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The recently developed double cell technique, which describes the optical response of an arbitrary semi-infinite dielectric 
crystal taking into account internal field effects, is extended to include the response of thick slabs. The surface sensitivity of 
the first technique is fully retained. The implications of the internal field effects on the microscopy of these thick slabs are 
examined for three simple model systems. Further, we investigated under which conditions deviations from classical 
Fresnel-behaviour are to be expected and how important these corrections are. 

1. Introduction 

Transmission of light through thick plates of 
transparent materials, serving as a substrate, 
plays an important role in several commonly 
used spectroscopies, especially those operating in 
the infrared. This kind of IR-spectroscopy is one 
of the few spectroscopies, used in practical 
studies in the field of catalysis and electro- 
chemistry [l-4]. In the experiment one creates 
changes of this substrate, confined to the out- 
ermost layers, like the adsorption of different 
kinds of gases. The occurring variations in the IR 
optical transmission have to be interpreted in 
terms of surface chemical and physical reactions. 
The quality of such an interpretation depends of 
course on the quality of the theoretical model 
used for the interpretation itself. The conditions 
which have to be imposed upon such a theoreti- 
cal model, are particularly severe. At the one 
hand the passage of the light through the sub- 
strate needs to be accounted for, being a macro- 
scopic problem; at the other hand the adsorption 
process needs to be treated correctly, being a 
microscopic problem. These two conditions look 
hard to reconcile. The best solution would be a 
microscopic one, which is also able to account 
for the bulk properties of the slab. In this article 
the so-called thick slab method, which is fully 
capable of performing that task, will be derived. 
The thick slab method is a special implementa- 

tion of the discrete dipole model, which has been 
developed to describe the optical properties of 
dielectric systems and has basically only three 
starting points. This gives the method a high 
transparency from the physical point of view, but 
allows nevertheless for a rigorous microscopic 
description of the problem. The remarkable as- 
pect of the thick slab method is that it yields an 
exact solution. This in turn should give it a 
reliability which goes beyond that of other ap- 
proaches used hitherto (e.g. ref. [2]), where 
inevitably the aspects of the problem which 
could not be incorporated theoretically, had to 
be overcome by quite a lot of assumptions, being 
often difficult to verify. The thick slab method 
further employs the idea of the double cell 
method developed by the authors [5, 61. In this 
double cell method a real space description and a 
normal mode decomposition have been synthe- 
sized successfully to describe the surface reflec- 
tion problem. In the thick slab method analog- 
ously two surface areas are used and in the bulk 
area of the slab the number of normal modes has 
been doubled. Although large parts of this ap- 
proach are of analytical nature, the final solution 
has to be obtained numerically. Also in this 
sense the thick slab method turns out to be 
extremely efficient. In this article the essential 
theoretical aspects of the thick slab method will 
be given. From a number of examples applying 
to very simple slabs of cubic configuration and 
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homogeneous composition, some of the more 
remarkable non-classical aspects of the method 
will be shown. This involves the existence of a 
surface zone at both sides of the slab where rapid 
oscillations (wiggles) in the dipole strength and a 
long wavelength bulklike interference phenom- 
enon occur. The thick slab method allows for a 
conceptual separation of the two. The simple 
slabs which serve as an example, can easily be 
characterized by the ratio a/a,,, where (Y refers 
to the polarizability belonging to the discrete 
dipoles of which the system has been composed 
and (Y,, is a certain characteristic polarizability to 
be defined later on. This ratio is strongly related 
to the ratio in which internal and external fields 
contribute to the local field. For three values of 
this coupling ratio, the microscopic response and 
the macroscopic transmission has been studied. 
As such, an overview has been obtained of how 
the discrete dipole model behaves for thick slabs. 

2. Optical response of dielectric slabs 

2.1. Basics and con&urational requirements 

As said in the introduction it is the aim of this 
ariticle to develop a method to calculate exactly 
the optical response of thick, crystalline dielec- 
tric slabs using the discrete dipole model. This 
method is a direct extension of previous work by 
the authors in this field, notably the double cell 
method to treat the easier problem of the optical 
response of semi-infinite systems [5, 61. From 
this previous work we summarize, prior to treat- 
ing the thick slab method, the necessary ingredi- 
ents. For any dielectric system the optical re- 
sponse can be calculated by means of the dis- 
crete dipole model. All that is required for such 
an approach, is subdivision of the system into a 
number of cells. Number, shape and size of the 
cell can in principle be chosen freely, as long as 
the overall dimensions are small in comparison 
with the wavelength of light. The cells moreover 
are not allowed to exchange charge during their 
interaction with the incident electromagnetic 
wave as a result of the requirement of dielectric 
behaviour. (Note that also metals obey this 

criterion for sufficiently high energies (hw > 
1 eV)). The number of atoms cq. molecules in 
each cell is arbitrary within the limitations given 
before, but we prefer the smallest number pos- 
sible. The position in space of the center of the 
ith cell will be given by rr. Optically the cell will 
be characterized by a polarizability tensor (Y,. 
Through IZloC i, the local field at T;, a dipole 
strength pi is ‘induced. As long as no additional 
restrictions are imposed upon the configuration, 
only three theoretical starting points suffice for 
the description. The fields generated by the di- 
poles are most conveniently calculated by means 
of Hertz-potentials, so: 

Zj(r, t) = & e 

i(klrvr,i-wr) 

jr-rjI ’ (14 

Ej(T, t) = VVT - 3 g Z,(r, t) . ( i (lb) 

pj in turn follows from the principle of induction: 

PjCrj) = OZEloc, j 

= aj(Eczxt(rjl + Edip(rj)) ' (2) 

Here Eext,j 
represents the incoming light beam at 

site rj and Edip,j represents the field from all 
other sources in the system. Using the principle 
of superposition and ignoring time dependent 
factors from here on, we have shown that [7]: 

E,,,(r,) = [(VVT + IA) 2’ -$ gjrzr 
I II I 

’ (3) 

Equations (l)-(3) govern the behaviour of arbit- 
rary systems of discrete dipoles. Prior to continu- 
ing this treatment we give some useful mathe- 
matical conventions, which will be used hence- 
forth in the article: 
- the prime on top of the summation symbol has 

the conventional meaning, i.e. omission of the 
i =j term, 

- given two arbitrary vectors a and b, we take for 
arb the scalar improduct ab and for abT the 
direct product tensor or dyad of the two vec- 
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tom. This convention allows for efficient use of 
the simple but useful identity aT(bcT) = 
(aTb)cT , 

- for any vector u = (u,, uY, uz) we define its 
reflected counterpart u through u = (u,, uy, 

-%I. 

