
redefinitions. Ideally, this should not be necessary. Several
concurrent object-oriented languages [31, 22, 38] have been
introduced to solve the synchronization constraint inheri-
tance anomaly problem, although most of these languages
(still) suffer from this problem in one way or another.

Recently, there have been some attempts in defining
real-time object-oriented languages [52, 17, 32, 27, 44].
These languages aim at reducing the complexity of applica-
tions through modularization so that predictability and re-
liability of applications can be increased. In addition, the
inheritance mechanism can be useful in reusing well-
defined and verified real-time programs. Similar to concur-
rent object-oriented languages, real-time object-oriented
languages may suffer from the real-time constraints inheri-
tance anomaly. In contrast to concurrent object-oriented
languages, however, there has been almost no study on
the origins of the real-time constraint inheritance anomaly
problem. Needless to say, the combined analysis of concur-
rent and real-time constraint inheritance anomalies has
not been addressed, although most real-time systems are
concurrent.

It is important to note that both the synchronization and
real-time constraint inheritance anomalies are not inherent
in combining synchronization and real-time specifications
with inheritance. On the contrary, the anomalies are largely
language-dependent. How a language implements syn-
chronization and real-time constraints and inheritance can
be the major cause of inheritance anomalies.

This paper has two contributions. First, it presents ge-
neric object-oriented synchronization and real-time mod-
els which are useful in analyzing and relating synchroniza-
tion and real-time constraint inheritance anomalies in a
uniform way. These generic models help in searching for
solutions that can deal with both problems. Based on these
generic models, a number of important synchronization
and real-time inheritance anomalies are identified and dis-
cussed.

Second, as a possible solution to both synchronization
and real-time constraint inheritance anomalies, this paper
proposes modular and composable synchronization and
real-time specification extensions to the object-oriented
model using the concept of composition-filters. Composi-
tion-filters can affect the synchronization and real-time
characteristics of the received and sent messages. By
proper configuration of the filters, one can specify synchro-
nization and real-time constraints, as well as reuse of these
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There have been a number of publications illustrating the
successes of object-oriented techniques in creating highly reus-
able software systems. Several concurrent languages have been
proposed for specifying reusable synchronization specifications.
Recently, a number of real-time object-oriented languages have
been introduced for building object-oriented programs with
real-time behavior. Composing and reusing object-oriented pro-
grams with both synchronization and real-time constraints has
not been addressed adequately, although most real-time sys-
tems are concurrent. This paper analyzes the origins of the
problems in composing and reusing synchronization and real-
time specifications, first as separate concerns, and later as com-
posed behavior. To overcome the so-called inheritance anomaly
problems, this paper proposes modular and composable syn-
chronization and real-time specification extensions to the ob-
ject-oriented model. The applicability of the proposed mecha-
nisms is illustrated through a number of examples.  1996

Academic Press, Inc.

1. INTRODUCTION

Object-oriented analysis and design methods [50, 28]
and programming languages such as C11 [51] and
Smalltalk [26] are now being applied to a large category
of applications. Recently, a number of reusable object-
oriented design patterns [24] have been introduced as a
catalog of reusable object-oriented design knowledge.
There have been a number of publications illustrating the
successes of object-oriented techniques in creating highly
reusable systems [45, 46]. These publications, however,
largely deal with sequential systems without any consider-
ation for concurrency and real-time aspects, although most
real-world systems are concurrent and have some real-
time aspect.

For several years, there have been many claims about
the suitability of the object-oriented model for modeling
concurrent systems. However, it appears that extensibility
and reusability of concurrent applications is far from trivial.
The problem that arises, the so-called synchronization con-
straint inheritance anomaly, has been extensively discussed
in the literature [35, 39, 15]. The term inheritance anomaly
means that introducing a new method and/or overriding
an inherited method in a subclass may require additional

1 E-mail: hbergmans u aksitj@cs.utwente.nl.



2.1. Definition of Class BoundedBuffer

Class BoundedBuffer implements a generic storage
mechanism with limited capacity. It offers a simple proto-
col consisting of the message get, which retrieves the earli-
est stored element from the buffer, and the message put
(anElement) which adds the argument anElement to the
buffer. In our crane example, the message put is used to
add a container to the buffer area, and the message get is
to be invoked when retrieving a container from this area.
Figures 2 and 3 show the definition of the interface of class
BoundedBuffer and the effect of the put and get messages
on the crane system. Here, the methods Empty, Partial,
and Full are defined for reading the state of the bounded
buffer object.

The precise nature of the elements that are stored in a
bounded buffer object is not relevant to this paper. In the
definitions of methods put and get type Any is declared,
which does not impose any type restrictions. The synchro-
nization constraints of class BoundedBuffer will be dis-
cussed in Section 3.

2.2. Definition of Class Crane

Typical operation of the crane consists of a fixed se-
quence of actions for picking up a container from a truck
and putting it in the buffer area. We express this sequence
by the following series of messages to be sent to a crane
object, for example, as the result of pressing the carry
button depicted in Fig. 1:

crane.on; latch the container by activating the mag-
netic field

crane.forward; move the crane and container to the
buffer area

crane.put; offer the container to the buffer area
crane.off; release the container by turning off the

magnetic field
crane.backward; move the crane backward to the truck

Here, the method put is inherited from class BoundedBuf-
fer. The definition of the interface of class Crane is shown
in Fig. 4. Note that a number of query methods have been

constraints without causing inheritance anomalies. The ap-
plicability of the proposed mechanisms is illustrated
through a number of examples.

The following section presents the example problem
which is referred to throughout this paper. Sections 3 and
4 define the issues in composing synchronization and real-
time constraints, respectively. Section 5 makes a combined
analysis of the synchronization and real-time constraint
composition problems. In addition, this section presents a
number of requirements for successfully composing syn-
chronization and real-time specifications together. Section
6 introduces the application of the composition-filters con-
cept in solving the problems presented in this paper. The
related work is presented in Section 7. Finally, Section 8
evaluates our approach and gives conclusions.

2. AN EXAMPLE: A SOFTWARE CONTROLLED
CRANE SYSTEM

We present a simple example to explain the issues of
composing synchronization and real-time constraints in ob-
ject-oriented programs. Our example is a simplified model
of a software controlled crane that can lift and carry con-
tainers from arriving trucks to a buffer area. The containers
are taken from this buffer area for further handling. To
carry the containers, the crane uses a magnetic latching
mechanism. Figure 1 depicts this system.

The software is organized around an inheritance hierar-
chy which models different specializations of cranes. We
will use an object-oriented pseudo-language for describing
the examples; the meaning of the code examples should
be self-explanatory.

Class Crane provides the basic functionality of the crane
system, such as loading and carrying containers. In addi-
tion, class Crane stores and retrieves containers and inher-
its these buffering operations from class BoundedBuffer.
In the following sections, we will describe classes Bounded-
Buffer and Crane.

33COMPOSING SYNCHRONIZATION AND REAL-TIME CONSTRAINTS

FIG. 1. A schematic overview of the crane system and its sensors.

FIG. 2. The buffering of containers in the crane system.



defined for reading the state of the crane object. For brev-
ity, we have omitted method implementations.

3. ISSUES IN COMPOSING SYNCHRONIZATION
CONSTRAINTS

This section studies the issues in composing synchroniza-
tion constraints in concurrent object-oriented programs.
First, the synchronization constraints of the crane system
are specified. Second, a generic model is presented to ana-
lyze object-oriented synchronization composition mecha-
nisms. Finally, possible synchronization inheritance anom-
alies are identified using the generic model.

3.1. Synchronization Constraints of the Crane System

To function properly, classes BoundedBuffer and Crane
have to enforce certain synchronization constraints. Most
object-oriented synchronization models define synchroni-
zation constraints using the states of objects and synchroni-
zation takes place only at the interfaces of objects prior
to execution of methods. Referring to this model, we will
describe in which state which messages should be blocked;
in all other states the messages may proceed to execute.

3.1.1. Synchronization Constraints of Class BoundedBuffer

To avoid inconsistencies due to attempts of retrieving
elements from an empty buffer or storing elements in a
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buffer that is already full, class BoundedBuffer must im-
pose two synchronization constraints:

(S1) if Empty then block get;

This constraint specifies that if the buffer is empty (size 5
0), a received get message must be blocked until the buffer
is no longer empty, which requires one or more invocations
of put messages.

(S2) if Full then block put;

The constraint (S2) states that if the buffer is filled to its
maximum capacity (size 5 limit), a received put message
must be blocked until space becomes available. The latter
requires the execution of one or more get messages.

3.1.2. Synchronization Constraints of Class Crane

This class introduces the following synchronization con-
straint (S3): The magnetic field may not be turned on as
long as no container is in place to be latched.

