
SIGNAL
PROCESSING

ELSEVIER Signal Processing 51 (1996) 167-190

Architectures for block Toeplitz systems

Ilias Bourasa, George-Othon Glentisb, Nicholas Kalouptsidis”,*

“Institute of Microelectronics. DEMOKRITOS, Athens 153 IO, Greece

bDepartment of Electrical Engineering, Universiiy of Twente, EL-BSC, P.O. Box 217, 7500 AE Enschede, The Netherlands

‘Department of Informatics, University of Athens, Panepistimiopolis, TYPA Buildings, 157 71 Athens, Greece

Received 8 April 1994; revised 22 June 1995 and 14 December 1995

Abstract

In this paper efficient VLSI architectures of highly concurrent algorithms for the solution of block linear systems with
Toeplitz or near-to-Toeplitz entries are presented. The main features of the proposed scheme are the use of scalar only
operations, multiplications/divisions and additions, and the local communication which enables the development of
wavefront array architecture. Both the mean squared error and the total squared error formulations are described and
a variety of implementations are given.

Zusammenfassung

In dieser Arbeit werden effiziente VLSI Architekturen fur hochgradig parallele Algorithmen zur Losung von
blocklinearen Systemen vorgestellt, die eine Toplitzstruktur oder Fast-Toplitz-struktur aufweisen. Die Hauptmerkmale
des vorgeschlagenen Schemas sind die Verwendung ausschlieglich skalarer Operationen, und zwar sowohl hinsichtlich
der Multiplikationen/Divisionen als such der Additionen, sowie eine lokale Kommunikationsstruktur, die die Entwick-
lung einer Wellenfrontfeld-Architektur errnoglicht. Es wird sowohl ein Ansatz fur den mittleren quadratischen Fehler als
such ein Ansatz fur den gesamten quadratischen Fehler formuliert, und eine Vielzahl von Implementierungen wird
angegeben.

R&sum6

Dans cet article sont present&es des architectures VLSI efficaces d’algorithmes hautement concurrents pour
la resolution de systemes lineaires par blocs avec des entrees Toepliz ou presque Toepliz. Les caracttristiques
principales des methodes propostes sont l’utilisation doperations scalaires (multiplications/divisions et additions)
uniquement, ainsi que la communication locale, qui permet le developpement dune architecture en reseau de front
d’onde. Les formulations des erreurs quadratiques moyenne et totale sont d&rites, et plusieurs implementations
distinctes sont don&es.

Kqvwords: Block Toeplitz matrices; Multichannel Schur algorithms; Parallel processing; VLSI implementation

*Corresponding author. Fax: 301 72 28 981

0165-1684/96/$15.00 0 1996 Elsevier Science B.V. All rights reserved
PZISO165-1684(96)00041-2

168 I. Bouras et al. / Signal Processing 51 (1996) 167-190

1. Introduction

In this paper efficient VLSI architectures for
block Toeplitz and Toeplitz like linear systems are
developed. Block Toeplitz solvers are encountered
in a wide range of applications. Typical examples
include multichannel spectral estimation, multi-
variable system identification and realization,
multichannel one dimensional (1-D) and two di-
mensional (2-D) Wiener filtering and smoothing,
nonlinear filtering using truncated Volterra series
[S, 10, 13, 15, 18, 191.

High performance massively parallel architec-
tures are required in most real time digital signal
processing applications. Advanced algorithms used
for adaptive antennas and adaptive beam-forming
have a data throughput of hundreds of millions of
operations per second. The requirements of real
time image processing are even more demanding,
since several billions of operations per second are
needed. VLSI array processors provide a low cost
solution to high speed, heavily loaded real time
applications [111.

Real time operation of block Toeplitz solvers is
an extremely heavy task. Since block Toeplitz sys-
tems result from multichannel and multidimen-
sional applications the computational load is ex-
pected to be tremendous even for moderate cases.
Computation savings can be obtained by applying
the efficient Levinson-Wiggins-Robinson (LWR)
type algorithms that take into account the special
structure of block Toeplitz systems [8, 17, 22, 231.
The computational complexity of these techniques
is O(k3p2), where k is the number of channels
(or the block order of the block system) and p is
the number of taps associated with each input
channel (or the dimensions of each entry Toeplitz
matrix).

A major drawback of the LWR type algorithms
is the need of inner products computations,
thus prohibiting full parallelism. A remedy to
this bottleneck is the engagement of Schur type
algorithms, which bypass the need for inner
product estimation, thus being suitable for parallel
implementation on a general purpose parallel
machine or on dedicated VLSI hardware, using
a systolic or a wavefront array architecture [l-4,6,
7, 9, 121.

In this paper several VLSI architectures are pro-
posed for the Schur type block Toeplitz solvers
recently developed in [l, 3,4,9]. Different through-
put rates can be achieved depending on the avail-
able hardware. A planar array processor is first
designed that computes the desired solution in
O(kp) time units utilizing O(k2p) processing ele-
ments. A reduced processor architecture is then
derived that computes the output in O(k2p) time
units, requiring however O(kp) processing elements
only. Finally, a superfast highly pipelineable three
dimensional structure is developed which in a full
pipeline mode has a constant throughput rate.

These algorithms offer significant advantages
over their predecessors, since inner products are
now bypassed, and they are free of matrix opera-
tions. On the contrary, the parallel structures pre-
sented in [6, 7, 211 require additional parts that
implement matrix inversion and multiplication, as
well as inner products, of order k. Moreover, they
suffer from communication, since matrices of order
k must be transmitted.