2.2. Systems obeying parallel translational 
symmetry 

In this article only systems will be studied 
which obey parallel translational symmetry. All 
dipoles belonging to such systems, can be as- 
signed to planes and, if we choose (2, j) such 
that any lattice plane lies parallel to the xy- 
plane, we can define any of the sites of plane j 
as: 

rj,“m = ri + s,, 

= rj + ml + ms2 (n, m integers) . (4) 

Here all the s,, build a lattice, spanned by the 
vectors s, , s2, which can always be written as: 

s, = a(l,O, 0) , 

s2 = a(a, P, 0) . (5) 

Basically a is a normalization length which can 
have any value, but for this article it will be put 
equal to the bulk lattice constant. A next re- 
quirement for the fulfilment of parallel transla- 
tional symmetry is that the incoming beam has a 
simple plane wave character: 

E,,,(r) = E, exp(ikr) , (64 

k= (k,,, k) = (4, $3 4) 7 (6b) 

where w represents the frequency and k the wave 
vector. If c equals the light velocity as usual, the 
two quantities are linked through o = ck = clkl. 
Under those assumptions it has been shown [7] 
that a single plane j of discrete dipoles produces 
an electric field E at position r, according to: 

E(r) = $(r)pj , (74 

(7b) 4(r) = &- [[VV’ + k21] Sj(r, k)], , 
0 

S,(r, k) = c ’ exp(ik s,,) 
exp(iklr - rj.,, I) 

n,m Jr- rj,nml ’ (7c) 

The quantity S,(r, k) is the scalar planar lattice 
sum, which further on will be referred to as 
“lattice sum”. The prime in (7~) only becomes 
active if r happens to coincide with one of the 

rj,ntn. In that case the lattice sum is of the 
intraplanar type. The other lattice sums, the 
interplanar ones, will be differentiated between 
interplanar far and inter-planar near, depending 
on whether the distance of r to the plane exceeds 
a certain characteristic length z0 (being about a) 
or not. Through (7) the entire behaviour of 
plane j becomes controlled by only one dipole 
strength pi. As discussed in our previous articles, 
this dipole strength is the characteristic one, the 
only free variable of plane j. Further on indices i, 
j will always refer to those characteristic dipole 
strengths. 

We will not start immediately with the treat- 
ment of the thick slab method. First two simpler 
strategies will be discussed, which have been 
published before, but which contain the neces- 
sary elements from which the thick slab method 
is composed. 

2.3. Limiting cases 

In sections 2.3.1 and 2.3.2 the two limiting 
cases, being thin slabs [8] and crystalline bulk [9] 
will be given. The optical response of thin slabs 
is treated using a real space approach along the 
direction of the surface normal, while that of the 
crystalline bulk is treated using an approach in 
reciprocal space for the same direction by means 
of a normal mode decomposition. In all that 
follows, we will be dealing with a set of layers of 
dipoles. The coordinate system has already been 
chosen such that the planes lie parallel to the 
xy-plane, so the normal direction will correspond 
to i. All planes will be located in the upper half 
space (z, 2 0) and the light beam impinges com- 
ing from the lower half space. 
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2.3.1. Optical response of thin slabs 
Combining eqs. (2), (3) and (5) for an arbit- 

rary collection of dipole lattice planes obeying 
the same parallel translational symmetry, results 
in the following general description: 

Pi = a;[E,,t(ri) + C t,Pj] J 

j 

(84 

r, = tj(r;) . (8b) 

The key component of these equations are the 
transfer tensors [?, for the calculation of which 
the lattice sums are required. Calculation of 
transfer tensors in real space is possible but quite 
time consuming and not very instructive. If we 
apply transformations of a type already de- 
veloped in principle by Ewald [lo] to the lattice 
sums, we get numerically far more efficient (by 
several decades) and more meaningful expres- 
sions. The transformations used by us belong to 
two classes: those based upon Ewald’s three-fold 
integral transform and those based upon his 
one-fold integral transform. For far interplanar 
sums, which are mostly used in our calculations, 
only the following expression for the transfer 
tensor, obtained by means of the threefold integ- 
ral transform [ll], is needed: 

fi, = 9 ,C, eXp(ik,,(ri - r,)) dpq Y tzi ’ 'j) 3 

(94 
d _ 27ri (k*l - kP,kcq) 

P4 
ffoP KPq 

= dpq (qq 1 7 (9b) 

kpq = (kiq, k,,,) = (k,, + g:qy Kpq) 2 (9c) 

K pq = (k* - (k,, + g&lz)1’2 . (94 

In the above equations, use has been made of 
the following definitions. giq is a surface re- 
ciprocal lattice vector and a,, is a normalization 
unit for the polarizability and has been defined 
as 4ne,,a3. Equations (9) only hold if (zi - zj) is 
positive. If (zi - rj) becomes negative, d,, in 
(9b) has to be replaced by: 

_d,, = d,, ck,, ) . (10) 

For the two remaining lattice sums one needs 
Ewald’s one-fold integral transform [lo], but in a 
form generalized for arbitrary lattices, the exact 
derivation of which will be given in a forthcom- 
ing article [6]. Litzman has studied the same 
transform for the case of square lattices [12]. 
Litzman was also the first to obtain an expression 
for the transfer tensor of arbitrary lattices using 
the three-fold integral transform [13]. For intra- 
planar lattice sums, governing the transfer tensor 
fii, which corresponds to the interaction between 
the characteristic dipole and its own plane, most- 
ly the convention is used by other authors that 
c, = Cr;’ C. The components of c for the static 
case have been studied extensively in the past 
and yield the famous constants of dipole theory 
for square and hexagonal lattices [14]. Approxi- 
mate values for c have been obtained by Vlieger 