(S3) if Unloaded then block on;

The method Unloaded returns a true value if there is no
container in place (as signaled by the item detector in figure
1). Note that, as soon as a container is put in place, a
previously received and blocked on method will be acti-
vated.

The synchronization constraint of a class is the composi-
tion of the synchronization specifications of that class and
all its superclasses. For class Crane, this means that its
synchronization constraint is the composition of (S1), (S2),
and (S3).

3.1.3. Extending Class Crane with Class ProtectedCrane

For illustration purposes, we now introduce class Pro-
tectedCrane which inherits from class Crane and introduces
the synchronization constraint (S4):

(S4) if Moving then block on, off;

FIG. 3. Pseudo-code definition of class BoundedBuffer.

FIG. 4. Pseudo-code definition of class Crane.



must be blocked. As stated before, message acceptance
ultimately depends on the state of the object, in the broad-
est sense possible. We designate this by the term implicit
object state to avoid confusion with the common use of
‘‘object state,’’ which indicates the values of instance vari-
ables only. The implicit object state may include the values
of instance variables, the properties of the message such
as the message selector2 and the message arguments, the
current activities within the object (for example, the num-
ber of active threads), the message queue (i.e., what other
messages are waiting to be served), and the history of the
object (for instance, which messages have been executed
previously and how often). A particular concurrent object-
oriented language may express one or more of these, or
may even offer other possible state information.

The implicit object state is affected by several types of
events: the arrival of new messages, the acceptance of a
message or start of a message execution, the termination of
a method execution, and the effects of method executions
themselves. The implicit object state can be described as
a region in a large state space. To make the implicit object
state explicit in a program, state abstraction is required,
resulting in a number of (synchronization) conditions. Each
condition provides a concrete specification of the implicit
state of the object.

For example, for a bounded buffer object, we can define
the following three synchronization conditions:

Empty: self.size 5 0
Partial: (self.size.0) and (self.size,limit)
Full: self.size 5 limit

Conditions have two important properties. First, they per-
form extraction of the relevant state information, and
second, they create an independence between the imple-
mentation-dependent implicit object state and the mes-
sage-related synchronization code.

Synchronization of messages is modeled as a set of ac-
ceptable (nonblocked) messages, the so-called accept set.
Synchronization can be specified by defining the mapping
between the synchronization conditions and the set of pos-
sible accept sets of an object. The message accept set is
offered to the scheduler, which uses it to activate—or post-
pone—the execution of messages. Figure 7 shows how the
elements of the model are related.

A synchronization specification according to this model
thus requires the following components:

1. State Abstraction. Maps the implicit object state to
synchronization conditions.

2. Synchronization Condition Mapping. Maps the syn-
chronization conditions to message acceptance.

Consider, for example, the language ACT11 [31]. In
ACT11, synchronization is specified through so-called
behavioral abstraction. For this purpose, every object de-

For safety purposes, the magnetic field is normally not
allowed to be turned on or off while the crane is moving.
The definition of the interface of class ProtectedCrane is
shown in Fig. 5. Here, the synchronization constraint is
specified in the synchronization clause.

3.2. A Generic Model for Analyzing
Synchronization Constraints

To identify the potential problems in inheriting concur-
rent code, in this subsection we make an attempt at defining
a generic object-oriented synchronization model. Our
starting point is the assumption of the conceptual object
model depicted in Fig. 6. In this model, each object has
an object manager, a message queue, a collection of meth-
ods, and an object state. The object manager is responsible
for scheduling: based on the state of the object, the state
of the message queue and the synchronization constraints,
it decides whether a received message can result in immedi-
ate method execution, or whether it will be put in the
message queue. The object manager also takes care that
queued messages will eventually lead to the execution of
a method, once their synchronization constraints are satis-
fied. The object manager operates on one message at a
time to ensure that competing messages are handled consis-
tently. One of the most significant properties of this model
is that synchronization is performed after the messages
arrive at the object, and just before the execution of the
corresponding methods.

One can identify a large number of factors that—
possibly—determine whether a message is acceptable or
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FIG. 5. Pseudo-code definition of class ProtectedCrane.

FIG. 6. A simplified model of the synchronization of messages.

2 Message selector is a term used within the object-oriented community.
It denotes the method to be invoked once the message is accepted.



fines a set of behavior names and for every behavior name
the methods that are accepted for that behavior are listed.
Every method specifies the next behavior with a become
statement. The behavioral abstractions in ACT11 corre-
spond to the synchronization conditions in our generic
model. The become statements implement the state ab-
straction, and the definition of acceptable methods for each
behavior realizes the condition mapping.

In some synchronization schemes, the mapping from
the implicit object state to method acceptance is made
immediately, without the intermediate step of synchroniza-
tion conditions. This is the case in guard-like approaches,
for example, in the Guide language [20]. A method guard
directly maps the current state of the object to message ac-
ceptance.

Most concurrent object-oriented languages that support
interface control and object-level synchronization can be
described by this model. We therefore use this generic
model to describe the problems with reuse of synchroniza-
tion code in a largely language-independent way.

3.3. Synchronization Constraints
Inheritance Anomalies

To avoid problems in reusing synchronization con-
straints through inheritance, the following requirements
must be satisfied:

1. Modularity of synchronization specifications.
2. Composability of synchronization constraints.
3. Expressiveness for state abstractions.

The origins of inheritance anomalies can be traced back
to ignoring one or more of these requirements, which are
discussed in the following subsections.
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3.3.1. Modularity of Synchronization Specifications

The modularity of synchronization specifications means
that the synchronization specification is separated from
the application code of the class. In fact, not only the
synchronization-related specifications must be completely
separated from the application code, but the synchroniza-
tion specification must consist of an independent State
Abstraction and Condition Mapping Functions, as de-
picted in Fig. 7. The prime reason for requiring synchroni-
zation modularity is to reduce the dependencies between
the application code,such as method implementations, and
the acceptance of messages. Because in subclasses the syn-
chronization will virtually always change (if only to cope
with newly added methods), dependencies between appli-
cation code and message acceptance will require the re-
definition of application code in many situations.

3.3.2. Composability of Synchronization Constraints

The composability of synchronization constraints is an
important factor for effective reuse and extension of syn-
chronization constraints. The synchronization specification
of a class must not be a monolithic unit. Specialization,
extension or reuse of a monolithic synchronization specifi-
cation in subclasses is not possible as it is not possible to
replace parts of the specification. Adding new constraints
to the specification is only feasible in specific cases (e.g.,
when the additional constraints are fully orthogonal to the
existing specification).

If we consider the composability problem in our generic
synchronization model, we must focus on Synchronization
Conditions and on Synchronization Condition Mapping.
Synchronization Conditions provide for an intermediate

FIG. 7. Schematic outline of synchronization specifications.



additional messages with an existing synchronization con-
dition (as exemplified by the union operation on enabled
sets in [53]). In Fig. 8, the condition mapping is shown for
the constraints specified in classes Crane and Protected-
Crane.

3.3.3. Expressiveness for State Abstractions

Insufficient expressiveness for synchronization condi-
tions can reveal itself in two—closely related—ways: it
may completely prohibit the expression of specific synchro-
nization constraints. However, it may also be possible to
‘‘program around’’ the problem, by writing additional ap-
plication code (i.e., in methods). The latter situation is a
frequent source for inheritance anomaly.

One particular example of this is the so-called history-
sensitiveness [35, 37], which is exemplified by an extension
to the bounded buffer. Suppose that we want to add a
subclass of BoundedBuffer that provides the method gget.
This is an ordinary get operation, except that it should not
execute immediately after a put. The problem with this
example is that the state abstraction specification must be
able to express the history (of received messages) of the
object. This can be provided by the system (cf. the wait
once transitions in [38]), or the application must do some
explicit bookkeeping.

In the gget example, assume that there is no special
language support for keeping a history administration.
Then the only way to know—inside a synchronization
specification—that the latest executed method was a
put, is by modifying all the methods of the class to maintain
a Boolean status variable, say justPut.

Note that we can use the implementations of the super-
class methods by using, for example, the pseudo-variable
super as defined in the Smalltalk language. However,
this does not make the inheritance anomaly less severe.
Not only must all methods be redefined (including the
ones inherited indirectly), but in the subclasses the justPut
Boolean must be maintained as well by all methods!

The relevance of this example is to demonstrate how
lack of expressiveness can cause inheritance anomalies.
This can be avoided through the ability to make a mapping
from any implicit object state to a synchronization condi-
tion. The problem, however, is that the notion of implicit
object state is quite broad and, in fact, system-dependent.

that is independent of both the implementation details of
the object and the precise interface specification. They
function as a reusable ‘‘abstract synchronization specifica-
tion’’ that does not violate encapsulation and can be tai-
lored to the exact interface of the reusing client class.3

This is because the synchronization conditions conform
to logical states of the object with associated consistency
constraints, such as UnLoaded, Loaded, Stationary, and
Moving for class ProtectedCrane.