The proposed implementation of the highly con-
current Schur type algorithms involves the follow-
ing steps. (i) Derivation of dependence graph
showing the flow of computations. (ii) Employ-
ment of the canonical mapping methodology and
the default schedule, to derive a signal flow graph.
(iii) Algorithm reorganization to ensure local flow
of data and event-driven local control. (iv) Mini-
mization of the number of the over-all processing
elements as well as computational and communica-
tion tasks. (v) Programming in Occam and algo-
rithm validation.

The paper is organized as follows. First, the
block Toeplitz and near-to-Toeplitz solvers of
[l-4] are briefly discussed in Section 3. New sys-
tolic and wavefront architectures are proposed in
Section 4, and some hardware implementation
issues are presented to give directions to hardware
designers. The estimation of the correlation lags
used for the initialization of the algorithms is also
discussed. An alternative, more efficient from the
hardware point of view, architecture is described in
Section 5 and a description of the main processor
unit is given. Finally, in Section 6 a highly pipelined
3-D wavefront array, suitable for adaptive process-
ing, is proposed.

I. Bouras et al. 1 Signal Processing 51 (1996) 167-190 169

2. Problem formulation

Let us consider a multichannel FIR (finite im-
pulse response) filter of k input channels and
a single output. The extension to the multi-output
case is straightforward. Let k be the number of filter
input channels; xi(n), i = 1, . . . , k, be the corres-
ponding input. Then, the filter output y(n) is esti-
mated by the discrete time equation

Y(n) = - i f Ci(l)Xi(fl - I + 1)~ (1)
i=l I=1

where Ci(l), 1 = 1, . . . ,pi, are the filter coefficients
assigned to the ith channel. The number of filter
coefficients pi, i = 1, . . . , k, is in general different for
each input channel, i.e., pi # pj, i, j = 1, . . . , k. The
multichannel filter is completely characterized by
the parameter set (Pk,cpJ where

pk = bI,P2v ... ,Pkl

is a multi-index that specifies the lengths of the
input registers Cl-43 and cPl is a block vector that
carries the filter coefficients

CPt = cc;: cfz’ . . CE]‘,

where C; = [CL(l) Ci(2) . . . ci(pi)], i = 1,2, ,.. , k.
Superscript T means transpose. Eq. (1) can be com-
pactly written as a linear regression

y(n) = - $(fi)e,, . (2)

The regressor vector x,,(n) consists of blocks, each
one being formed by successive samples and of
varying dimension

x,,(n) = [x;:(n) x;:(n) ... gml’ 3

where x:(n) = [xi(n) Xi(n - 1) . . . xi(n - pi + l)],
i=lT 2-3 ..’ > k.

Let

e;,(n) = z(n) - y(n) = z(n) +x+%&

be the instantaneous output error between the de-
sired response signal z(n) and the filter’s output
y(n). The error signal &(n) is forced to be ortho-
gonal to the regressor vector x,,(n). This can be
expressed as

<x,,(n), e;,(n) > = 0, (3)

where (.) is a suitable orthogonalization operator.
The choice of (‘) gives rise to several algorithms
for the determination of the optimal filter cPx. Two
particular cases are considered in this paper.

(a) The mean square error (MSE). Let a(.) de-
note the expectation operator. Then, Eq. (3) takes
the form

&(x,,(n)e~,(n)) = 0. (4)

The mean squared error filter is then estimated
by the solution of the linear system of equations

R&Q = - dPI 9

where

(5)

R,, = &(x&)x;f;,(n)), d,, = &&)z(n)) (6)

are the autocorrelation matrix and the crosscor-
relation vector, respectively.

R,, is a symmetric positive definite block matrix
of block order k with Toeplitz entry matrices. This
means that R,, consists of kZ Toeplitz submatrices
Rij of dimensions pi x pj, i, j = 1, . . . , k. Thus,

[&I Rt2 ... &k)

& R
Rm = [PijIjz > ::: ,i = .

22 ... R
. . f” , (7)

. . , . .

LR:, R2’k ...

where each entry Rij is a Toeplitz matrix

Rij = &(xi,(n)xg(n)), i = 1, . . . , k, j = 1, . . . , k.

(8)

In a similar way dpk is a block vector that contains
k subvectors of dimensions pi x 1, each.

dij = B(xh,(n)zj(n)), i = 1, . . . , k, j = 1. . . . ,q. (9)

(b) The total squared error (TSE). Operator (.)
now takes the form If=‘=, (.). The orthogonality
condition (3) is expressed by

“iO (x,,(+$,(n)) = 0. (IO)

The corresponding least squared filter is deter-
mined by the linear system

R,,(W,,(W = - d,,(N) 7 (11)

170 I. Bouras et al. / Signal Processing 51 (1996) 167-190

where

UN) = 5 %(n)x:,(n)? d,,(N) = 5 x,,(n)+)
?I=0 n=O

(12)

are the sampled autocorrelation matrix and the
crosscorrelation vector, respectively.

Block matrix R,,(N) consists of k2 near-to-Toep-
litz entry matrices, R,j(N), of dimensions pi x pj,

given by

Rij(N) = : ~j,(n)~t(n), i, j = 1, . . . , k.
n=O

Similarly, block vector d,_(N) consists of k sub-
vectors

di(N) = 5 $(n)dn)(n), i = 1, . . . ,k.
n=O

3. Algorithm description

Linear systems (5) and (11) can efficiently be
solved by the algorithms recently proposed in
[l-4], using a channel decomposition technique.
The main advantage of this novel approach is the
need of scalar operations only. This is an attractive
feature when VLSI implementation is under con-
sideration.