[151. 
Equations (8) represent a system of 3N com- 

plex simultaneous linear equations, N being the 
total number of planes making up the slab. They 
can be reorganized to standard (matrix) form as 
follows: 

(lib) 

The matrix MS” will be called the interaction 
matrix for the slab problem and is composed of 
(N x N) (3 x 3) tensors of type (llb). The quan- 
tity [pi] represents a compound vector contain- 
ing the N unknown vectors p,. [J?,,,,,] has a 
similar meaning. Upon solution of eqs. (ll), the 
pi control completely the optical response of the 
slab. 

The remote fields emitted by those dipoles 
(reflected and transmitted) have to be found 
from the transfer tensor (7b) which is calculated 
by means of the three-fold integral transform. In 
that case one arrives at expressions similar to 
(9). For remote fields only the (p, q) Z (0, 0) 
term has to be taken into account. Those fields 
are for reflection resp. transmission; 

Er(r, t) = do, eick’-w’)P’ , 

E’(r, t) = E_(r, t) + _d,, eiCkrPwr)Pt , 

(1W 

(12b) 



G. P.M. Poppe, C.M. J. Wijers I Exact solution of the optical response of thick slabs in the discrete dipole approach 225 

where the vectors P' and P' are defined as: 

p’ = C e-ik’~~i , (134 
I 

pt = C e-i-k”pi . (13b) 

virtue of the exact solution of the discrete dipole 
description that the expressions for the remote 
fields survive such move unaltered. After (13) it 
is trivial to find the expressions for the reflectivi- 
ty and transmittivity coefficients of the thin 
dielectric slab: 

Expressions (12, 13) display a simple appear- 
ance. However, one should not be mislead by 
this simple behaviour and bear in mind that 
exactly at this place classical continuum ap- 
proaches are facing the problem of the boundary 
conditions. Basically boundary conditions yield 
also simple descriptions, but that picture changes 
drastically if phenomena taking place in the few 
outermost layers of the solid (reconstructions, 
relaxation, ad- or absorbed monolayers, etc.) 
have to be incorporated [2, 16, 171. It is the 

r= i,$ ,Q$) ( 144 

Pl+[2e;;;~2~&$ (14b) 
Z 

In (14b) it has tacitly been understood that the 
slab contribution to the transmitted field has the 
same polarization as the exciting lightbeam, 
which is true for the cases studied in this article. 

23.2. Optical response of the bulk 
The classical continuum descriptions allow for a direct treatment of the electromagnetic wave 

propagating under bulk circumstances. It suffices to solve the bulk dispersion equation: 

v2 - E/J,, -$ I E(r, t) = 0, (15) 

which follows directly from the macroscopic Maxwell equations and is by no means hard to solve. 
Combined with the traditional boundary equations, the dispersion equation yields both the Fresnel 
coefficients and the Snell-Descartes law of refraction. The analogous treatment in the discrete dipole 
approximation is associated with a normal mode decomposition. Although Ewald made some first steps 
into that direction at the beginning of this century [lo], it has undoubtedly been Litzman and Rozsa [9, 
131, who have developed the subject in full mathematical rigour. In a less abstract way and adapted for 
general cases we will give here their treatment for the bulk normal mode decomposition and the 
dispersion equation for the discrete case. 

At first a bulk unit cell has to be chosen, which apart from obeying the parallel translational 
symmetry, also is repeated ad infinitum along the positive z-axis. Each bulk cell will contain N, 
characteristic dipoles, each controlling its own bulk plane of dipoles, and will have a height of d,. The 
characteristic dipoles will be located at the sites ru,v given by: 

r U,V = r; + V d,i . (16) 

Capital indices refer to bulk cells and small indices to bulk characteristic dipoles. Indices are positive 
and ry = 0 always. Through (16) we are dealing with a bulk-truncated system since V starts at 0. Like 
Litzman we define the normal modes through: 

P U.V = _$, vmz4,, eiqmaV (17) 

In principle there will be infinitely many normal modes. The q, correspond to the z-component of the 
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wave vector of the normal modes, which represent dipole waves (Ewald’s “Dipolwellen”). The 
orientation in real space of the normal modes is controlled by u,, and their strength by v,. Calculation 
of the 4, and IL,, by means of a generalization of Litzman’s procedure can be extremely time 
consuming. The following commensurability theorem can be used to reduce the computational effort 
drastically for cases where there is only one type of dipoles in the elementary bulk cell. In that case the 
following relation holds: 

U =e 
Ik,,,r,B 

VI” 
u rn, 

k, = (k,, k,, 4,). 

(184 

(18b) 

We write 24, for u,,. The validity of this commensurability theorem will be discussed in a forthcoming 
article. Use of eqs. (17) and (18) in eqs. (8a, b) and proper replacement of the indices i, j by the sets (u, 
V), (w, W), where u, w run from 1 to NB and V, W from 0 to infinity, yield the following (infinite) set 
of simultaneous equations: 

+ f$ v, eiq~dBvam(k,)u, = E, eikrB ik d e zB 
V , 

m==l 

where the index W has disappeared as a result of summation and a(&) follows from: 

[ 

NB 

a(k,) = ai’ - ai’c - C eikm’QF,w 
w=2 

_ $ “ik,,,rB[ 2 ( 1 _ ex~;t~~~~ )dB) + --dPp4 e-i-kpq” 

w=l P.4 P4 1 - exp(-i(qm + Kpq)4) ’ 

(19) 

(20) 