For optimum composability, we require that every
synchronization condition can be associated with the ac-
ceptance of multiple methods and that synchronization
condition mappings can be synthesized into a single new
condition mapping. We term the first requirement as poly-
morphic synchronization specifications and the second one
as synchronization synthesis. These two requirements are
discussed now.

Polymorphic Synchronization Specifications. The re-
quirement for polymorphic synchronization specifications
is based on the goal of reusing and extending synchroniza-
tion specifications. This requires that a certain (synchroni-
zation) constraint must be applicable to multiple methods,
either in the same class or in subclasses.

Synchronization Synthesis. The term synthesis applies
to the combination of multiple predefined components into
a new one as well as the extension of a component with
new, local, components. Synchronization synthesis is essen-
tial for the reuse and extension of synchronization con-
straints.

Consider, for example, the synchronization constraints
of classes Crane and ProtectedCrane. Class Crane restricts
the applicability of the method on; if there is no container
in place, then the method on must be delayed. Class Pro-
tectedCrane extends this restriction further. To execute the
method on, the crane must be in a stationary state. These
two constraints remain both valid in class ProtectedCrane,
so what is needed is a synthesis of synchronization con-
straints. The problem here is that we need to chose the
semantics for synthesizing the synchronization constraints.
The most obvious is an AND semantics: only if both con-
straints are satisfies will the corresponding method be acti-
vated. For certain problems, OR semantics may be required.
This is discussed in Section 8.1.4. Synthesizing synchroniza-
tion constraints is even more difficult when combining two
concurrent classes through multiple inheritance. We refer
to [13] for more details on this topic.

In our generic synchronization model, the property of
composable synchronization specifications is a characteris-
tic of Synchronization Condition Mapping. In particular,
with each synchronization condition multiple acceptable
messages must be associated, and it must be possible to
extend the mapping incrementally, in order to associate
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3 Note that synchronization conditions do not imply a particular syn-
chronization scheme; they can range from behavioral abstractions to
guards.

FIG. 8. Example of composability in the generic model.



4. ISSUES IN COMPOSING REAL-TIME CONSTRAINTS

In this section, first the real-time constraints of the crane
system are defined. Second, a generic model is introduced
to analyze object-oriented real-time specification tech-
niques. Finally, with the help of this generic model real-
time inheritance anomalies are identified.

4.1. Real-Time Constraints in the Crane System

We will now continue extending the inheritance hierar-
chy of the crane system by introducing new classes that
specify real-time constraints. For brevity, we only show
deadlines on method invocations and neglect other real-
time specifications such as specifying starting times and pe-
riodicity.4

4.1.1. Definition of Class RTCrane

Class RTCrane is an extension of class ProtectedCrane
and has three modes: Normal, Speed, and HighSpeed. If
an instance of class RTCrane is in Normal mode, then no
real-time constraints are enforced. If the instance is in
Speed mode, then all its interface methods (both local and
inherited) have to be completed in tSpeed time units. If
the instance is in HighSpeed mode, then all the interface
methods have to be completed in tHighSpeed time units, where
tHighSpeed , tSpeed. The instances of class RTCrane can be
put into various modes to cope with the changing demands
of its operating environment. Increasing the speed of a
crane increases the energy consumption and restricts the
maximum allowable weight of the containers to be carried.
The modes of an instance can be changed dynamically.
The definition of class RTCrane is shown in Fig. 9.

The mode of the object can be changed to Normal,
Speed, and HighSpeed modes, by invoking the methods
setNormal, setSpeed and setHighSpeed, respectively. The
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real-time constraints are specified in the realtime clause.
Depending on the condition specified between the if .. then
clause, the construct before kdeadlinel end kmethod(s)l
specifies that the execution of all kmethod(s)l is to be termi-
nated before the time unit kdeadlinel. The deadline infinite
indicates no deadlines is imposed. A wildcard ‘‘*’’ is used
to designate all the interface methods of the object includ-
ing the inherited methods.

4.1.2. Definition of Class EmergencyRTCrane

As a final example, consider class EmergencyRTCrane
which inherits from class RTCrane and introduces the
method emergency. The method emergency immediately
shuts off the magnetic field, no matter what the current
state of the crane is. This method can be invoked as the
result of pressing an emergency button. The interface of
class EmergencyRTCrane is defined in Fig. 10.

4.2. A Generic Model for Analyzing
Real-Time Constraints

In this subsection we make an attempt at defining a
generic object-oriented real-time model. We assume that
timing information travels together with the message. In
this way, timing information imposed by the caller of a
message is made available to the receiver, which may addi-
tionally modify the timing information. The application of
timing constraints may depend on the actual state of the
object (this includes the timing information of the current
message). This is shown in Fig. 11.

The generic model for real-time constraints shares parts
with the generic model for synchronization discussed in
the previous section: It is based on Implicit State, which
is mapped through state abstraction to Real-Time Condi-
tions. Real-Time Conditions are the necessary conditions
for applying the Real-Time Constraints.

The combination of Real-Time Condition Mapping and
Real-Time Constraints results in Message Timing Con-
straints, which define—optional—timing constraints for

4 Specifying starting times and periodicity does not introduce additional
problems in real-time compositions. The reader can refer to [9, 19] to
obtain more information about real-time specification techniques.

FIG. 9. Pseudo-code definition of class RTCrane.



constraint inheritance anomalies, only the components of
the model differ somewhat.

Similar to the requirements given in Section 3.3, to avoid
problems in reusing real-time constraints through inheri-
tance, the following requirements must be satisfied:

1. Modularity of real-time specifications.
2. Composability of real-time constraints.
3. Expressiveness for state abstractions and timing spec-

ifications.

4.3.1. Modularity of Real-Time Specifications

The prime requirement to avoid inheritance anomalies
is that the language provides modular specifications for
State Abstraction and for Real-Time Constraint/Condition
Mapping. If the real-time specifications cannot be sepa-
rated from the method implementations, it is impossible
to redefine the real-time specification nor the method im-
plementations without redefining both. In addition, to
avoid implementation dependencies, the implementation

each message. The result of the message timing constraints
and the available timing information of the message is
offered to Scheduler,5 which uses these to schedule and
activate method executions. The elements involved in the
specification of real-time constraints are shown in Fig. 12.

A real-time constraint specification according to this
model thus requires the following components:

1. State Abstraction. Maps the implicit object state to
real-time conditions.

2. Real-Time Condition Mapping. Maps the real-time
conditions to message timing constraints.

Real-Time Condition Mapping differs from Synchroniza-
tion Condition Mapping through the fact that it includes
timing specifications.

4.3. Real-Time Specification Inheritance Anomalies

The discussion of real-time constraint inheritance anom-
alies is very similar to the discussion of synchronization
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FIG. 10. Pseudo-code definition of class EmergencyRTCrane.

FIG. 11. A simplified model of the real-time scheduling of messages. FIG. 12. A generic model for real-time constraints.

5 The concept of real-time scheduling can be considered in a broader
sense; scheduling corresponds to any possible implementation of real-
time constraint specifications, including mapping to parallel machines
and choosing among alternative implementations.



of the choice of (or between) real-time constraints must
be separated.

4.3.2. Composability of Real-Time Constraints

We will study the real-time composability problem in
two parts: the polymorphism requirement and the synthe-
sis requirement.

Polymorphic Real-Time Specifications. In Section
4.1.1, class RTCrane was defined with a number of real-
time constraints that were applicable to all its methods. In
general, real-time object-oriented languages do not pro-
vide such a specification construct, and therefore, the same
real-time specification must be defined repeatedly. This
causes two kinds of problems. First, the intuitive real-time
specification states that the deadline is imposed on all
methods of the class. This should be also true when addi-
tional methods are introduced in subclasses. This implies
that all subclass implementors must be aware of this real-
time constraint and add it to every newly defined method.
Secondly, assume that a deadline is to be modified (either
in the same class or in a subclass), then all the real-time
constraint specifications must be updated.

Real-Time Synthesis. The combination of real-time
constraints from separate classes, e.g., through (multiple)
inheritance, may cause semantic interference, which will
require additional redefinitions. As an example, assume
that we modify class EmergencyRTCrane such that it im-
poses a certain deadline upon all methods of the class when
the class is in the emergency state. In this case, there is a
potential conflict with the real-time constraints defined in
class RTCrane for the Speed and HighSpeed modes. This
may require—depending on the specific real-time con-
straint specification scheme—redefinition of the real-
time constraints.

4.3.3. Expressiveness for State Abstractions and Timing
Specifications

The reason that lack of expressiveness for state abstrac-
tions and for timing constraints causes inheritance anomaly
is the same as in the discussion for synchronization inheri-
tance. For example, assume that an object’s real-time con-
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straints depend on the history of the executions of some
inherited methods. The problem here is similar to the one
discussed in Section 3.3.3; the state abstraction specifica-
tion must be able to express the history (of received mes-
sages) of the object.