Eq. (5) determines the optimal FIR filter in the
MSE sense. The pertinent filter is obtained as the
solution of a block linear system of equations with
Toeplitz matrices as entries. While a standard
linear system solver can be utilized, the structure of
matrix R,,k enables the development of efficient al-
gorithms for the computation of the optimal filter
cPk. The derivation of such fast algorithms is based
on the nesting properties of matrix RpI that permit
the order recursive estimation of the optimal filter,
starting from c1 and going up to the final filter cPx.
A novel algorithmic family that recursively solves
the block Toeplitz linear system of Eq. (5) has been
derived in [l-4]. Several fast order recursive algo-
rithms have been presented, possessing the follow-
ing desired properties:
- Multichannel FIR filters with different input

orders, pi # pj can be easily handled.

- The new algorithms offer a significant advantage
over their well-known predecessors [6-8, 12, 17,
22, 231 since they manage to get free of matrix
operations altogether.

- Very highly concurrent structures can be extrac-
ted using a Schur type format, involving scalar
operations only.

A set of k single channel forward and backward
predictors is utilized by both the MSE and the TSE
algorithm. Single channel predictors are assigned
to each input channel. The forward v-channel pre-
dictors aih, v = 1, . . . , k, are determined by the or-
thogonality condition

<xi*(n), e:(n) > = 0,

where

e:(n) = x,(n) + x~~(n)u~,

is the forward prediction error and xik(n) is an
alternative regressor vector defined by

x’k(n) = 1 Cxpitn - l)li= 1, .,, ,v
Cx:x,,(~)li=v+l,k 1 * (13)

The v first vector components of x:,(n) contain the
elements of the channels delayed by one unit.
Clearly, xifi(n) =x,,(n), gk(n) = x,,(n - 1).

The backward single channel predictors are ob-
tained from the orthogonality condition

(XL@), e;iP + l’(n)) = 0)

where

&p+ l+) =
Pk xp+ 1 (n - PJI + 1) + x;:‘Tw;: l,

p = 0,l ,k- 1.

In this paper we will concentrate on the Schur
type fast order recursive algorithms developed in
[l-4] for the solution of linear systems (5) and (11).
For presentation reasons filters with equal number
of delay elements for all input channels are con-
sidered, i.e., pi = pj = p, i, j = 1, . . . , k. The MSE
multichannel Schur algorithm is summarized in
Table 1.

The solution vector c is recursively computed by
the algorithm, using Eq. (3) of Table 1. Two sets of
auxiliary vectors are utilized, a”, v = 1,2, . . . , k, and
bP, p = 1,2, . . . , k, corresponding to single channel
forward and backward predictors, respectively. The

I. Bouras et al. 1 Signal Processing 51 (1996) 167-190 171

Table 1
The highly parallel algorithm for block Toeplitz systems (MSE
case)

FORj=OTOp-1
FORi=OTOk-1

kh,+i+, = - e~~~,'+l(j)/e~',i=,',"')(j)

INPARALLELDO 1
FORn=jTOp-lINPARALLELDO2

ech ,,+i+I(n) = eZk+dn) + e~~++iliSdk~~+i+l

ENDPAR

ENDPARl
1 =left_rotate[l 2 . . . k],+l
FORV=~TO~INPARALLFJLDO~

1(= I(v)
INPAFIALLELDO4

ki;+i+ 1 = - e,fi’;f’(j + I,)/e$$(j + I*)

kb’ nl+i+l = - em,+i J(p’v)(j + Il)/ai:+i+ 1

ENDPAR
FORn=jTOp-lINPAFUILLELDO6

e&‘$“+ l(n) = e$;f)(n) + z~e,$!!~!I(n)k!;+,+ I

e,$$l(n) = z~e,f,l”;~)(n) + e$zf:I(n)k,$+i+,

ENDPAR
INPARALLELDO?

ENDPAR
ENDPAR
END FOR i
END FOR j

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

algorithm computes the solution in p steps. Each
step consists of k phases. During each phase the
solution c is augmented by a new element. Thus,
after the completion of a single step, c has been
increased by k elements. S’ and TN that appear in
Tables 1 and 2 are suitable permutation matrices
[l-4].

A notable feature of the algorithm is the cyclic
way in which the forward predictors, a’, and the
backward predictors, b”, are updated. At the first
phase (i = 0) of a new step, the forward predictors
are coupled together with the backward predictors
in a particular way which is [d,bk], [a2,b’],

[a3, b2], [ak, bk- ‘1. At the second phase (i = l), the
predictors are coupled together as [a’,bk-‘1,

[a2,bk], [a3,b’], [ak,bke2]. Finally, at the last
phase (i = k - l), the pairs are [d,bl], [a2,b2],

[u3, b3], [uk, bk]. The same coupling holds for the
forward and backward error variables, eftvvh) and
ebu‘sh). The cyclic nature of the parameters coupling
is nicely described by introducing the index se-
quence [l 2 . . . k] and the rotation operator

I = left_rotate[l 2 . . . k]i+l,

which rotates [l 2 . . . k] (i + 1) times to the left.
In this way, the backward predictors b” associated
with the forward predictors (I” at phase i are found
if we set p = I(v), where I(v) means the vth element
of the index sequence I. The operator z,” that ap-
pears in Eqs. (6) and (7) of Table 1 denotes a shift
with respect to n. It is activated by the superscript q,

q = 1 if v = k, otherwise q = 0. Variables I1 and
l2 denote a delay with respect to n, and are defined
as ll = 1 if p G i, otherwise l1 = 0, and l2 = 1 if
12 < i, otherwise l2 = 0. The algorithm is initialized
as

ech(n) = dh(n),

ef(Y’h)(n) = rv,h(n),

where

d,(n) = a[Xh(l - n)z(l)l?

rv, hb) = 8 cxvtl - nbh@)l

are cross-correlation and autocorrelation lags.
The overall complexity of the proposed algo-

rithm is O(2k2p2 + kp2) MADS (multiplications
and divisions). On the contrary, Cholesky’s de-
composition method requires 0(k3p3/6) MADS.
The Wiggins-Levinson-Robinson (WLR) algo-
rithm requires roughly the same amount of opera-
tions; however extra linear system solvers of order
k are required.