(Ye represents the bulk polarizability tensor. Further the fr, are subtensors of the type (8b) but 
calculated for two planes with characteristic dipoles belonging to the same bulk cell. In that case any 
explicit V, W dependence disappears. The fact that (19) represents an infinite set of simultaneous 
equations can also be expressed in the more transparent way that a single equation of type (19) has to 
hold independent from the value of V. Since q, # k, one obtains from this requirement, as a first result 
that: 

a(k,)u, = 0. (21) 

This equation yields only non-trivial solutions if 

Det(a(k,)) = 0. (22) 

The equations (20)-(22) are of vital importance for discrete dipole calculations in general. For this 
reason we will discuss their use and physical interpretation. The q, for the normal modes have to be 
obtained from (22). Since a(k,) depends in a non-linear way on the q,, the solutions cannot be 
obtained by means of a simple eigenvalue routine. Only by using non-linear “scanning” routines, 
solutions can be found. The non-linear dependence is also responsible for the fact that one finds 
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infinitely many solutions for (22). Since the q, are the wave vectors for the dipole waves, which control 
completely the electric fields inside the solid, eq. (22) is the direct equivalent of the Snell-Descartes law 
in the continuum case. The dispersion relation (15) has no direct equivalent in the discrete dipole 
theory. The q, obtained for the continuum and discrete approach relate to different physical quantities. 
In the continuum case the q, describe the macroscopic electric fields being defined everywhere inside 
the solid. The q, in the discrete case describe dipole waves being defined only at discrete lattice 
positions. After the q, have been obtained the normal mode vectors U, can be calculated from (21). 
Since eq. (20) does not contain the index V explicitly, eqs. (21) and (22) are valid everywhere in the 
bulk. From this one cannot conclude that the q,, u, are pure bulk quantities, since through k,, the 
surface enters (20) in an implicit way. The remaining coefficients V~ have to be found from (19), which 
generates a vector equation for each pair (p, q). For optics it suffices to consider the (0, 0) equations 
only, being: 

d 

gm = 1 - exp(i(qt - k,)d,) 
i(q,-k,)$Um . 

(234 

(23b) 

This result is just another mathematical formulation of the Ewald-Oseen extinction theorem. It will be 
discussed elsewhere that in order to calculate the optical response of the bulk only the two normal 
modes being quasi-nonevanescent (i.e. having a decay length larger than the width of at least 10 
monolayers) need to be considered [6]. The other normal modes affect only the surface region, being 
close to V= 0. After M has been restricted to 2, (23) has become a dependent set of equations. This 
dependency can be resolved in an optimal way through projection. Define the projection vectors g,, g, 
as follows: 

g, = 4, . ~2 . Wb) 

Now we project the equations onto those vectors, yielding: 

II -(i%*g,) -(gs*g,) 
-cl% * s,) -(&. g2) /I 1:1=1::;1. (25) 

In appendix A it will be shown that the off-diagonal elements of (25) are zero. The bulk interaction 
equations can be written concisely as: 

(26) 

We have remarked already that the set (25) is not really bulklike in the same sense as the dispersion 
equation (15). Assuming that the quasi-evanescent modes are the only ones present also at the surface, 
it is possible to calculate a reflection coefficient from (14a) by replacing (13a) by: 

p’ = m$, rwgl ei(q,+~,hw 

1 - exp(i( q, + k,)d,) 1 ‘mum 
(27) 
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A transmission coefficient obviously has no physical meaning in this case. Litzman [9] has shown that 
(27) reproduces exactly the results obtained from the Fresnel formulas for the case of small k, cubic 
crystals and perpendicular incidence. In all other cases deviations can and have been found, deviations 
which increase if the surface region has been treated properly (see further in this article). One of the 
most charming aspects of the discrete approach is the absolute disappearance of boundary conditions. 
However, neither of the two approaches we presented in this section is able to describe a realistic 
surface configuration properly. Solely a hybrid method as the double cell method developed by the 
authors [5, 61 (or the comparable, but less efficient two slab method [8]), is capable of handling this 
problem properly. Especially the double cell method is very computer efficient; computer time is 
decreased by a factor of at least 16 and the memory requirements by more than 4 compared to the two 
slab method. In the following section an extension of this method to the case of thick slabs is described. 

2.4. Optical reponse of thick slabs 

The thick slab method is a further development of the double cell method. Both methods use the idea 
of merging the approaches of sections 2.3.1 (thin slabs/real space) and 2.3.2 (bulk/normal mode 
decomposition). The link will be established by means of a projection technique. The entire thick slab is 
going to be composed of three subslabs, the first and third being described in real space, the second 
thick intermediate slab by means of normal modes. The thick slab is located in the positive upper 
halfspace (z > 0). The first subslab (which will be labelled I) contains Ni dipole layers and has thickness 
d,. The bulklike intermediate subslab contains N bulk cells and its characteristic dipoles are located at: 

r ” v = d,& + r; + Vd,i . (28) 

The meaning of concepts and symbols is like in previous sections. The third subslab (labelled II) 
resembles the first and continues after the second. It contains NY dipole layers. Care has been taken 
that the bulk configuration as given by (28) extends in the neighbouring surface subslabs. The fact that 
the boundaries between the subslabs are by construction inside of the bulklike area, is vital for the 
approach. An arbitrary characteristic dipole i, located in the first surface subslab, has to obey: 

($ _ a;’ NBr C)Pl - ,Tl 4jPj - 5 d?% - 

NS 

C (iPi =Ei > 
m=l - j=N&+l 

(29) 

The index for the second surface subslab continues uninterrupted from the last index of the first. Ns is 
the total number of dipole layers in the two surface subslabs: Ns = Nk + NY. NB indicates the number 
of dipole layers in a bulk unit cell, exactly as in eq. (19). If the dipole i happens to be located in the 
second surface subslab an expression completely analogous to (29) will be obtained (in that case the 
prime moves to the second surface summation and all underscores, i.e. for g;, Lpq and -_dpq disappear). 