5. ISSUES IN COMPOSING SYNCHRONIZATION AND
REAL-TIME CONSTRAINTS

5.1. Synchronization and Real-Time Compositions in
the Crane System

In Table I, we illustrate the inheritance hierarchy of the
crane system including both the synchronization and real-
time constraints in the form of a table. In the left-most
column, the inheritance hierarchy is shown. Each class—
except class BoundedBuffer—inherits from the class in the
row above it. For the proper functioning of all classes, the
inheritance mechanism of the adopted language must be
able to compose the synchronization and real-time specifi-
cations properly; all constraints must be satisfied without
redundant redefinitions of methods and constraints.

Classes BoundedBuffer and Crane introduce synchroni-
zation constraints on different methods.

Classes Crane and ProtectedCrane both specify—
complementary—constraints for the same method on. This
indicates that the inheritance mechanism must be able
to compose synchronization constraints defined for the
same method.

ProtectedCrane specifies the same synchronization speci-
fication for the methods on and off (S4). An extreme exam-
ple of such a polymorphic synchronization constraint
would be: ‘‘full: block *’’. For example, if the buffer area
is full, then all operations of the crane could have been
blocked by this synchronization constraint.

The real-time constraints of class RTCrane (R1) and
(R2) may conflict with the synchronization constraints of
the methods on, off, put, and get, which are defined by
classes BoundedBuffer, Crane, and ProtectedCrane. If one
or more of these methods are blocked due to synchroniza-
tion constraints, then the real-time constraints as specified
by (R1) and (R2) may not be satisfied.

Class EmergencyRTCrane defines a real-time constraint
for the method emergency; if the method emergency is

TABLE I
The Crane Classes with Their Synchronization and Real-Time Constraints

Class hierarchy Synchronization constraint Real-time constraint

BoundedBuffer (S1) Empty: block get —
(S2) Full: block put

Crane (S3) Unloaded: block on —
ProtectedCrane (S4) Moving: block on, off —
RTCrane Synchronization–real-time conflict (R1) Speed: before tspeed end*

(R2) HighSpeed: before tHighSpeed end*
EmergencyRTCrane Synchronization–real-time conflict (R3) before temergency end emergency



• Expression power. The adopted language must provide
sufficient expression power to deal with different synchro-
nization and real-time requirements. For example, the
State Abstraction Function must be expressive enough to
represent various implicit states. Similarly, the Real-Time
Condition Mapping and Real-Time Constraints must be
able to specify different real-time requirements.

• Assign priorities to specifications. If synchronization
and real-time specifications conflict with each other, then
the software engineer must be able to assign priorities to
synchronization and real-time constraints. While assigning
priorities, the software engineer may consider two im-
portant cases:

1. Synchronization constraints are likely to prevail soft
timing constraints. Defining priorities can be based on ana-
lyzing critical states. Relatively the most unwanted state
must be avoided. Consider the conflicts between real-time
and synchronization constraints of classes RTCrane and
ProtectedCrane. If the method off is invoked on an instance
of class RTCrane and this instance is in HighSpeed mode
and is moving, then the synchronization constraint of Pro-
tectedCrane will defer the request until the crane is at
Stationary state. Giving higher priority to real-time con-
straint may increase the speed but will possibly result in
damage to the container. In such a case, it is preferable
that the synchronization constraint has a higher priority
than the real-time constraint. Note that the real-time con-
straints of RTCrane are soft timing constraints.

2. Hard timing constraints are likely to prevail syn-
chronization constraints. Consider, for example, the follow-
ing situation. The method emergency is invoked because
the crane operator is in danger and the further movement
of the container would make the situation even worse.
Turning off the magnetic field and possibly damaging the
container is definitely preferable to risking the life of the
operator. Note that the real-time constraints of Emergen-
cyRTCrane are hard timing constraints.

6. THE COMPOSITION FILTERS APPROACH

In this section, first we will present an object-oriented
model to express composition of synchronization and real-
time constraints. This model is based on the composition-
filters concept. Second, we will model the crane system
using this approach.

6.1. Extending the Object-Oriented Model with
Composition Filters

In Section 5.2, separation of concerns was presented
as one of the fundamental requirements in eliminating
inheritance anomalies. The conventional object-oriented
model as adopted by languages like C11 and Smalltalk
provides features that are very useful for a large category
of applications and therefore it must be kept as a useful
abstraction mechanism. However, to solve the identified

invoked, then the magnetic field must be turned off imme-
diately. However, class ProtectedCrane delays off messages
while the crane is moving. The real-time constraint of
EmergencyRTCrane, therefore conflicts with the synchro-
nization constraint of ProtectedCrane if the method emer-
gency is invoked while the crane is moving.

The synchronization constraints are defined to preserve
the logical behavior of objects. For example, if the magnetic
field is turned off while the crane is moving, then the
container may fall down and be damaged.

A real-time system is a system in which the correctness of
its behavior depends not only on the logical computations
carried out but also on the time the results are delivered.
The built-in notion of time and how it is used in the system
is the difference between real-time systems and non-real-
time systems. The so-called hard timing constraints define
a time-bound for a process that must be fulfilled, otherwise
the computed result is useless, or can even be harmful.
The process is not allowed to execute outside the specified
time-bound. For example, in the crane system if the method
emergency is invoked because the crane operator is in
danger, then carrying the container must be stopped imme-
diately. Soft timing constraints define a time-bound for a
process outside which the computed result is not useless
but still has a (diminished) value. The process is allowed
to continue outside the specified time-bound.

5.2. Requirements for Composing Synchronization and
Real-Time Constraints

From the discussion in the previous sections, we infer
several requirements which object-oriented concurrent
and real-time languages should fulfill, in order to be consid-
ered suitable for constructing extensible and reusable ap-
plications:

• Eliminating inheritance anomalies through separation
of concerns. The adopted object-oriented language must
enable the software engineer to define and reuse synchro-
nization and real-time constraints separately or together
without causing inheritance anomalies. In Section 3.2, Im-
plicit State, Synchronization Conditions, Message Accep-
tance, Scheduler, and Methods are defined as the essential
elements of the generic synchronization model. The map-
ping functions State Abstraction, Synchronization Condi-
tion Mapping, and Method Executions relate these ele-
ments to each other. The generic real-time model extends
the synchronization model with Real-Time Condition
Mapping and Real-Time Constraints. Some of these ele-
ments and functions are implicit, such as Implicit State,
Scheduler, and Message Executions. The basic require-
ment for eliminating inheritance anomalies is that the
adopted language must separate the synchronization and
real-time elements and mapping functions from each other.
In addition, the inheritance mechanism of the language
must be able to compose these along the inheritance hier-
archy.
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problems,6 the object-oriented model must be enhanced
modularly without losing its basic features. For this pur-
pose, the composition-filters model extends the conven-
tional model through a set of so-called filters.7

Each message that arrives at an object is subject to evalu-
ation and manipulation by the filters of that object. In Fig.
13, the manipulation of messages by the filters of an object
is depicted. Each filter deals with a particular concern. In
composing synchronization and real-time constraints there
are basically three concerns:

1. Composition of synchronization constraints, handled
by Wait filters.

2. Composition of real-time constraints, handled by
RealTime filters.

3. Inheriting methods and executing messages, handled
by Dispatch filters.
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The aim of the composition-filters model is to improve
the expression power of the conventional object-oriented
model through modular and orthogonal extensions rather
than building increasingly complex object structures. In
the following sections, we will illustrate how composition-
filters can be applied to compose synchronization and real-
time constraints without creating inheritance anomalies.

6.2. Synchronization in the Composition-Filters Model

In Fig. 14, we show the interface definition of class
BoundedBuffer expressed using the Sina language. The
major extensions to the conventional object-oriented
model are condition and filter declarations, as highlighted
by gray boxes. Class BoundedBuffer declares the condi-
tions Empty, Partial and Full, which correspond to the
three states of a bounded buffer. The second extension is
the declaration of two filters following the inputfilters8

clause. A filter determines whether a particular message
can be accepted or rejected. It also determines what action
is to be performed in either case. Each filter is declared
as an instance of a filter class. An arbitrary number of filters
may be declared in a class definition. Class BoundedBuffer
declares two filters, instances of class Wait and class Dis-
patch. This is because a bounded buffer object has two
concerns: synchronization, handled by the wait filter and
method execution, handled by the Dispatch filter.

