preserving scheme with /1 = 0, 
/2 = 0, E3 = 6 a n d / l  = 3, /2 = 3/2, /3 = 0 respectively. 

9. Approximation order 

In this section, the approximation properties of the monotonicity preserving subdivision scheme 
from the previous sections are examined. Although a simple calculation shows that the scheme 
only reproduces linear functions (and quadratics if/3---0),  it can be proved that the scheme has 
approximation order four. 
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.f/f(0) ~. (0)x ' IN drawn from a strictly Theorem 24 (Approximation order). Consider the data set tvg ,*~ )h=0 
monotone function g E C4(I), where 1 = [t~ °), t(N °)] = [0, 1], such that 

xl °)=g(t} °)) where t} °)=ih and N h = l .  

Define x~ ~) as the limit function obtained by repeated application of  the monotonicity preserving 
subdivision scheme (7) with (21) on the data xl °). 

Then, subdivision scheme (7) with (21) is fourth-order accurate, i.e. there exists a constant C, 
not depending on h, such that 

Ilx  - gll,,o  Ch4, 

provided the boundaries are treated properly. 

Proof. The boundaries are treated first. Note that, using Taylor series of  g in t~ °) and ~N~'(°), any 
strictly monotone function g E C4(I) can be extended to a strictly monotone function ~E C4(i), 
where I =  [ -e ,  1 + el), such that O(x)=g(x), Vx El .  Provided h is small enough, such an e > 0  
always exists. The boundary data points x (°~ x(°~, ,.(0) and ,.(0) which are necessary to determine - 2 ,  " ~ N + I ,  ~ ' N + 2 ,  

the limit function x (~) in I,  are now drawn from this extended function ~. 
To prove fourth-order accuracy, we compare the monotonicity preserving scheme with the linear 

four-point scheme [5] with w = 1/16, see (12). This scheme reproduces cubic polynomials. The data 
generated by the linear scheme are denoted by 07~ k), and therefore 

£(k+1) = ~ ) ,  
2i 

2i+1 ~ - -  q- Xi+2J" 

(34) 

The linear four-point scheme with w = ~ has proved to be fourth-order accurate in [5]: there exists 
a B E E such that 

[ [ X ~ )  - -  g l [ , , oo  <~ Bh4 .  

Starting from the initial data xi" (0)=~o),vi ,  it will be proved that 

Vk 3 Ck <c~  such that max [x~ k) - £i(k)[ ~Ckh 4, 
i 

and 

( 3 5 )  

(36) 

lira C k < ~ .  
k---+cxD 

The proof of (36) is based on induction with respect to k. Clearly, Co = 0, since the initial data 
_(o) =j?10),Vi. Suppose that (36) is valid for some k, it will be proved that satisfy :'i 

maxlx~ ~+'~ --.~Ik+l)[ = max max{ Ix~ +') ~(k+,) ..(k+,) -(k+l) l / c ,  ~4 • , - - A ' 2 i  , A2 i+ I  - - A 2 i + I  f ~ t . . , k + l t t  , 

where a relation between Ck+~ and Ck will be given. The first term gives 

m - "  - -  m a x  Ixl - Y/ )I < GhL ~ & ["¢2i - -  ~ 2i 
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so it remains to estimate 

x(k+l)  - ( k+ l ) l  
2i+1 - -  "~'2i+1 I 

1 ~(k) ,.(k) ~ l ¢ ( k ) ~ ( r ( k )  p(k)  ~ l  = 1{~(~i + - ~ i + l J  71- 2 - i  - - k - i  , ~ t - i+ l / j  - (l(xi(k)-[-3~i+1 (k)) q- lffi(k)G(~(k),Fi4-1(k))}l 

llx~k) __~i(k)] .q_ 1 .,.(k) (k) I '°~k)~t'~k) °(k) ';(k)~t'z(k) fi+,(k))l. ( 3 7 )  ~ 2  2 ~i+1 --)~i+1 @ ~°i "-~\ti , a t / q - l ) - -  ~"i ~ \ - - i  , 