The description of the bulklike intermediate slab follows closely the lines of thought represented in 
section 2.3.2. In particular the expression for a(&) as given by eq. (20) remains unaltered. Hence we 
obtain also the same sets of corresponding eigenvalues q, and eigenvectors u,, as found from (21) and 
(22). The real differences concern eq. (23), the extinction equation. In the bulk we had to worry only 
about dipole waves moving in upward direction, since the downward solutions lead to unphysical 
results. This restriction no longer holds for slabs and hence we have to include also the two 
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quasi-nonevanescent modes propagating in the negative z-direction. This brings the number of required 
normal modes at M = 4. 

Since we assume that there is no optical activity (the theory however can easily be extended for those 
cases, since optical activity requires only a change in the a,), the two extra normal mode wave vectors 
have to obey: 

q3=-41) 94 = -q2 3 (304 

and the corresponding normal mode eigenvectors: 

u3=_u1, u4 = _u2 , Wb) 

Instead of one vector equation, governing the bulk behaviour, like eq. (23), we obtain for the bulk of a 
thick slab two vector equations, being: 

-,$ do0 epikrjpj - il u,,,g,,, = E, , (314 

- 2 _d,oe~ikr~pj+~l u,g,=O, 
j=Ni+l 

with 

NE 

g, = wF, do0 eeikzds e -i(k,-q,)r: 
U 

l-e- i(k,-q,PB > m ’ 

43 

g, = C ciao eikzds e i(k,+q,)(zE+Ndg) 

- 
w=l l-e i(k,+q,)dB > u rn. 

(31b) 

(32a) 

Pb) 

Again the dependence has to be removed by means of projection. For this eqs. (24) have to be 
extended: 

gs= @,,0~3, g,= d u -00 4’ (33) - 

We arrive after projection at a set of 4 complex equations, which can be written in an explicit way like 

N: 

Ns 

?(&gl)+ Y(&g3)- C - - -- 
j=Ni+l 

(Q_d0)eeik"p,=07 

%(gp&) + v4(gpg4) - 2 - - - - 
j=N&+l 

(34) 
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Here, again use has been made of the results of appendix A. Results (31) and (34) can be written in 
matrix form and the corresponding interaction equations are given by (35): 

(35) 

The total interaction matrix consists of 9 submatrices and the meaning of all components of (35) follows 
clearly after comparison with eqs. (29) and (34). We will write down more explicitly some elements of 
the middle (bulk) row: 

ML,,,,, = -elkrl (g&J (m = 172) 3 

= 0 (m = 3,4) , 

The central part of the bulk row M,, becomes: 

-(g;&) 
-(nos) 

0’ 2 

-(g;&) 

M,, = (&&) (gsg3) 
-(b+J 

-0 (gpg*) 0 (g&%) 

Finally, we have to specify the bulklike inhomogeneous 

8, (g,E,,) 
82 (g,E,) 
&=o . 
84 0 

(36) 

(37) 

vector used in (35): 

(38) 

The solution of the set of interaction eqs. (35) yields the unkown ~2, v, and p;‘, being resp. Nb vectors, 
4 complex numbers and NY. From these unknown variables immediately follow the reflection and 
transmission coefficients for the thick slab. One can use eqs. (14) directly, provided one makes use of 
the following expressions of P' and P': 

The summation over the two surface layers has been combined in this expression. 

(39) 

3. Calculation of a few model configurations 

In order to illustrate the impact of the 
theoretical model, treated in the previous sec- 

tion, we will show now the results of some actual 
calculations displaying the characteristic fea- 
tures. 

Basically the entire thick slab has been taken 
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as a part of a simple cubic lattice with lattice 
parameter a. So all coordinates of the slab obey: 

r nml = nai + maj + lat . (40) 

As a result the characteristic dipoles for all 
planes making up the slab (the ri in eq. (4)) will 
be located along the z-axis and it is very easy to 
obtain the specific choices of coordinates for 
each of the subslabs. Each site i will be given a 
polarizability tensor (Y, being the same for all 
sites. This common (Y will be supposed to be 
diagonal and isotropic. Consequently a simple 
complex number (Y suffices to describe the opti- 
cal properties of the slab. Under those presump- 
tions the entire character of the solutions will be 
determined by a single parameter a/(~,. This 
parameter roughly distinguishes the ratio in 
which internal and external fields contribute to 
the local field. Therefore we have chosen to 
focus upon the following three cases: 

(a) weak coupling case (WCC): 
ff /ffo = 0.05 + iO.0 , 

(b) strong coupling case (SCC): 
ff /CQ = 0.2 + iO.0 , 

(c) strong coupling/absorbing case (SAC): 
(Y/CX, = 0.2 + iO.005 . 

Weak and strong coupling specifies the amount 
in which a specific dipole becomes influenced by 
its environment. 

Primarily the situation occurring for perpen- 
dicularly incident light will be considered. So we 
will not specify the angle of incidence and for the 
few cases which will be discussed at the end 
where angular dependency will be investigated, 
this will be mentioned explicitly. First we con- 
sider a simple thin slab, for which results can be 
obtained using the approach of section 2.3.1. We 
show in fig. 1 the absolute value of the induced 
dipole strengths for a slab consisting of 17 layers 
and a frequency of 5.OeV. In order to make 
comparison easier, results have been normalized 
with respect to an average dipole strength Pa, 
defined as: 

(41) 

where N, represents the number of dipoles in the 
thin slab this time. For weak coupling the dipole 
strength’s length is almost constant in the slab. 
Only for the first and perhaps also for the second 
outermost layers, slight deviations with respect 
to the interior values can be observed. The two 
strong coupling cases, however, display a more 
peculiar behaviour. The normalized absolute val- 
ues of the dipole strengths are far from constant 
now. For the 5 outermost layers a rapid oscilla- 
tory behaviour can be observed (18, 191 to which 
further on will be referred to as ‘wiggles’. Figure 
1 shows also another unexpected feature. Al- 
though the light beam passes through the sample 
going from left to right, we see, quite against 
expectation, that the dipole strengths increase in 
the direction of the light in the interior region 
(from i = 5 to 13) of the slab, but it is a correct 
result. The wiggles near the surface are intrigu- 
ing and we have further investigated this phe- 
nomenon in fig. 2. Here we have calculated the 
same property as in fig. 1, but with the thick slab 
method, for the case of absorbing strong coup- 
ling. We want to investigate if the wiggles affect 
the convergence behaviour. Figure 2 shows four 
curves, one of them being the result shown 