A filter of class Wait has the following intuitive defini-
tion: When a message arrives at a wait filter, it can only
proceed when the message is accepted by the filter, and it
will be blocked otherwise, until the message can be ac-
cepted by the filter. In class BoundedBuffer, the input filter
bufferSync of class Wait is declared as

bufferSync : Wait 5 hEmpty5.put, Partial5.hput, getj,
Full5.getj;

When a message is received by an instance of class
BoundedBuffer, it is first applied to the wait filter. This

6 As well as other identified problems such as the obstacles defined
in [6].

7 The composition-filters approach is a modeling paradigm rather than
the definition of a particular language with fixed semantics. Composition-
filters can be attached to objects expressed in different languages, such
as Sina [2, 3], C11 [25], and Smalltalk [21]. The semantics of objects
expressed in the composition-filters model can be largely determined by
the semantics of the filters. Several different filter types have been defined
in the past. For example, [2] illustrated how both inheritance and delega-
tion can be simulated using filters. In [4], filters were introduced for
defining reusable transactions. Language-database problems were ad-
dressed in [5]. In [7], filters were used to abstract coordinated behavior
among objects. The application of composition-filters for real-time speci-
fications was published in [8].

FIG. 13. The manipulation and buffering of messages at the filters
of an object.

FIG. 14. Sina definition of the interface of class BoundedBuffer.

8 In addition to input filters, the composition-filters model also supports
output filters. Output filters affect outgoing messages, whereas input
filters affect incoming messages. For brevity, we do not further consider
output filters in this paper.



bufferSync. The message put matches the first filter ele-
ment, as the Empty condition is valid. Thus the message
is immediately dispatched and therefore removed from the
queue again (no. 2). Now the buffer contains one element,
causing condition Partial to become true. So when the
message get arrives (no. 3), it is accepted by the filter, and
immediately dispatched (no. 4). Condition Partial is no
longer valid, causing the received message get9 to be
blocked (no. 5). When the next message get0 arrives, it is
placed in the queue, after the message get9 (no. 6).

When put9 arrives, it will be placed at the tail of the
queue (no. 7), but since it is the first acceptable message
in the queue, it will be dispatched prior to the get messages
(no. 8). After put9 has completed its execution (as we
assume mutual exclusion here, which is enforced by de-
fault), condition Partial is valid once again. This enables
both get9 and get0, in which case the first applicable message
(get9) in the queue is dispatched. After the execution of
get9, the condition Empty will become true and condition
Partial will be false, therefore get0 remains in the queue
(no. 9).

6.2.1. Definition of Class Crane Using Filters

Now we will illustrate how class Crane can be imple-
mented using the composition-filters approach. Consider
the interface definition of class Crane in Fig. 16. The meth-
ods that allow reading the state of the object are declared
following the conditions clause. Further, class Crane de-
clares container of class BoundedBuffer as an internal ob-
ject. Internal objects are used to implement composition-
based inheritance as will be explained in the following
paragraphs.

Class Crane declares two filters: sync of class Wait and
compose of class Dispatch. If a message is received by an
instance of class Crane, then it will be first applied to
the wait filter. This filter has two parts. The filter part
‘‘Loaded5.on’’ means that the message with the selector
on can match this part only if the condition Loaded evalu-
ates to true. If the message cannot match this part, then it
will be evaluated with respect to the next part. The second

wait filter has three parts separated by the operator ‘‘,’’.
The first part ‘‘Empty5.put’’ has the following meaning:
If the received message has the selector put and the condi-
tion Empty evaluates to true, then the message matches
this part and will be forwarded to the dispatch filter. Other-
wise, the message is evaluated by the second part. The
second part matches the message if the message has the
selector put or get, and if the condition Partial evaluates
to true. If both parts do not match, then the received
message is evaluated by the third part expressed as
‘‘Full5.get.’’ This part matches the message if the condi-
tion Full evaluates to true and if the message has the selec-
tor get. If the received message does not match any of
these parts, then it will be blocked until one of the parts
will match the message.

The Dispatch filter defines a simple matching mechanism
that maps all received messages to the local (‘‘inner’’)
methods. The wild card ‘‘*’’ implies that all message selec-
tors—that are supported by the object (inner)—are ac-
ceptable. The Dispatch filter takes care that a message
that does match will be dispatched. Dispatching to a local
method results in execution of that method.

To illustrate the synchronization of messages, we show
the message queue for an instance of class BoundedBuffer
that subsequently receives the messages put, get, get9, get0,
and put9. We assume the following condition implementa-
tions for class BoundedBuffer:

conditions
Empty begin return noOfElements50 end;

// no elements in the buffer
Partial begin return (Empty.not and Full.not) end;

// not empty, not full
Full begin return noOfElements5maxSize; end;

// the buffer is full

The subsequent states of the message queue of the object
resulting from the arrival, buffering and dispatching of
messages are shown in Fig. 15: As the first message put
is received (no. 1), it is matched against the wait filter
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part ‘‘Truep.on’’ has the following meaning: all the re-
ceived messages can match this expression except the mes-
sage with the selector on. If the received message has the
selector on and the condition Loaded is false, then it will
be blocked until the condition Loaded becomes true. If
the message matches the wait filter, then it will proceed
to the dispatch filter. Otherwise, the message will be
blocked until it can be accepted by the Wait filter.

The dispatch filter has two parts and does not define
any conditions. The first part ‘‘inner.*’’ has the following
meaning. If the selector of the received message corres-
ponds to one of the methods of class Crane, then the
message will be dispatched to that method. If not, then
the message will be evaluated with respect to the second
part ‘‘container.*’’. Note that container is an internal object
and an instance of class BoundedBuffer. If the selector of
the received message corresponds to one of the methods of
class BoundedBuffer, then it will be forwarded to container.
Before dispatching to one of its methods, the message has
to pass through the filters of container as well. This means
that the received message has to fulfill the synchronization
conditions of both classes Crane and BoundedBuffer.

This example illustrates how composition-filters can be
used to compose synchronization specifications defined by
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different classes. Notice that the dispatch filter of class
Crane implements an inheritance mechanism since the
methods of class BoundedBuffer are now available at the
interface of class Crane. This mechanism is also known as
composition-based inheritance.

6.2.2. Definition of Class ProtectedCrane Using Filters

Class ProtectedCrane inherits from class Crane and intro-
duces a new synchronization constraint which restricts the
execution of the methods on and off. Since the method
on is also restricted by class Crane, the synchronization
constraints of Crane and ProtectedCrane must be com-
posed together for this method. The interface definition
of class ProtectedCrane is shown in Fig. 17. To implement
composition-based inheritance, class ProtectedCrane de-
clares myCrane of class Crane as an internal object. Fur-
ther, ProtectedCrane inherits all the conditions declared
by Crane by using the expression ‘‘myCrane.*’’ in the con-
ditions clause.

Class ProtectedCrane declares two filters. The first filter
protect is an instance of Wait and is used to enforce the
synchronization constraint of ProtectedCrane. If a message
is received by an instance of class ProtectedCrane, it
will be first evaluated with respect to the filter part
‘‘Stationary5.hon, off j’’, which has the following mean-
ing: if the received message has one of the selectors on
or off and if the condition Stationary evaluates to true
then this part matches the message. If the received mes-
sage does not match, then it will be evaluated with respect
to the second part ‘‘Truep.hon, off j’’. This part accepts
all the messages except the messages with the selectors
on and off. Therefore, the on and off messages can pass
this wait filter only if the condition Stationary is true.
Otherwise, they will be blocked until the condition Sta-
tionary changes to true.

The dispatch filter inherit has only one part ‘‘my-
Crane.*’’. A message that arrives at the dispatch filter is
forwarded to the instance myCrane of class Crane if the
selector of the message corresponds to one of the interface
methods of class Crane. Before dispatching to one of these
methods, the message has to pass through the filters of
classes Crane and BoundedBuffer, and therefore has to

FIG. 16. Sina definition of the interface of class Crane.

FIG. 17. Sina definition of class ProtectedCrane.



the timing attribute of the received message. The method
minEnd is defined by time to associate a timing constraint
with it. The method minEnd accepts a time specification
as a value and assigns it as the deadline of the execution.
However, this is only done if the new value is smaller than
the previous value (the minimum is taken). If the condition
Speed evaluates to true, then the real-time filter of class
RTCrane associates with every message the timing value
tSpeed. if tSpeed is smaller that the current timing value of
the received message.

The second part of the real-time filter is declared as
‘‘HighSpeed5. * u time.setMin(HighSpeed) u’’. If the con-
dition HighSpeed evaluates to true, then every message is
associated with the timing value tHighSpeed, provided that
this value is smaller that the current timing value of the
received message. The condition HighSpeed is set to true
by invoking the method setHighSpeed. The invocation of
this method will make the other conditions false.

If the method setNormal is invoked, then the conditions
Speed and HighSpeed are set to false. As a result, the
received message cannot match the real-time filter and
therefore will be forwarded to the dispatch filter without
modifying the timing attribute.