In a parallel processing environment, the pro-
posed algorithm enables full parallelism using

172 I. Bouras et al. / Signal Processing 51 (1996) 167-190

Table 2
The highly parallel algorithm for block near to Toeplitz systems (TSE case)

FORj=OTOp-1
FORi=OTOk-1
INPARALLELDO 1

k&+i+l(N) = - e~~+l~(jIN)/e~~~(,‘+i!.i”‘(jIN)

k&+i+l(N)= -~~~~(jjN)/e~~f!,“‘“(j(N- 1)

Q,+dN) = - s~~+?(jlN)la,,+dN)

ENDPARl
INPARALLFJLDO~

FORn=jTOp-lINPARALLELDO3

e~+i+l(nlN)=e,~+i(nlN)+e~~~‘=i’;:’(nIN)k,,+i+l(N)

eif:/)(n - 11 N - 1) = e$G’:‘=i”(n - 1) N) + ct::/)(n - 11 N)EL,+i(N)

ENDPAR
FORn=jTOp-lINPARALLELDO4

C,+i+l(nlN) = di,+dnlN) + C~~i’*h’(nIN)k~~+i+l(N)

ENDPAR

bk!i(N - 1) = bL:ii(N) + W,,+i(N)&+i(N)

S~~i+Iw_,+i+,(N) = (““d’“)) + yii(; - ‘)) k:k+i+,(N)

amk+i+l(N) = a,,+hV) - d$?h+~ INKk+~+I(N)

ENDPAR
I = left_rotate[l 2 . . . k],+l
FORv=1TOkINPAFULJdLDO3

p = I(v)
INPARALLELDO4

kL;+i+l(N)= -e~~‘;t’(j+I,IN)/(zPN)e~~f’(j+/z1N)

k;;+i+,(N) = - ef(rsY) mk+i (I + hIN)ld:+i+I(N)

ENDPAR
FORn=jTOp-lINPARALLELDO6

e;c,“;:! l(n 1 N) = eL>F’ (nIN)+(z~z.)‘e~l”;f:~(nIN)k~:+i.,(N)

e%r;f!l(nlN) = (z,z,)qe~~;f’(nlN) + e~~f!l(nlN)k~~+i+l(N)

ENDPAR

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

I. Bouras et al. J Signal Processing 51 (1996) 167-190 173

Table 2 (continued)

INPARALLELDO7

(15)

ENDPAR
ENDPAR
END FOR i
END FOR j

scalar operations only. The multichannel imple-
mentation of the parallel structure presented in [12,
211 requires additional parts that implement
matrix inversion and multiplication, as well as in-
ner products, of order k. Moreover, it suffers from
communication, since matrices of order k must be
transmitted.

The total least squared error (TSE) FIR filter is
determined by Eq. (11). Matrices that compose the
block matrix R,_(N) are no longer Toeplitz. It does
however have a Toeplitz like structure which en-
ables the development of highly concurrent algo-
rithms. The TSE Schur algorithm is summarized in
Table 2. It has the same structure as the MSE
counterpart of Table 1. Some extra variables are
now introduced to compensate for the close-to-
Toeplitz structure of the data matrix. The rotation
operator I is used again in order to couple suitably
the various variables. Operator 2% denotes a
shift with respect to N. The algorithm is in-
itialized as

ech(n) = dh(n),

e”“h’(n) = r,&(n),

where

d,(n) = 2 xh(l - n)z(b
I=0

N

r,,h(n) = 2 x,(l - n)xh(l).
I=0

(14)

4. Systolidwavefront architectures

In this section several systolic/wavefront imple-
mentations of the highly parallel Schur type algo-
rithms of Tables 1 and 2 are derived. The estimation
task is naturally decomposed into separate sub-
modules. First, autocorrelation and crosscorrelation
variables are estimated, as are required for the initia-
lization of both algorithms. In the MSE case, auto-
correlation and crosscorrelation lags are assumed to
be known in advance. Otherwise, they are esti-
mated on the basis of the available data record [151

d,(n) = ; i xh(l - n)$),

I-O

l”,h(n) = $ i xd - nbh(l).

1-O

In the TSE case, initialization variables are esti-
mated according to Eq. (14). Both cases can be
handled by a similar array processor.