Using the triangle inequality, the last contribution is written as 

Si(k)": ~l,  rifk),/~-i+1 ) - -  n(k)  ~OG(Fi<k),k~+l<k))] 

Ck)..: Ck) --(k) g (k)Ggr(k) O(k) ; (k)(7~[r(k) l~(k) ~ _ ~ (k)Gtr(k) o(k) = si trtri , ~ i + l ) -  i ~ i , ' ~ ' i + l ) T t - ° i  ~ k ' i  ' ' ' i + 1 1  i k i ,ll 'i+l] 

+~ <k)~t,.~k) ~,Ck) ~ _ g<~)G(:<k),k~+(k))[ 

- ]G(ri ,R;+,)] + I : )llG(ri ,Ri+I) 

. . .  <k) ~ k ) . ,  ~k)  ~:~<~) O<k) ~ G(F<~),~i+ ~))]" --t-r~,ri ,1~i+~)[ -Jc °i ~-'\'i , ~ t i + l ) - -  

appendix, we show convergence of the following contributions: 

-<k) - Y~-~) ] max ]G(r~k),Rl~+~ )1 <~A~#~1 h4, (38) max ]b' i 

max. ]g~(~)] max. [G(r}~),RI~+] ) _ t-rl.ri~"~: (k),/~i-t-lr~(k) )[xl ..<A2p~h 4, (39) 

max I~.~)l ~) ~) • m a x  ] G ( r  i , e i+  1 ) - G(ri(k) ,Ri+l(k))[  ~A3#3kh  4, ( 4 0 )  

# j < l  and Aj<cx~, j = 1 , 2 , 3 ,  

are numbers depending on derivatives of  the original function 9. It is easily checked that these 
inequalities are indeed sufficient for conditions (38)-(40) .  The proofs of some of  the estimates are 
given by induction in k. Using Taylor series it is derived that the initial data indeed satisfy the 
estimates. 

Using induction hypothesis (36) together with the estimates (38)-(40) ,  Eq. (37) yields 

x(k+l)  -:(k+l) 1 4 1 4 max 2i+1 - x2i+l ~< -~Ckh + iCkh  + Al#~h 4 + A2p~h 4 + A3#kh 4 
i 

<. Ckh 4 + ~fikh4, 

where A=A~ +A2 +A3 and /7=max{#t,#2,#3}. The coefficient Ck+l now satisfies 

Ck+l ~< max{Q,  Ck + A/7 k } = Ck + .~/7k. 

Since Co = 0, this gives 

-1 - /7k 
C k < < . A - -  ~ lim Ck<<.f4 1 = : A < o ~ .  

1 - / 7  k ~  1 - / 7  
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Having proved the induction step, hypothesis (36) holds. Therefore 

IIx  - gll,,o  - + II h - gll,,o  + B ) h  4, 

which completes the proof, i.e., subdivision scheme (7) with (21) has approximation order four. [] 

Remark 25. Observe that this analysis is only valid for strictly monotone data, i.e., data drawn from 
a function 9 with 9'(z)> O, Vz E 1. Numerical experiments show that if 9 ' ( z )= 0 for some z E I, the 
approximation order in the max-norm decreases to 3. 

Remark 26. More recently, see [12, 17], an alternative proof for the approximation order of sub- 
division schemes is provided. This approach uses the notion of stability of stationary subdivision 
schemes. 

10. Generalisations 

In this section, we briefly describe an extension and look forward to generalisations of the mono- 
tonicity preserving subdivision scheme discussed in this article. 

10.1. Piecewise monotonicity 

The subdivision scheme discussed in this article can be extended to a piecewise monotonicity 
preserving subdivision scheme suited for interpolation of piecewise monotone data. 

We first observe that any monotonicity preserving subdivision scheme of the form (7) is also 
directly applicable to monotone decreasing data. It is therefore only necessary to examine regions in 
the initial data where the differences sl °) change sign and to split the domain in monotone increasing 
parts and monotone decreasing parts. 