The dispatch filter makes the methods of class Protected-
Crane available at the interface, provided that the received
message can pass through the filters of class Protected-
Crane. If, for example, the condition HighSpeed is true,
the received message has the selector off and the crane is
moving, then this message will pass through the real-time
and dispatch filters, but will be blocked by the wait filter
of class ProtectedCrane. This means that in this particular
implementation, the synchronization constraints have a
higher priority than the real-time constraints. Since class
RTCrane introduces soft timing constraints, we consider
this priority assignment preferable.

6.3.2. Definition of Class EmergencyRTCrane Using Filters

Class EmergencyRTCrane inherits from RTCrane and
introduces a hard timing constraint for the method emer-

satisfy all the synchronization constraints of these classes
as well.9

6.3. Composing Real-Time Constraints Using Filters

6.3.1. Definition of Class RTCrane Using Filters

Class RTCrane inherits from class ProtectedCrane and
depending on the mode of its instance object, it introduces
two real-time constraints. The interface definition of class
RTCrane is defined as depicted in Fig. 18. Class RTCrane
declares an internal object myCrane of class Protected-
Crane. The three conditions Normal, Speed and HighSpeed
are declared following the conditions clause.

Class RTCrane declares two filters, rt and inherit, which
are instances of classes RealTime and Dispatch, respec-
tively. The composition-filters model assumes that timing
information travels with each message. The real-time filter
is used to affect the timing attribute of message if the
corresponding message matches the filter. If the message
does not match the filter, then it will pass to the next filter
without being affected by the filter.

The real-time filter of class RTCrane has two parts. The
first part is specified as ‘‘Speed5.* u time.setMin(tspeed)u’’.
Here, if the condition Speed is true, then this part matches
all the possible messages. If the message matches this part,
then it will receive the timing constraint expressed between
the separators ‘‘u ... u’’. If the message does not match the
first part, then it will be evaluated with respect to the
second part of the real-time filter. The condition Speed is
set to true by invoking the method setSpeed. In addition,
this method assigns false to the other conditions Normal
and HighSpeed.

The real-time constraint in the first part of the filter is
expressed as u time.minEnd(tspeed) u. Here, time denotes
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9 In certain cases, it it necessary to enforce synchronization constraints
by wait filters atomically at a single class. To specify atomicity, a filter
from a ‘‘superclass’’ can be inserted, e.g., by declaring ‘‘myCrane.sync’’
in the filter set of class ProtectedCrane. In our case example, however,
the atomic enforcement of synchronization constraints was not found nec-
essary.

FIG. 18. Sina definition of the interface of class RTCrane.



gency. If invoked, the method emergency must be executed
within its time limit independent of other real-time and
synchronization constraints. Consider the interface defini-
tion of class EmergencyRTCrane that is depicted in Fig.
19. To implement composition-based inheritance, class
EmergencyRTCrane declares myCrane as an instance of
class RTCrane following the internals clause. Further, class
EmergencyRTCrane declares the condition Stationary and
‘‘inherits’’ all the conditions defined by RTCrane using the
expression ‘‘myCrane.*’’. Note that the condition Station-
ary was declared before by class ProtectedCrane. Redefini-
tion of a condition overrides the previous definition. The
purpose of this redefinition will be explained in the follow-
ing paragraphs.

Class EmergencyRTCrane defines two filters: a real-time
filter and a dispatch filter. The real-time filter has only one
part. If the received message has the selector emergency,
then it will receive the real-time deadline temergency provided
that temergency is smaller than the current deadline. All other
requests will be passed to the dispatch filter without being
affected by this real-time filter. The dispatch filter either
dispatches the message to the method emergency or to the
internal object myCrane of class RTCrane. The implemen-
tation of class EmergencyRTCrane is shown in Fig. 20.

The method emergency carries out two kinds of actions.
First, it turns off the magnetic field by invoking the method
off on server. In the Sina language, server denotes the
receiver of the message and it is comparable to the pseudo-
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variable self in Smalltalk or this in C11. Further, the Sina
language provides the pseudo-variable client which denotes
the sender of a message. After shutting off the magnetic
field, the method emergency generates warning signals.

Now assume that the received message has the selector
emergency and has no timing constraints. The instance
of class EmergencyRTCrane will then assign the timing
attribute temergency to the message and forward it to the
dispatch filter. The dispatch filter will execute the method
emergency. The method emergency will then invoke the
method off on server, which is the same instance that
received the emergency request. This self invocation will
be forwarded by the dispatch filter to the internal object
myCrane of class RTCrane. Assume that the crane has
been put in HighSpeed mode previously. Then the real-
time filter of RTCrane will try to assign the timing attribute
tHighSpeed to the message. However, since temergency is smaller
than tHighSpeed, temergency will be kept as the timing attribute
of the message. The internal object myCrane of class
RTCrane will further forward the message to its own inter-
nal object which is an instance of class ProtectedCrane. If
the crane is moving, then the wait filter of class Protected-
Crane will normally block the off and on requests, because
its condition Stationary will be false. This would give a
higher priority to the synchronization constraints, which
is not desired for class EmergencyRTCrane.

To give a higher priority to the real-time constraint of the
method emergency than the synchronization constraints of

FIG. 19. Sina definition of the interface of class EmergencyRTCrane.

FIG. 20. Sina definition of the implementation of class EmergencyRTCrane.



between inheritance and concurrency. The identification
and description of inheritance anomalies was first made
by Matsuoka, Yonezawa and Wakita in [35, 37]. Basically,
this work classified the inheritance anomalies with respect
to representation and manipulation of object states. Here,
the anomalies were termed ‘‘mixing synchronization speci-
fication with application code,’’ ‘‘state-partitioning,’’
‘‘orthogonally restricting specifications,’’ ‘‘history- sensi-
tiveness,’’ etc.

Our definition of anomalies is based on the generic syn-
chronization model presented in section 3.2. Our analysis
is somewhat more general. For example, In Section 3.3.1,
we generalized the ‘‘mixing synchronization specification
with application code’’ anomaly to the problem of ‘‘non-
modular synchronization specifications.’’ We claimed that
the modularity definition must not only include the separa-
tion of synchronization specification from application code,
but also that the synchronization specification must consist
of an independent State Abstraction and Condition Map-
ping Functions, as depicted in Fig. 7. In fact our generic
model made it possible to compare the synchronization-
related inheritance problems to the problems of inheriting
real-time constraints.

7.1.2. Evaluation of Languages with Respect to
Synchronization Inheritance Anomalies

Modularity of Synchronization Specifications. In a
number of concurrent object-oriented languages with ex-
plicit message acceptance, each object defines a part called
the body; this is a piece of code that is executed indepen-
dently from the execution of incoming messages (e.g.
POOL-I [11], Eiffel// [18]). In these systems, the body
represents the high-level specification of a process that
is associated with the object: the received messages are
considered and when deemed appropriate, the execution
of corresponding methods is initiated. It is obvious that
the body approach requires complete redefinition of the
body in a subclass whenever the synchronization changes.
In particular, in the subclass all the synchronization con-
traints for the methods defined in parent classes must be
defined again. This conflicts with incremental specification.
It also violates encapsulation, because synchronization
constraints that are implementation-dependent must be
redefined as well. This creates a dependency between the
subclass and the superclasses: redefining the synchroniza-
tion of the superclass requires (all) the subclasses to update
the body implementations.

In addition to realizing the synchronization constraints
of the object, the body may implement some general house
keeping operations as well. Modifying these operations
(i.e., application code) cannot be done independently from
synchronization, thus requiring additional unwanted re-
definitions.

Composability of Synchronization Constraints. The re-
quirement for polymorphic synchronization specifications
states that a certain synchronization constraint must be

class ProtectedCrane, the condition Stationary is redefined
by class EmergencyRTCrane. The condition Stationary
evaluates to true if the message is a self call (client5server),
or the condition Stationary evaluates to true by the internal
object myCrane (myCrane.Stationary). Polymorphically
redefining conditions allows programmers to give different
priorities to constraints along the inheritance hierarchy.

7. RELATED WORK

In the following, we will present the related work first
in concurrent, and later in real-time object-oriented lan-
guages.

7.1. Concurrent Object-Oriented Languages

In this section, we will give a list of significant examples
of concurrent object-oriented languages. In the following
subsections, we will evaluate these languages using the
three requirements presented in Section 3.3.

We observe four distinct approaches in object-oriented
synchronization schemes. These are namely, explicit accep-
tance, activation conditions, meta-level, and interobject level
synchronizations. Explicit acceptance means that during a
method execution, the state of the object is considered,
and based on this it is explicitly decided what message to
accept next. For example, ABCL/1 [55], POOL [10], and
Eiffel/ / [18] support this approach.

Activation conditions define for each message whether
it should be accepted or blocked. In some languages the
activation conditions can be manipulated directly (e.g.,
Actor languages [1] and Hybrid [42]). In other languages
and systems the activation conditions are specified indi-
rectly, e.g., through guards (e.g., in [22], Guide [20], and
Concurrency Annotations [33]), path expressions (e.g.,
PROCOL [14]), or state abstractions (e.g., ACT11 [31],
Rosette [53], and Synchronizing Actions [41]). The pro-
posal in [38] combines activation conditions through guards
with state abstractions.