4.1. Systolic estimation of correlation lags

A systolic/wavefront array that estimates auto-
correlation and crosscorrelation lags for the initia-
lization phase is first developed. The variables
r,,h(n) and d,(n) of Eq. (14) are fed into the
algorithm. These are computed by the systolic ar-
ray of Fig. l(a). The arcs of the graph illustrate the

114 I. Bouras et al. 1 Signal Processing 51 (1996) 167-190

(a)

(b)

q(1) . . . q(N - 1) q(N)

Q(1) . . . r*(N - 1) Xl(N)

z,(l) . . . q(iv - 1) q(N)

xt(1) . . . xr(N - 1) 21(N)

x2(1)
xs(N- - 1)

22(N)

tr(l)

c2(N-- 1)

x2(N)

x,(N’ - 1)

xl(N)

Fig. 1. (a) A 2-D systolic/wavefront array for the computation of the initial values (3-channel case with filters of order 3). Boxes denote

delay elements and circles denote Processor Elements that perform multiplication and division. (b) Functional block for each node of
the array. MUL, REG, MUX, DEC and ADD denote a multiplier, a register, a multiplexer, a decoder and an adder, respectively.

I. Bouras et al. / Signal Processing 51 (1996) 167-190 175

computational flow among the various processor
elements. Circles denote processor elements execut-
ing multiplication and addition and boxes denote
delay elements. The functional operation of the
processor element (PE) used in this array is illus-
trated in Fig. 1 (b). In the sequel abbreviation PE is
utilized to denote a processor element.

Each array utilizes kp PEs, where k is the number
of channels and p is the order of the filter. The
computation scheme is terminated after N + k time
units, N being the number of available data. The
time unit consists of the time needed to perform
a multiplication and an addition. The absolute
value of this time unit is dependent on the specific
circuits that will be used. When all necessary com-
putations have been finished, initial values for ef, e*
and ec are located at the nodes of the array. At
every time step each processor (j, 1), j = 1, . . . , k,
1 = 0, . . , p, is fed with inputs xl(n), xl(n),
n = N, . . . ,I, from the left and from the top, respec-
tively. The result of the multiplication between
the two inputs is added to the resulting output
of the previous computation step. At the end of
computation (N + k time units) the outputs

rl,j(l) =
e*(lgj)(/) = e f",j)(l) are located at nodes

(j, I). We can activate the data path created by the

multiplexer and the decoders (denoted with
a dashed line in Fig. l(b)) in order to obtain the
results serially from the rows of the array of
Fig. l(a) and pass them to controller for further
manipulation. The overall architecture is depicted
in Fig. 2.

A column of dividers is used inside the controller
in order to divide the outputs with the number of
available data (in the MSE case). The array of Fig.
1 needs k(p + 1) PEs and k(k - 1)/2 registers as
delay units. Each PE is composed of one multiplier,
one adder, three registers, two decoders and one
multiplexer. The overall time of the array function
is

Tall = Tcomp + Tres ,

where Tcomp is the computation time and Tres
is the time needed to obtain the results.
Tcomp = Nkt, + (k - l)t,, where t, is the cycle
time of a PE. t, = t,,,,,,, + tadd, where tmul, is the
delay of a multiplier and tadd is the delay of an
adder. Tres = kt,,,, where t,,, is the time that a re-
sult variable is obtained from every PE.

Completion of the initial values computations
requires either k + 1 such arrays (k for the compu-
tation of e*(n) and e”(n) and 1 for the computation

%1(l) zz(N - 1)

w(N) -

rx(N - 1)
r,(N) - -

zi(ll Z,(N - 1) +,(W _3 >

r,(l) ‘,(N - 1) cj(N) -, ARRAY.1 ’ CONTROLLER
=j(l) s,(N - 1) rj(N) ___) 3
ZJl) +,(N - 1) r,(N) +

2, e’(e’)

Fig. 2. The overall architecture for the solution of block Toeplitz or Toeplitz like systems (3-channel case with filters of order 3).

ARRAY.1 is a 2-D systolic array for the estimation of the correlation lags used for the initialization of the algorithms. CONTROLLER

is an interface for the rearrangement of the initial values. ARRAY.2 is a 2-D wavefront array which implements the proposed algorithms.

176 I. Bouras et al. / Signal Processing 51 (1996) 167-190

of et(n)) or a sequential implementation of the same
array k + 1 times.

A suitable overall system architecture is depicted
in Fig. 2. The computed initial values of e’, eb and
ec are obtained serially from every row of the
ARRAY.1 of Fig. 2. Then they pass through a con-
troller composed of a column of (p + 1) dividers,
a column of p + 1 FIFOs of length k and glue logic,
that places them in an appropriate order. The re-
sults are stored in a RAM of size 2(k + 1) x kp

words, in the order presented in Fig. 7, and can
directly be the input of input of ARRAY.2 of Fig. 2.
ARRAY.2 is depicted in detail in Fig. 7 and analyti-
cally presented in Section 4.2. After the computa-
tion of the filter parameters the results are serially
obtained from the columns of the above-mentioned
array and are stored in a multiport RAM of size
2(k + 1) x kp words.

4.2. Main algorithm. A two dimensional approach

The main array processor architecture that im-
plements the proposed Schur algorithms is de-
veloped. Since the algorithms dependence graph
(DG) representation is complicated we will only
give the DG for some equations of the first algo-
rithm (MSE case). In a similar way all the other
equations of the algorithms are handled. Consider
Eqs. (l), (2) and (3) of Table 1. Eqs. (l), (2) are
represented by the DG of Fig. 3. The DG of Fig. 4
represents Eq. (3). In order to simplify the exposi-
tion the 3-channel case with filter order 3 is depic-
ted. Nodes of the arrays denoted by boxes perform
division, while nodes denoted by circles perform
multiplication and addition. The last index of vari-
ables ef, eb, b, c and the index of reflection coeffic-
ient k’ are for representation purposes and denote
the phase of the algorithm. As is obvious from
Tables 1 and 2 the algorithms are composed of two
parts, one for the computation of the various errors
and another for the computation of the various
predictors and the resulting filter. The variables of
the first part are decreased by one element in every
phase of the algorithm while the variables of the
second part are augmented by one element in the
same phase. As we see from Fig. 3, the node
responsible for the computation of the reflection