If  one of the differences in the initial data is zero, i.e., the case that the differences satisfy s~ °) = 0, 
s(°l < 0 and s~°)> 0, a simple and natural way to split the monotonicity regions is provided by the 
data: the solution in the interval [t~ °), t~ °~] becomes constant. The monotonicity preserving subdivision 
scheme can be applied both on the left-hand side of t~ °~ and on the right-hand side of tl °~. The limit 
function is then monotone decreasing left to t~ °~ and monotone increasing right to t(o °~. In fact, the 
scheme is piecewise monotonicity preserving for these data. 

The general case is characterised by data with differences satisfying s ~  <0,  s~ I <0,  s~ °) > 0  and 
s] °) > O, since all other cases degenerate to this situation after one iteration. We define the split point 
as the point where the differences change sign, i.e., in this case t~ °). 

A simple method to adapt the subdivision scheme to piecewise monotonicity preservation is as 
follows: 
• Apply the monotonicity preserving subdivision scheme to determine r (k) for j <0,  where s~ °) is 

replaced by O. 
• Apply the monotonicity preserving subdivision scheme to determine x~ ~) for j > O, where s~ I is 

replaced by O. 
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The corresponding function GpM of this piecewise monotonicity preserving subdivision scheme can 
be written as 

GeM(r, R)  = G (max{0, r}, max (0, R}), 

with for example G defined as in (21). It is clear that the limit function is monotone decreasing for 
t ~<t~ °~ and monotone increasing for t>~t~ °~. The derivative of  the limit function in t~ °~ is equal to 
zero. Convergence to a continuously differentiable limit function is achieved if conjecture 22 is true. 

10.2. Relation with monotonicity preserving splines 

_An alternative way to derive subdivision scheme (7) with G as in (25) originates from Hermite 
interpolation using quadratic splines, see [18, 11]. 

Consider a strictly monotone data set {(2-ki, x}k))}~ and define Brzier points as follows 

_ _  ? i f )  t~(k ) _ x ( k )  2 ~ (k )  ~ ( k )  _ , . (k)  ~,(k) . (k) I,(k) =x} k) 2-k -k 
t"2i ~ ' k i  , ~2i+!  ~-  4 "' ' t - ' 2 i+3 - -  i+l  4 - ~ i + 1 ,  t - ' 2 i + 4 - - ~ i + 1 ,  

..(k+l) 
where the ~I k) are suitable derivative estimates. Define now the subdivision points x2~+~ as follows: 

- k  
~(k+l) _/~(k) 1 

= 2("~'i -[- Xi+l ) -]- 8 , '~ i  - -  ¢~i+1/" ~2i+1 --u2i+2 ~(bzi+l + b2~+3)= I ~(k) _ (k) 2-~(? :(k) ~ )  ~ (41) 

If the derivatives are estimated using Butland slopes, see [1, 9], i.e., 

~ ) - -  2 Y~-~IY~) (~) ~°(k) -7-~.~g) where y) = 2 ~j , 
Y i - I  --t- Yi 

then subdivision scheme (41) preserves monotonicity and is written as 

[/ S_ i-l(k) s(k) ~(k+l)_ 1~ (k) ..(k) x 1 i+l 
- -  / (k) ~ .(k) slk) ,,(k) ) 

\ ' ~ ' i - - I  T '~i ~ -  ' J i+ l  

= -2~Xi " ~ - ~ i + 1 ) "  + ~ i  ~ r i  ,/~i+1), 

with 

i+1 [ _si_  1 Ga(r~k),p(k) 1 / (k) 
5 = \ i-- I I i "~- Ji+ 1 "q- ~'i+ 1 S i -  1 -Jr- 

2 1 .J- ~i+-(k~l/~i/Ak) 1 -3 I- Si_l/S i J --~ ,ti+ 1 

which coincides with the special case Gc in (25), see Remark 14. 
In fact this approach does not only define a subdivision scheme, but the construction using Brzier 

points also provides an explicit interpolation method using quadratic (B-)splines that is monotonicity 
preserving. 
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R e m a r k  2 7 .  Note that the Butland slope is the harmonic average of two adjacent differences, where 
the convexity preserving subdivision scheme in [16] is a scheme that contains the harmonic average 
of two adjacent second-order differences. 