Concurrent reflective languages define synchronization
constraints at a meta-level. Examples of this are ABCL/
R [54], Actalk [16], and MAUD [23].

Another approach toward specifying synchronization is
at the interobject level; synchronization problems can be
solved by controlling the patterns of interactions between
objects. Although such approaches generally do not suffer
from inheritance anomaly, they inflict with modularity and
the notion of autonomous objects, thereby causing other
problems in reusability and extensibility. Examples of in-
terobject level synchronization specifications are atomic
transactions [40], atomic delegations [4], Abstract Commu-
nication Types [7], and Synchronization Patterns [34].

7.1.1. Definition of the Synchronization Inheritance
Anomaly Problem

During the past several years, various researchers
[10, 15, 30, 43] have indicated that there is an interference
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applicable to multiple methods, either in the same class or
in subclasses. The languages that adopt guard-like ap-
proaches such as Guide [20], Concurrency Annotations
[33] and Synchronisers [38]10 cannot effectively specify
polymorphic synchronization specifications.

In some languages the objective of synchronization syn-
thesis has been discarded, usually motivated by the com-
plexity of the problem and the relatively small amount of
reused code. Examples of this are POOL-I [11], Eiffel//
[18], and Dragoon [12, 48]. In these languages synchroniza-
tion specifications can be inherited (once), but not ex-
tended afterwards.

Expressiveness for State Abstractions. The expressive
power for specifying state abstractions varies widely among
synchronization schemes. At one end of the scale are mech-
anisms such as path expressions, which can only express
acceptance based on very specific information (i.e., the
history of executed messages). Extended path expressions
provide guards to extend the expressive power. Another
specific mechanism for expressing synchronization is based
on synchronization counters [49]. The more sophisticated
synchronization schemes (e.g., in [22, 38]) allow—
almost—the full expressiveness of the programming lan-
guage for expressing synchronization conditions.

A solution to the bookkeeping problem of maintaining
history information as defined in Section 3.3.3 is available
in some systems through the definition of generic pre- and
post-actions that are executed for all messages that are
received by the object (e.g., in Encapsulators [47], or in
reflective languages such as ABCL/R [36] and MAUD
[23]).

It should be noted that the approaches based on behav-
ioral abstraction that perform a become statement at, or
after the end of methods (e.g., ACT11 [31]) are obliged
to predict the state of the object at the moment of message
arrival. Thus they cannot deal with any information about
arrived messages in the time between the become and the
(test for) acceptance of a particular message.

7.2. Real-Time Object-Oriented
Programming Languages

In the following paragraphs, we will present some sig-
nificant real-time object-oriented languages. The evalua-
tion of these languages will be presented in the next section.

The Maruti programming language (MPL) [44] is based
on the C11 language and designed for the Maruti distrib-
uted operating system. MPL provides a number of con-
structs to specify timing constraints. These constructs can
be applied to message sends and code blocks only. Timing
constraints of the client object are passed on11 to the server
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object and to the methods called by it. MPL offers several
synchronization constructs that are orthogonal to the ob-
ject structure and are embedded in the method bodies of
an object.

RTC11 [27] is an extension of the C11 language and
is suitable for programming both soft and hard real-time
applications. RTC11 is implemented on top of the real-
time distributed operating system kernel arts. Timing con-
straints can be associated either with method headers or
declared in the method body. Thus timing constraints may
be visible in the method interface and be encapsulated in
the object’s implementation. RTC11 offers a guard-like
synchronization mechanism, declared at the interface of
every method.

The FLEX language [32] is based on the C11 language
and associates real-time constraints with code blocks. Any
change in the execution state causes only those immedi-
ately dependent constraints to be checked, thus no propa-
gation of the constraints is done. The constraints may be
labeled and thus referred to by other constraints. Prece-
dence relations can be specified using constraint blocks that
refer to attributes of other constraints. Constraints may
also contain boolean expressions which are treated as an
assertion to be maintained throughout the block’s lifetime.
Synchronization must be specified with the constraints em-
bedded in method implementations as well.

RealTimeTalk [17] is based on the Smalltalk language
without the features of Smalltalk that impede the timing
prediction, such as method lookup and garbage collection.
RealTimeTalk has been targeted to provide frameworks
for soft and hard real-time applications. In the framework,
objects of a special class Use-Case encapsulate timing-criti-
cal tasks. The RealTimeTalk compiler generates C-code
which, in turn, has to be compiled to a target system.
RealTimeTalk cannot specify explicit synchronization con-
straints.

The DROL language [52] is based on the C11 language
and aims at programming distributed realtime systems. Its
eminent feature is that users can describe the semantics
of message communications at a meta-level as a communi-
cation protocol by using sending and receiving primitives.
Like RTC11, DROL is implemented on top of the arts-
kernel. The concept behind DROL is to provide the best
effort at the server, taking into account the timing con-
straints o a message, and to realize the least suffering at
the client side by detecting timing errors and avoiding the
propagation thereof. Timing constraints can be specified
for both messages and methods. For each method of a
(server) object, its worst-case execution time may be speci-
fied. Each message send may be a so-called time polymor-
phic invocation. The server chooses from a set of alterna-
tives the method that meets the timing constraint. Periodic
actions are specified using the active keyword, followed by
the method declaration and parameters specifying the time
bound of period and execution time. Because of the time
polymorphic invocations, DROL provides flexible compu-
tations and graceful degradation. In DROL, timing con-

10 Although this is less severe because their approach supports behav-
ioral abstractions as well, which can cope with this particular problem.

11 In real-time languages, sometimes the term inheritance is used for
this purpose as well. In this paper, we only use the term inheritance when
we refer to class inheritance.



support explicit synchronization constraints, the notion of
inheritance anomaly does not apply to RealTimeTalk.

DROL offers two distinct timing specification ap-
proaches. Timing constraints for message sends are embed-
ded in the method body of the sender, causing modularity
and composability inheritance anomalies. The (worst case)
timing for message reception is declared at the interface
of the object, and cannot be reused separately, causing
composability anomalies. Time polymorphic invocations
are powerful, but do not contribute directly to the compos-
ability of real-time constraints. The synchronization ap-
proach suffers from modularity anomaly, since the enabled
sets are determined inside the method body.

8. EVALUATION

In Section 5.2, the requirements for effectively compos-
ing and reusing synchronization and real-time constraint
specifications were summarized by three points: separation
of concerns, expression power and assigning priorities of
specifications. We will now evaluate the composition-filters
approach with respect to these requirements.

8.1. Separation of Concerns

Separation of concerns is one of the essential require-
ments to compose and reuse synchronization and real-time
constraint specifications. Within this context, the following
four requirements were identified:

1. Separation of synchronization and real-time specifi-
cations and method executions.

2. Separation of the elements of synchronization speci-
fications.

3. Separation of the elements of real-time specifica-
tions.

4. Composition of concerns.

8.1.1. Synchronization Specification, Real-Time
Specification, and Method Execution

The composition-filters approach separates the concerns
of specifying synchronization and real-time constraints and
inheriting and executing methods by three different filters
which are functionally independent of each other. Each
filter affects the received messages in a certain way. For
example, wait filters may delay messages, real-time filters
may affect the timing characteristic of messages and dis-
patch filters may execute the corresponding methods. Spec-
ification of filters are separated from the implementation
of objects.

8.1.2. Elements of Synchronization Specifications

In Section 3.2, the elements of our generic synchroniza-
tion model were defined as Implicit State, Synchronization
Conditions, Message Acceptance, Scheduler and Methods.
The mapping functions State Abstraction, Synchronization
Condition Mapping, and Method Executions relate these

straints for message sends may only be declared in method
bodies. Timing constraints for message acceptance specify
the worst case time and may only be declared at the object
interface. Synchronization in DROL is based on the en-
abled-set approach [53].

7.2.1. Definition of the Real-Time Inheritance Problem

To the best of our knowledge, apart from our related
work [8], real-time constraints inheritance anomalies have
not been studied in the literature. Our definition in [8] is
somewhat different from the analysis that is presented in
this paper. In [8], real-time constraint inheritance anoma-
lies were classified as ‘‘mixing real-time specifications with
application code,’’ ‘‘nonpolymorphic real-time specifica-
tions’’ and ‘‘orthogonally restricting real-time specifica-
tions.’’ The ‘‘mixing real-time specifications with applica-
tion code’ anomaly is a special case of the modularity
anomaly described in Section 4.2.1. The ‘‘nonpolymor-
phic’’ and ‘‘orthogonally restricting’’ real-time specification
anomalies correspond to respectively the polymorphic
real-time specifications and real-time synthesis anomalies
described in Section 4.3.2. The analysis technique pre-
sented in this paper is based on the generic real-time model
and is more general. In addition, the generic model made
it possible to analyze synchronization and real-time inheri-
tance anomalies together.