coefficients is not necessary for subsequent compu-
tations. These nodes are located in such array posi-
tions that if a projection along any axis of the array
is made, nodes performing division are used. Using
a rearrangement of the input variables a triangular
array results with the nodes performing division
located at the first column. In conjunction with the
array of Fig. 4 we finally have the DG graph,
presented in Fig. 5 for all the equations ((l), (2), (3))
of Table 1. A projection along the vertical axis in
conjunction with the consideration of the reflection
coefficient being transferred rather than broad-
casted, in order to ensure locality, results in the DG
of Fig. 6(a). Using the canonical methodology [l 1,
161, we finally have the wavefront array of Fig. 6(b).
The depicted array consists of appropriate PEs
provided with handshaking ports. The functional
block of such a PE is illustrated in Fig. 8(b).

In a similar way using the DGs for the remaining
equations we obtain the main array processor
architecture.

The final configuration for the 3-channel case
with filters of order 3 is depicted in a two dimen-
sional (2-D) graph in Fig. 7. The array discussed
above is located in the last row of the array with its
PEs denoted by an asterisk. O((k + 1)kp) processor
cells are required to cope with the k channel FIR
filtering. The overall processing time is O(kp) time
units.

Each node of the graph is represented by indices
(v,n) where v = 1, . . . ,(k + 1) and v = 0, . . . ,
((kp) - 1). Two types of processors are utilized. The
first is a multiply and add unit and is denoted by
a circle. The second, denoted by a box, apart
from multiplication and addition, performs a divis-
ion as well. Their functional operation is illustrated
in Fig. 8. The arcs of the graph illustrate the com-
putational flow among the various processor ele-
ments.

The function of the array can be divided in three
phases. First, the PEs are serially loaded with the
initial values, as illustrated in Fig. 7. These values
in the MSE case are assumed to be known in
advance. Otherwise they are computed in the array
presented in Section 4.1 and are fed in the array as
depicted in Fig. 2. As illustrated in Fig. 8 we have
created a data path inside the PEs (indicated with
dashed lines) using multiplexers and decoders,

I. Bouras et al. / Signal Processing 51 (1996) 167-190 117

e*lJ(O)(O) e”l,‘(l)(O) W(2)(0) e’yO)(O) eblJ(l)(0) W(2)(0) eb1,3(0)(O) eb1j3(l)(0) e*‘J(2)(0)

I I
1 I
I I
I 1

eb2)3(1)(7) eb2*s(2)(7)

ec3(1)(7) eC3(2)

IAl ’
L-z@

Fig. 3. The Dependence Graph for Eqs. (1) and (2) of Table 1 (3-channel case with filters of order 3). The circles denote nodes that
perform multiplication and addition, while boxes denote nodes that perform division.

through which the data input occurs. These
variables have been properly rearranged in order
to ensure local communication as well as to
minimize the use of division cells. Indeed, the

proposed architecture involves k + 1 PEs that ex-
ecute division.

The PEs located at nodes of the form (v,O),
v = 1, . . . , k, compute variables k*” and kbp, while

178 I. Bouras et al. / Signal Processing 51 (1996) 167-190

Fig. 4. The Dependence Graph for Eq. (3) of Table 1 (3-channel case with filters of order 3). The circles denote nodes that perform
multiplication and addition.

the first processor of the last row (k + 1,0) (PE
denoted by a box with an asterisk) computes kc.
The resulting outputs are serially transmitted to the
neighboring nodes (v, 1). All other processors (v, n)
receive the reflection coefficients, denoted by k,
from the (v,n - 1) processor and pass them to
(v,n + 1). Once the values of reflection coefficients
kSy and kbp reach processor (v, n), they are used for
the computation of ebwTh(n) and ef”*h(n) (or
b[(1 n - kpl) and a;(1 n - kp I)), since the new values
of b and II are created at the places of eb and e/ that

are not necessary for subsequent computations.
PEs (k + 1,n) (PEs denoted by a circle with an
asterisk) compute ec (or c). The PEs (v,O) do not
compute the variables ef and e’. When computa-
tions are completed, the new values of ebp (or b’)
are passed to the (v - 1, n) processor in order to
meet the appropriate e” (or a”) for the next phase.
Concerning the new values of efv (or a”) and ec (or
c), they are passed to (v, n - 1) and (k + 1,n - 1)
processors, respectively. The circulation of es
(or a) and ec (or c) is necessary to ensure that the

I. Bouras et al. f Signal Processing 51 (1996) 167-190 119

ec2(lP) ec3(l)(0) ee’GW e"(2)(0) eC3(2)(0)

eb3

Fig. 5. The Dependence Graph for Eqs. (l), (2) and (3) of Table 1, resulting from the rearrangement of input data (3-channel case with
filters of order 3). The circles denote nodes that perform multiplication and addition, while boxes denote nodes that perform division.

computation of the reflection coefficients (kc, kb, kf)
is always performed by (v,O) processors and at the
same time create an empty place at the (v, kp - 1)
processors. In a similar fashion variables ec flow
from processors (k + 1,n) to processors
(k + 1, n - l), leaving an empty place at (k + 1,
kp - 1) PE.