A relation between rational interpolation and convexity preserving subdivision is observed in [8]. 
There exists also a connection between monotonici ty  preserving rational interpolation and subdivi- 
sion scheme (7) with (21). In [10], a class of rational splines is defined on an interval [t~, t~+~] as 
follows: 

x , ( t )  = 
yixi+lO 2 + (xi~i+l + xi+l~i)0(1 -- 0) + yixi(1 -- O) 2 

Yi 02 q- (~ i+1  q-  ~ i ) 0 ( l  - -  0 )  + y i ( 1  - 0) 2 ' 

where 

t - t~ xi+ 1 --  X i 
- -  and Yi - - ,  IZ/ 
ti+l --  ti ti+l --  ti 

and the ~j are suitable chosen derivative estimates at tj. 
The construction is restricted to equidistant data, and a subdivision scheme is obtained by halfway 

~(k+l) l(t(k) ,(k) ~ This results in the subdivision scheme evaluation of  xt(t), i.e., at ~2i+1 --'~ 2 ' - ' i  -~  ~i+11" 

..(k+l) 1 ,  (k) x (k)" l h ! k  ) _ ¢}k) 
"~2i+1 ='~['2i+1 ) - ~ - 2 t X i  "q- i+l)  ~f- 2 - t  ¢}k) ~_ 2Ax}*) + ¢~,) " 

i+1 

Two choices for the derivative estimates ~k) are presented: the arithmetic mean and the harmonic 
mean: 

~5 ~) ',A..~k' A4*)).  ?:(*' 2 A 4 ~ 1 A 4 * '  
~-  ~k,.a.~j_ l -4- or , j  -- Axe, ) Ax)k), 

j _ l  -•- . 

and both choices yield a subdivision scheme as in (7), and the functions GL and GB are respectively 
given by 

r - R  r - R  
Q ( r , R ) -  and GB(r ,R)= 

6 + r + R  1 + 2 ( r + R ) + 3 r R "  

Both functions are contained in class (21 ), as (~,  f2, f3) = (6, 0, 0) E g], and (El, f2, E3) = (1, 1,3) E ft. 

10.3. Application to grid refinement 

The application area of the subdivision scheme discussed in this article is not restricted to mono- 
tonicity preserving uniform subdivision. In this section we briefly describe the importance of mono- 
tonicity preserving subdivision to grid refinement. 

We examined uniform subdivision schemes applied to data points (~k),X~k)) that preserve strict 
monotonicity. This is exactly the same as subdivision scheme for a grid x~ k) that keeps the grid 
ordered. In addition, the schemes discussed in this article have the property that ratios of first-order 
differences converge to 1, see Section 7. Applying such a scheme to x} k) yields that the grid becomes 
homogeneous, i.e., ratios of the size of  two adjacent cells tends to 1. This is important in applications 
such as grid generation and finite element methods. 
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In case of functional nonuniform data (X}k),f~k)), we propose to apply a suitable monotonicity 
preserving scheme to the data x} k~, e.g., scheme (7) with (21), which makes the grid homogeneous. 
Another subdivision scheme is applied to the data f~k~. This leads to stationary nonuniform subdi- 
vision schemes for functional nonuniform data, which are discussed in a separate report [14]. We 
describe nonuniform extensions of the convexity preserving scheme [16] and the monotonicity pre- 
serving scheme discussed in this article. The approach can also be applied to the linear four-point 
scheme [5]. 

Appendix A 

In this appendix the proof concerning the order of approximation of subdivision scheme (7) with 
G in (21) is treated. A complete proof is given in [13], which is algebraically much involved. 