?f( 
O1 5 9 13 17 

Layer Number i 

Fig. 1. Absolute values of the dipole strength p, = Ip,l, nor- 
malized with respect to P,,, plotted as a function of the layer 

index i for a slab of 17 layers. Photon energy 5.0 eV. Angle of 
incidence 0, = 0. Almost straight line; WCC, solid line; SAC, 

chain dotted line; SCC. 
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Layer Number i 

Fig. 2. Convergence behaviour of p,, SAC-case. Energy 

5.0 eV, %, = 0. Dashed line; N,, = 0, chain-dotted line; N,, = 

2, solid curve; coumdmg N,, = 4 and thin slab results. 

already in fig. 1. This is the limiting case, where 
all the dipole strengths are calculated in a real 
space approach. Only the first surface slab is 
shown. The other curves show how the results 
vary if the number of layers in the surface slab 
increases from 0 and 2 to 4. The latter result is 
virtually indistinguishable from the thin slab cal- 
culation. Hence we can conclude that after al- 
ready 5 layers in the surface slab full conver- 
gence has been obtained. Since the wiggles also 
extend over 5 layers, the suggested link seems to 
be plausible. Further confirmation of this hy- 
pothesis is obtained if we concentrate upon re- 
flectivity and transmittivity of the slabs. From 
the thin slab calculation which serves as a refer- 
ence we obtain the following results for a 17 
layer slab assuming case (c) (SAC): 

r = -7.37724 X 10-l + i. 2.52060 X 10-l , 

t = 3.25186 x 10-l + i. 4.10172 X 10-l . (42) 

Table 1 

The same results have been obtained by means 
of the thick slab method and those results are 
shown in table 1. Ns has the meaning originally 
defined for eq. (29), i.e. the total number of 
dipole layers in both surface subslabs (for practi- 
cal reasons there will be one dipole more in the 
second surface subslab than in the first). If we 
limit ourselves to an accuracy of 3 decimal 
places, we learn from table 1 that for Ns = 10 full 
convergence has been achieved. Also this can be 
rescheduled to a 5 layer thick electromagnetic 
surface layer. The same result will be obtained 
for case (b), but for case (a) a surface slab of 2 
layers is already enough to obtain convergence. 
Anyhow, it becomes clear from these calcula- 
tions that the thick slab method has a very fast 
convergence rate. 

In fig. 3 we continue the inquiry about the 
local aspects of this discrete dipole approach. 
The absorption of the incoming energy by the 
slab is an important physical quantity. It will be 

G I / 

00 
9.i 1 5 9 13 17 

Layer Number i 

Fig. 3. Local absorbance as a function of the layer Index i, 
SAC-case, fiw = 5.0 eV. 9, = 0. 

NS 
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r 

-7.30749 X 10-l + i 2.59416 x 10-l 

-7.38392 X 10-l + i 2.52378 x 10-l 

-7.37469 x 10-l + i 2.52094 x 10-l 

-7.37817 x 10-l + i 2.52017 x 10-l 

-7.37702 X 10-l + i 2.52086 x 10-l 

-7.37728 x 10-l + i 2.52047 x 10-l 

-7.37725 X 10-l + i 2.52064 x 10-l 

-7.37724 X 10-l + i 2.52060 x 10-l 

t 

3.34102 x 10-l + i.4.14686 x 10-l 

3.24507 X 10-l + i. 4.10098 x 10-l 
3.25405 x 10-l + i. 4.10341 x 10-l 

3.25117 x 10-l +i.4.10099 x 10.’ 
3.25201 x 10-l + i.4.10204 X IO-’ 

3.25183 x 10-l + i.4.10159 X 10-l 

3.25185 x 10-l + i. 4.10177 x 10-l 

3.25186 x 10.’ + i.4.10171 x 10 ’ 
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shown [6] that the absorbance of light energy in 
a separate, say the ith, layer of a slab follows 
from the expression: 

Aloc,i = - 
k2 

&%,a* &I2 
Im(pT’(q-‘pj) , (43) 

where the * denotes that the complex conjugate 
is to be taken and Im stands for “the imaginary 
part of”. From (43) it becomes clear that it is 
only worthwile to study the local absorbances for 
case (c). The total absorbance of the slab can be 
calculated through: 

NTOT 

A = 2 A,,,,; , 
1=1 

(444 

where NToT means the total number of dipole 
layers in the slab. The same result, however, can 
also be obtained from the macroscopic param- 
eters r and t by means of Poynting’s theorem. 
One obtains: 

A = 1 - (r*r) - (t*t) . (44b) 

Obviously the microscopic expression (44a) and 
the macroscopic one (44b) should yield the same 
result. For the 17 layer slab one obtains agree- 
ment between the two results to the last digit, 
the result being A = 1.1824177 x 10-l. The shape 
of the local absorbance curve shown in fig. 3 
highly resembles fig. 1 but only the wiggles have 
become more pronounced. This is not strange in 
view of (43), since only a square operation lies in 
between the two figures. 

The fact that the backside of a thin slab re- 
sponds stronger to the incident light than the 
front has been investigated further in figs. 4 and 
5. Both figures relate to the (c)-case (SAC). This 
time we exploit fully the potential of the thick 
slab method to calculate exactly slabs up to and 
including macroscopic sizes, within a rigorous 
microscopic description. In this way slabs have 
been calculated containing totally 209 (fig. 4) 
and 509 (fig. 5) dipole layers. The total number 
of surface layers has been kept constant at the 
value 13. From the discussion of fig. 2 it is clear 
that this value guarantees convergence sufficient- 

I L I I 
1 53 105 157 209 

Layer Number i 

Fig. 4. Normalized absolute values p,lE_ as a function of the 
layer index i for a slab of 209 layers. SAC-case, fiw = 5.0 eV, 
0, =o. 