In each phase of the algorithm there are empty
places where the new values of a,b, c are created
from the values of kf, kb and kc respectively. At the
end, the resulting values of a,b and c are placed at

corresponding places where initialization variables
eI eb ec were stored. > 3

The new values of 4” are always created at the
(v, kp - 1) PE, v = 1, . . . , k. The new values of c are
created at the (k + 1, kp - 1) PE. The new values of
b”appearatPE(v,kp-l-m),m=O,kp.Al-
bit control signal is used to indicate the PE where
the new values of b’ are created. Initially all PEs
stay in a ‘false’ mode except the ones with indices
(v, kp - 1). Thus, the first values of b” are generated
at these nodes. Once this has been completed, the

180 I. Bouras et al. / Signal Processing 51 (1996) 167-190

e*3*3(2)(8) b:(l)(S) b%(l)@) b;(l)(8) b:(2)(8) b;(2)(8) G(2)(8) b:(W) b:(W)

I I I I I 1 I I #
I I I I I 1 I I I
1 I I I I I I 0 I
I I I I I I I I I

eb3t3(0)(2) eb3s1(l)(2) ebq2(l)(2) ebq3(l)(2) eba1(2)(2) e”“*(2)(2) eb3p3(2)(2) b:(l)(2) b:(l)(2)

eb’~*(o)(l) eba,3(0)(l) ebzl’(l)(l) eb2s2(l)(l) eb2.3(l)(1) eb2p1(2)(l) eb2z2(2)(1) ebz3(2)(l) b:(l)(l)

ebl,* (O)(O) ebl,*(0)(O) eb1j3(0)(O) W(l)(O) ebl**(l)(0) f~“‘~(l)(O) eblll (2)(O) eb1t’(2)(0) eb1j3(2)(0)

(a) ClQ)P) . c*(1)(9) . c3(1)W Cl cw) c*(W) c3Gw Cl(W) c*wJ) Q(3)(9)

7 7

(b) cl(r)(s) c*(1)(9) c3OP) ~lcw c2tw) c3w4 ClwJ) c*WP) c3cw)

Fig. 6. (a) The Dependence Graph of Eqs. (l), (2) and (3) of Table 1 resulting from the projection along the vertical axis of the DG of

Fig. 5 (3-channel case with filters of order 3). (b) The wavefront array that implements Eqs. (l), (2) and (3) of Table 1 (3-channel case with
filters of order 3). Circles denote PEs that perform multiplication and addition, while boxes denote PEs that perform division.

PEs (v, kp - 1) are deactivated, passing the control
signal to their neighboring PEs (v, kp - 2) making
them active and so on. When the PEs (v, 0) become
active and the last values of b” are generated, an-
other control signal is activated, which is sent to-
gether with the last values of reflection coefficients
and signals the end of the computation. As is obvi-
ous from the above description both the control
and data flow is local leading to a wavefront array.
In the final phase of the array function the resulting
values of u, b and c are placed at corresponding

places where initialization variables ef, eb, ec were
loaded as described earlier. We can now employ the
data path used in the initial phase, to obtain the
results serially from the columns of the array and
store them in a multiport RAM of size 2(k + 1) x kp
words.

As we can conclude from Fig. 7 the array needs
(k + 1)kp PEs. Each of k’(p - 1) PEs (denoted by
a circle in Fig. 7) is composed of two multipliers,
two adders, five handshaking modules, four regis-
ters, two decoders, three multiplexers and a control

I. Bouras et al. / Signal Processing 51 (1996) 167-190 181

e” (b) e” (b) e’ (b) eb (b) e’ (b) eb (b) eb (b) e” (b) e” (b)

1

eb2J (0)

’ eJl,‘(O)

eQ3 (0) eba,l (1) ebaBa(l) eba13(1) ebaol (2) ebasa (2) ebq3 (2) eb7’ (3)

ef’qo) eJ’,’ (1) eJ1oa (1) eJ1s3 (1) eJ1zl (2) eJIBa (2) eJ1t3(2) eJ’,’ (3)

eb3-3 (0)

2 eJas3(o)

ebal (1) ebaa (1) eba3(1) eb3,’ (2) eb3J(2) ebq3 (2) eb31 (3) ebQa (3)

eJa,‘(l) eJasa(l) eJaB3(1) eJa*r (2) eJaaa (2) eJap3(2) eJa,’ (3) eJala (3)

ebltl(0)

3 eJ3,1 (1)

eblna (0) eb113 (0) e”‘,‘(l) eblta(l) eb1j3(1) eblsl (2) eblja (2) eb113(2)

eJ3ja (1) eJ3,3(l) eJ3j1 (2) eJ3za (2) eJ3t3 (2) eJ3,’ (3) eJ3,a(3) eJ3t3(3)

4
eblrL (0) eblga(0) eb113(0) e’l,’ (1) eblaa (1) eb1n3 (1) eblB1 (2) ebl,a (2) eb1r3(2)

eC1(0) eta(O) eC3(0) eel (1) eta(1) ee3(1) eC1(2) eta(2) ec3(2)

Fig. 7. A 2-D wavefront array for the 3-channel case with filters of order 3. The circles denote PEs that perform multiplication and
addition while boxes denote PEs that apart from multiplication and addition perform division as well. At the end of the computation the
results are located at the PEs of the array.

unit of about ten gates of glue logic. Their
functional block is depicted in Fig. 8(a). The k
PEs (denoted by a box in Fig. 7) have the same
amount of hardware with the above-mentioned
PEs plus two dividers in order to perform the
computation of the reflection coefficients. The
k(p - 1) PEs (denoted by a circle with an asterisk
in Fig. 7) are composed of one multiplier, one
adder, five handshaking modules, three registers,

two decoders, two multiplexers and a control unit
of about ten gates of glue logic, each. Their func-
tional block is depicted in Fig. 8(b). One PE (de-
noted by a box with an asterisk in Fig. 7) is com-
posed of the hardware mentioned above and one
divider.