Lennna A.1 (Approximation order). Let  the same conditions hoM as in Theorem 24. Data x} k~, 
first-order differences sl k) (see (2)) and ratios o f  differences r} k) (see (6)), are obtained by repeated 
application o f  subdivision scheme (7) with (21) on the data x} °~. In addition, data Yi ~k), first-order 
differences gi ~k~ and ratios o f  differences Fi ~k) are defined by repeated application o f  the linear 
four-point scheme 9iven in (34) on the initial data Yi ~°~ =x} °~. 

Then, provided h is small enough, the followin9 estimates hold: 

maxmax/r , 
max sl k) <~ C~p]h, 

i 

max Ig,~k)l ~< C2p~h, 
i 

max [r~ k) ..~k~ - -  Fi+ 1 ] ~ C3Pk3 h2, 
i 

(k) (k) <~ C4Pkah, max ]G(ri ,Ri+l)l 
i 

Gtr(k) R(k) ~ ;~, (k) ,,~k) ,, k 3 max ~ ~ , i+l j -- trtri ,a~+~ )l <<. Cspsh , 
i 

max [r~ k) - F~k~ I <~ C6Pk6 h3, 

~ ,  ~k) ,,~k) , ~(Fi(k),ki+l~k)) I <~ C7p~h 3, max trtr i , a /+~)-  
i 

max [sl k) - gi(k)[  ~ C8p~h 4, 

where 

p j < l  and Cj < c~, j = 0 , 1 , . . . , 8 .  

Proof. It is easily checked that these inequalities are indeed sufficient for conditions (38)-(40), 
i.e., subdivision scheme (7) with (21) has approximation order four. [] 
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The proofs of  some of  the estimates are given by induction in k. It is easily derived that the 
initial data indeed satisfy the following estimates: 

L e m m a  A.2 (Taylor initial data). The initial data satisfy 

{'} m a x m a x  r} °), r/(O---- 5 - 1 ~<llg"][" I[(g')-~ll h, 

m a x ~  ( ° ) =  maxs l  °) ~< Ilo'lih, 

(o) _ r~0) I ~< II(g')-' 112(llg'll IIg'"ll + tlg"l12) h2, m a x  r i+  1 
i 

Fi (°) = r~ °), Vi, 

gi(°) = s~°), Vi, 

where the norm [[f[I is defined as 

[]fll :=  max [f(~)l-  

Proof .  The results are obtained by applying Taylor series around h = 0 on the initial data, where 

s(O) , = g((i + 1)h) - g(ih), 

r~O) = g(ih) - g((i - 1)h) 
g((i + 1 )h) - g( ih) '  

R(O) _ g((i + 2)h)  - g((i + 1)h) 
~+1 - g((i + 1)h) - g(ih) 

As an example, we show that 

It',.( ° ) -  l[ = I g ( i h ) -  g ( ( i - 1 ) h ) _  1 = I g ( ( i +  1 ) h ) - 2 g ( i h ) +  g ( ( i - 1 ) h )  I 
~< max, ~z Ig"(v)l h = IIg"ll II(g')-' Ilh, 

min~ c i g'('c) 

is the estimate for r} °). [] 

In order to be able to prove the other estimates we claim in Lemma  A.1, we need the following 
technical lernma: 

L e m m a  A.3, Let  z (°) satisfy 

O<~z(°)<~Ah n with A < o o  and n > 0 ,  
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and let the following estimate hoM for  z(k): 

M N 

2(k+l) ~< 2(h)z(k) + ~ Bm(h)(z(k))m q- Z Ci(h)t~kihn, 
m = 2  i=1 

with M, N < c~, 0 <~ #i < 1 and rational functions 2, Bm and C~ satisfying 

0~<2(0)<1 and O<~Bm(O),Ci(O)<(x~. 

Then, provided h is small enough, we have 

z (k) <<.A2kh n, Vk, with 2 < 1, J < c~. 

The claims in Lemma A.1 have been proved in [13] by repeated application of Lemma A.3. 
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