7.2.2. Evaluation of Languages with Respect to Real-
Time Inheritance Anomalies

We will now evaluate the real-time object-oriented lan-
guages with respect to the real-time synchronization con-
straint inheritance anomalies.

The Maruti programming language is only capable of
expressing timing and synchronization constraints within
methods; timing and synchronization constraints are al-
ways encapsulated and cannot be separately inherited nor
reused in subclasses. Therefore, MPL suffers from both the
modularity and the composability inheritance anomalies in
both the synchronization and the real-time domain.

In RTC11 timing constraints can be declared either at
the method interface or in the method body. If the latter
is the case, this will cause the modularity anomaly. Other-
wise, the timing (and synchronization) constraints are de-
fined per method header. As a result, the composability
anomaly applies as well. Expressing guards for synchroni-
zation of RTC11 has several limitations, resulting in the
expressiveness anomaly.

Flex associates both synchronization and timing con-
straints with statements, or blocks of statements. Therefore
the modularity requirement is not met, resulting in anoma-
lies. Although blocks can be labeled for access by other
constraints, the constraints themselves cannot be reused
by other constraints, resulting in composability anomalies.

Because RealTimeTalk does not allow for subclassing
of classes with real-time specifications, and also does not
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elements to each other. We will now analyze how elements
of synchronization specifications are modeled within the
composition-filters approach.

Consider, for example the specification of the wait filter
of class Crane: hLoaded5.on, Truep.onj. Here, the con-
dition Loaded corresponds to the element Synchronization
Condition. The element State Abstraction Function is de-
fined by the implementation of the condition method
Loaded. The operator ‘‘5.’’ corresponds to Synchroniza-
tion Condition Mapping Function. The ‘‘p.’’ operator
specifies an exclusive Condition Mapping Function. An
exclusive Condition Mapping Function provides an open-
ended specification of synchronization conditions. For ex-
ample, the wait filter of class Crane only restricts the mes-
sages with the selector on. Message Acceptance is specified
as a set. In the wait filter specification of class Crane,
‘‘on’’ refers only to the method on of class Crane. A filter
specification may refer to the total message inteface of a
class. For example, in the dispatch filter of Crane, the
specification ‘‘container.*’’ refers to the total message in-
terface of class BoundedBuffer. The character ‘‘*’’ provides
an open-ended specification of object’s behavior which
may be extended by new compositions.

Synchronization Condition, Synchronization Condition
Mapping and Message Acceptance can be combined in
various ways. For example, the specification ‘‘Load-
ed5.on’’ is a one-to-one combination. The specification
‘‘Truep.on’’ is a one-to-many combination.12

8.1.3. Elements of Real-Time Specifications

In real-time filters, most elements of real-time specifica-
tions are similar to synchronization specifications. The
evaluation presented in the previous section is also valid
for real-time filters. In addition, real-time filters express
real-time constraints delimited by the character ‘‘u’’. Real-
time constraints can be associated with a set of methods
and conditions. For example, the specification ‘‘Speed5.’’
* utime.setMin(tSpeed)u’’ relates the real-time constraint
tSpeed to all the messages received by the object and to the
condition Speed.

8.1.4. Composition of Concerns

The composition-filters model allows compositions of
separately specified constraints. For example, Class Pro-
tectedCrane, as defined in Section 6.2.1, composes the syn-
chronization constraint of class Crane and class Protected-
Crane for the method on. This is the so-called AND

composition of constraints. A received message has to pass
through two different filters, thus satisfying the conditions
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of both filters. An example for OR composition of con-
straints is illustrated by classes BoundedBuffer and Crane.
These classes enforce synchronization constraints on dif-
ferent sets of methods. The OR composition in class Crane
is defined through the usage of multiple parts in a filter.
The operator ‘‘,’’, in fact, is a Conditional-OR composition
operator. Using different filters provides separation of con-
cerns of different application-domain requirements, such
as concurrent and real-time systems.

8.2. Expression Power

As we outlined before in the discussion about the inheri-
tance anomalies, sufficient expression power for specifying
the mapping functions is relevant for two reasons: firstly
to be able to express certain aspects, such as deciding
message acceptance based on the number of active threads
in the object. Secondly, in some cases such a requirement
can be expressed through extra code in the implementation
of the object. As we have shown previously, such an ap-
proach will generally lead to inheritance anomalies. Im-
plicit Object State covers a virtually unlimited state-space.
Therefore, the most obvious area where expressive power
may be lacking is in the State Abstraction Function. As the
composition filters approach offers the full functionality of
method implementations for expressing state abstraction
mapping, most results can be defined in a straightforward
manner. For example in the guards approach of Guide
[20], the guard expressions are restricted to a logical ex-
pression over instance variables and synchronization
counters. In addition, condition methods can be inherited
or polymorphically redefined. For example, classes Protect-
edCrane and EmergencyRTCrane inherit the condition
methods of their superclasses. Class EmergencyRTCrane
polymorphically redefines the condition of class Protected-
Crane. We should note that the redefinition of conditions
may have unwanted consequences, as improper usage may
violate the synchronization constraints from the superclass.
On the otherhand, the equivalent mechanism of polymor-
phic method overriding is widely accepted in object-ori-
ented programming.

The expression power of real-time filters is equivalent
to the expression power of most real-time languages. A
detailed description of real-time specifications in the com-
position-filters model is given in [8].

8.3. Assign Priorities to Specifications

In the composition-filters model, a message may have
to pass through the filters of several objects, before being
dispatched to the corresponding method. Consider, for
example, class RTCrane which receives a message with the
selector on. This message has to pass through the filters
of RTCrane, ProtectedCrane, and Crane before being dis-
patched to the method on. Real-time filters may affect the
timing attribute of messages, whereas wait filters may block
them. This means that in case of AND composition, the

12 It is also possible to specify many-to-many combinations, for example
by using the expression ‘‘S(#)5.#.*’’. This expression can be interpreted
as follows: All the interface methods of the objects that satisfy the condition
S. This expression is very useful in specifying the so-called Associative
Inheritance mechanism and is explained in [5]. For brevity, we do not
discuss the many-to-many combinations in this paper.
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synchronization specification will prevail the real-time
specification. This was illustrated in the definition of class
RTCrane. As in the definition of class EmergencyRTCrane,
to give a higher priority to real-time specifications, the
synchronization conditions may be polymorphically rede-
fined.

8.4. Conclusion

Recently, a considerable number of concurrent and real-
time object-oriented languages have been introduced.
However, composing and reusing object-oriented pro-
grams with both synchronization and real-time constraints
has not been addressed, even though most real-world sys-
tems are concurrent and have some real-time aspects. In
short, failing in providing composable synchronization and
real-time constraints results in so-called synchronization
and real-time inheritance anomalies. This implies that the
reuse and composition of real-time and concurrent objects
is unnecessarily limited.

To analyze these inheritance anomalies, we presented
generic object-oriented models for synchronization and
real-time constraint specifications. These models are more
general than the previously proposed ones, and led us to
identify a set of requirements that are necessary to avoid
the inheritance anomaly problem.

To satisfy the identified requirements we extended the
object-oriented model modularly with composition filters.
These modular and orthogonal extensions allow us to over-
come both synchronization and real-time constraint inheri-
tance anomalies. A number of examples using the Sina
language were shown to illustrate the applicability of the
proposed mechanism. For a more precise description of
composition-filters and the Sina language, we refer to
[13, 29].
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7. M. Akşit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa,
Abstracting object-interactions using composition-filters. In Object-
Based Distributed Processing (R. Guerraoui, O. Nierstrasz, and M.
Riveill, Eds.). Lecture Notes in Computer Science, Vol. 791. Springer-
Verlag, Berlin/New York, 1993, pp. 152–184.

51COMPOSING SYNCHRONIZATION AND REAL-TIME CONSTRAINTS



30. D. G. Kafura and K. H. Lee, Inheritance in Actor based concurrent
object-oriented languages. Proceedings of ECOOP ’89. Cambridge
Univ. Press, Nottingham, July 10–14, 1989, pp. 131–145.

31. D. G. Kafura and K. H. Lee, ACT11: Building a concurrent C11

with Actors. J. Object-Oriented Programming 3, 1 (May/June 1990),
pp. 25–37.

32. K. J. Lin, J. W. S. Liu, K. B. Kenny, and S. Natarajan, FLEX: A
language for programming flexible real-time Systems. In Foundations
of Real-Time Computing: Formal Specifications and Methods.
(A. M. van Tilborg and G. M. Koob, Eds.). Kluwer, Dordrecht, 1991,
pp. 251–290.
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