“/ 
N 

2 h 

01 1 I I 
0.01 1.70 3.40 5.09 

Layer Number i x102 

Fig. 5. Same as fig. 4 for a slab of 509 layers 

ly. The absolute values of the dipole strengths 
shown in figs. 4 and 5 have been normalized 
again, using this time for Pa,: 

Figure 4 shows an oscillatory behaviour for Ipi/ 
with a period considerably larger than those of 
the wiggles. Hence, these bulk oscillations have 
to be interpreted as a simple standing wave 
pattern caused by back- and forth-scattered 
bulklike dipole waves of lattice vector 4,. So this 
phenomenon has nothing to do with the wiggles, 
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which reflect an independent feature of the cal- 
culation which is also clearly visible in fig. 4. The 
bulk oscillations show an increasing strength for 
the first 25 dipole layers from the left 
(=frontside). It . 1s exactly the onset of this quar- 
ter wavelength which we observe in fig. 1. Hence 
the increasing dipole strength for very thin slabs 
has to be interpreted as a macroscopic interfer- 
ence phenomenon. This interpretation is further 
strengthened by fig. 5. The largest modulation in 
fig. 5 can be observed at the right (=backside) of 
the slab. At the frontside the backward running 
normal modes have lost their strength so much 
due to absorption, that interference has almost 
vanished. If we neglect in fig. 5 the long range 
oscillations and concentrate upon the overall ef- 
fect, we see a smoothly decaying dipole wave, 
most in agreement with our direct intuition. 
Note also that in fig. 5 the wiggles, although less 
pronounced due to the change of scale, still are 
there. It is further also noteworthy that for thin 
slabs at optical frequencies the strongest local 
fields occur at the backside of the slab. 

The traditional way to calculate the transmis- 
sion/reflection for thick slabs is by means of the 
Fresnel formulas. For those formulas one needs 
a dielectric constant which can be obtained from 
(Y by means of the Clausius-Mossotti equation. 
The reflectivity r and transmittivity t for a semi- 
infinite system follow from (perpendicular inci- 
dence): 

r=(l-G)/(l+VZ), 

t = 2/(1 -v-c). 

Table 2 

(46) 

Those semi-infinite results have to be used in the 
classical equations for the optical response of 
slabs as can be found in ref. [20]. They yield the 
expressions for reflectivity and transmittivity 
which can be compared with results obtained 
from (14). Table 2 shows slab reflectances ob- 
tained from the thick slab method and obtained 
with Fresnel, both correponding to 509 dipole 
layers. The same results have also been calcu- 
lated for semi-infinite systems. Three parameters 
have been varied: photon-energy, coupling 
strength and thickness of the surface slabs. 

The most striking conclusion from table 2 is 
that agreement between classical Fresnel and 
discrete dipole calculations is at best if the sur- 
face slabs are neglected. This means that 
Fresnel-type calculations neglect surface local 
field effects. This is also in agreement with the 
rest of the conclusions. If we increase the cou- 
pling rate by going from case (a) to case (c) the 
difference with respect to Fresnel increases. 
Since the influence of local fields is determined 
by the coupling rate, this confirms our earlier 
conclusions. In general the discrepancy also in- 
creases if we increase the energy. This is less 
easy understood, but it seems that the higher the 
ratio between the thickness of surface slab and 
wavelength, the more prominent the surface ef- 
fects become. In general also slabs show larger 
deviations than semi-infinite systems. For weak 
coupling there is even no difference between the 
two types of calculation for the semi-infinite 
system. 

In fig. 6 the total absorbance for a thick slab of 

R Energy Fresnel 

509 Layers 
WCC 0.1 eV 2.594006 x 10-j 

5.OeV 4.215521 x lo-* 
SAC 0.1 eV 4.122755 x 10-l 

5.0 eV 3.671224 x 10-l 

Semi-infinite crystal 
WCC 0.1 eV 2.107921 x lo-* 

5.OeV 2.107921 x lo-* 
SAC 0.1 eV 3.653626 x 10-l 

5.0 eV 3.653626 x 10-l 

N, = 0 

Discrete dipole model 

N,=13 

2.594006 x 10m3 2.594217 x 10.’ 
4.215971 x lo-* 4.213094 x lo-* 
4.122755 x 10-l 4.126034 x IO-’ 
3.672563 x 10-l 3.689785 x 10-l 

2.107921 x lo-’ 2.107921 x lo-’ 
2.108021 x lo-* 2.108021 x 10m2 
3.653626 x 10-l 3.653864 x 10 ’ 
3.654678 x 10-l 3.666630 x 10-l 
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J 
I I I 

0 1.5 4.5 6.0 

Fig. 6. Total absorbance A of a slab of 509 layers as a 

function of the photon energy. SAC-case, 0, = 0. 

509 layers and Ns = 13 is shown as a function of 
frequency (case (c)). For low frequencies this 
absorbance shows strong modulation which for 
higher frequencies damps out substantially. This 
has to be understood in the following way. The 
effective damping of the light beam follows from 
the imaginary component of q,. This turns out 
to be proportional to the frequency w. One 
arrives at similar conclusions if one starts from 
eq. (43). Hence the disappearance of the modu- 
lation has to be attributed to the vanishing of the 
returning normal mode. The flattening of the 
curve has a different explanation: the dipole 
waves have become extinct before they reach the 
backside. Then the increased absorbance per 
layer becomes compensated by the decrease in 
penetration depth. 

Table 3 

Thick slab transmittance. 

Again we compare the dipole results for the 
total absorbance with the results obtained by 
means of Fresnel. To this end we introduce the 
proportional absorbance as: 

A, - A,,, Prop.Abs.=A +A X2, 
F DIP 

(47) 

where A, means the Fresnel absorbance and 
A DIP the discrete dipole absorbance. This pro- 
portional absorbance is given in fig. 7. The de- 
viations are of the order of magnitude of 10-9 

As a last comparison between classical con- 
tinuum and discrete dipole description, we have 
calculated the transmittance of slabs as a func- 
tion of the thickness. The results have been 
collected in table 3 for SAC and a frequency of 

Fig. 7. Comparison with Fresnel: proportional absorbance 

(see text) of a slab of 509 layers as a function of hw. 

SAC-case, 8, = 0. 

Layers Discrete dipole model Proportional difference 

1 9.038479 x 10-r 6.2 x lo-’ 
3 8.005526 x 10-l 6.2 x lo-’ 
9 4.802702 x 10-l 5.7 x 1o-2 

19 2.483535 x 10-l 2.9 x 10:’ 

49 3.247595 x lo-’ 1.9 x lo-’ 
109 1.902889 x 10-l 0.3 x 1om2 
209 7.483919 x lo-’ 1.6 x lo-* 
509 9.281507 x lo-’ 1.7 x 1om2 

1009 2.330313 x 10m4 1.9 x 1om2 
2009 1.454921 x lo-’ 2.4 x lo-* 
3009 9.080240 x 10-l’ 2.9 x lo-* 
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5.0 eV. The first column gives the number of 
layers, the second the transmittance according to 
the discrete dipole model and the third the pro- 
portional difference, defined analogously as in 
eq. (47). The first 4 rows have been calculated 

using the thin slab method, the others using the 
thick slab method with Ns = 13. The largest dis- 
crepancies can be found for the thinnest slabs, 
which is obvious in view of the nonclassical 
behaviour of the outermost layers. Until here 
only perpendicular incidence cases have been 
studied. In figs. 8 and 9 we also show results as a 
function of the angle of incidence. In both fig- 

0 

0 22.5 45.0 67.5 90.0 

Rngle of Incidence 

Fig. 8. P-polarized reflectance R, of a slab of 509 layers as a 

function of 0,. SAC-case, fiw = 5.0 eV 

I I I I 

a 
I 0 22.5 45.0 67.5 90.0 

Angle of Incidence 

Fig. 9. Comparison with Fresnel: proportional reflectance 

(see text), P-polarization, as a function of 0,. SAC-case, 

hw = 5.0 eV. 

ures the absorbing strong coupling case has been 

used for a frequency of 5.0 eV. 
The p-polarized reflectance for a 509 layer slab 

has been shown in fig. 8. The Brewster minimum 
is strong, indicating that the absorption is still 
rather modest. Figure 9 shows the proportional 
difference (analogous to (47)), with respect to 
the Fresnel calculation. The maximum dis- 

crepancy can be found near the Brewster angle. 
Essentially the same conclusion has been ob- 
tained in ref. (211. 

4. Discussion and conclusions 

We have shown in this article that the optical 
response of thick films (slabs) can be calculated 
exactly with a full microscopic model also. The 
hybrid thick slab method where in the surface 
normal direction real and transformed (normal 
modes) space approaches have been merged, has 
been devised for this purpose. The thick slab 
method has increased the size range for slab 
calculations, as for instance the thin slab method 
of Wijers and Del Sole [8], to such an extent, 
that realistic problems can be studied. This has 
been achieved without a loss of performance. 
From about 13 layer slabs on, both memory and 
CPU-time requirements stabilize, whereas for 
the more straightforward thin slab method those 
requirements continue to increase with the 
square and the cube power of the number of 
layers, respectively. 

Besides this, the model has also clear con- 
ceptual advantages. The seemingly contradictory 
increment of dipole strengths in the direction of 
propagation, as observed originally for thin 
slabs, could unambiguously be attributed to a 
bulk-like interference phenomenon. Again sur- 
face local field effects could be observed, as 
becomes especially clear from a comparison with 
classical Fresnel calculations. Advantages of this 
technique will become especially clear if surface 
microscopic phenomena are going to be investi- 
gated optically using transmission through trans- 
parent plates. For the interpretation of this class 
of experiments the thick slab method offers the 
required combination of microscopic accuracy 
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and capability of handling macroscopic sizes. 
The characteristic parameters determining the 
model involve the microscopic geometry, the 
coupling rate a/a, and the energy of the incom- 
ing light. At the surfaces, full flexibility as to 
those parameters exists, e.g. for the incorpora- 
tion of a surface monolayer of deviating compo- 
sition. Contrary to a Fresnel-type of approach, 
where in those cases the method itself has to be 
changed, the thick slab method asks only for 
different input parameters. In a forthcoming 
article where we will focus upon application to 
experimental work (the optics of an adsorbed 
monolayer of gas) these options will be fully 
exploited. 

Appendix 

In the derivation of eq. (34) we have used 
explicitly the orthogonality of the vectors g, and 
g,,, and their reflected counterparts. Essential 
for this orthogonality are the projection prop- 
erties of the tensor d,,. Suppose we are dealing 
with an arbitrary vector x which can be written in 
the (2, p, I) reference frame as: 

x = as^ + bfi + CL . (AlI 

From eq. (9) we obtain the explicit expression 
for do,: 

do0 = -$ (k21 - MT). 
(1 I 

642) 

This tensor becomes diagonal in the (i, 6, R) 
frame and it is not difficult to see that the effect 
of d,,,, upon x becomes: 

d,,x = & (k2(as^ + bji) + c(k2i - (kkT)k)) . 
0 z 

(A3) 

And using (abT)c = a(bTc), 

doox = = 

‘YoPl~*l 
(as + I$) . 

So it turns out that do, projects any vector x onto 
the (i, fi)-plane. This restricts the orthogonality 
of the g-vectors mentioned at the beginning, to 
the (i, fi)-plane, since all these g-vectors contain 
d,,, II, as their essential part. It turns out that in 
our case, because of (22) all U, can be chosen as 
follows: f* ) z+ in the (i, &)-plane and u2, uq in 
the (@, k)-plane. Since s^ and @ are orthogonal 
the disappearance of matrix elements in (34) has 
been explained. 
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