The overall time of the array function is

Tall = Tinit + Tcomp + Tres,

182 I. Bouras et al. / Signal Processing 51 (1996) 167-190

I-

ef (4

kj, kb

ADO

T

MUL

Fig. 8. Functional blocks for the nodes of the array of Fig. 7. (a) PE denoted by circle (MSE and TSE cases).

where Tinit is the time needed for the initialization
of the array, Tcomp is the computation time and
Tres is the time needed to obtain the results. Note
that Tinit = 2(k + l)tload, where rIoad is the time in
which every variable e is loaded in a PE.

Tcomp = Trcomp + Tkdel ,
Trcomp = kpt, where kp are the needed cycles of

a PE for the overall computation and t, is the cycle
time of a PE. t, = 2tkload + tmult 4 tadd where t&,ad is
the time for a reflection coefficient to be stored in
a register in the PE. Tkdel = k(p - l)tkdc, where
tr& is the time that a reflection coefficient needs
to pass from a PE to its neighbor. Tkdel is the
time that a reflection coefficient needs to arrive
at the last PEs of the array (v,k(p - 1)).

Tres = 2(k + l)t,,, where t,,, is the time in which
every variable of the results II (orb, or c) is obtained
from a PE.

OCCAM description of the basic processor units
is provided in Fig. 9. Readers unfamiliar with
OCCAM language may look at the detailed
description of the code of Fig. 9(a) given in
Appendix A.

A similar array processor can be utilized for the
implementation of the total least squared Schur
algorithm tabulated in Table 2. The only difference
is the functional operation of the PEs with indices
(k + 1,n) (n = 0, . . . , kp - 1). The functional block
of such a PE is illustrated in Fig. 10). The PE
(k + 1,0) computes the values of kc, k”, kb and

I. Bouras et al. / Signal Processing 51 (1996) 167-190 183

Fig. 8. (b) PE denoted by circle with an asterisk (MSE case). MUL, ADD, REG, DEC and MUX denote a multiplier, an adder, a register,

mode 1

1 MU. 1 ‘:-_-I--------------________i 1

kc

kc

’ e* (b)

a decoder and a multiplexer, respectively.

passes them to its neighbor (k + l,l). Each PE
(k + 1,n) receives the values of reflection coeffi-
cients from PE (k + 1, n - 1) and forwards them to
the next PE (k + 1,n + 1). When these values reach
a PE they are used for the computation of the e’(N)
(or c(N)), E(N) (or w(N)) and eb(N - 1) (or
b(N - 1)). When the above computations have
been completed, PEs (k + 1, n) forward the com-
puted values of e’(N) (or c(N)) and E(N) (or w(N))
to PEs (k + 1,n - 1) while they receive the com-
puted values of e’(N) (or c(N)) and E(N) (or w(N))
from PEs (k + 1, n + 1). The new values of c(N)
and w(N) are generated at PE (k + 1, kp - 1).
eb(N - 1) (or b(N - 1)) are forwarded to PEs (k, n)
while eb(N - 1) (or b(N - 1)) are received from
PEs (1, n). All the other processors of the array have
the same functionality as the ones discussed in the
MSE case. The data and control flow remain the
same as well. Variables ef (or a) and e* (or b) have
been replaced by ef(N) (or a(N)) and eb(N) (or
b(N)), respectively.

The amount of hardware is augmented since the
PEs of the last row of the array (denoted with an
asterisk in Fig. 7) have the following extra circuits
each: one multiplier, one adder, three handshaking

modules and two registers. The size of the off chip
RAM is now (2k + 3) x kp words.

The overall time of the array function is again

Tall = Tinit + Tcomp + Tres,

where Tinit is the time needed for the initialization
of the array, Tcomp is the computation time and
Tres is the time needed to obtain the results of the
computation from the array. Tinit = 3(k + l)tload,
where tload is the time in which every variable e is
loaded in a PE.

Tcomp = Trcomp + Tkdel.
Trcomp = kpt, where kp are the needed cycles of

a PE for the overall computation and C, is the cycle
time of a PE. t, = 3tkload + 2~~~ + tadd where
tkload is the time for a reflection coefficient to be
stored in a register in the PE. Tkdel = k(p - l)tkdel
where lkdel is the time that a reflection coefficient
needs to pass from a PE to its neighbor. Tkdel is the
time that a reflection coefficient needs to arrive
at the last PEs of the array (v, k(p - 1)).
Tres = 3(k + l)t,,, where t,,, is the time in which
every variable of the results II (or 6, or c, or IV) is
obtained from a PE.

184 I. Bouras ef al. J Signal Processing 51 (1996) 167-190

WHILE NOT stop

SEQ
chan.1 ? kf ; kb ; stop
chan.6 ! kf ; kb ; stop
IF

NOT model
PAR

SEQ
ef:= tempef + (tempeb*kf)
chan.2 ! ef ; model

eb := tempeb + (tempef*kb)
model

PAR

SEQ
ef:= tempef + (tempeb*kf)
chan.2 ! ef ; model

eb := kb
model := FALSE

PAR
chan.3 ! eb
chan.5 ? tempef ; mode

chan.4 ? tempeb

a)

WHILE NOT stop

SEQ
chan.1 ? kc ; stop
chan.6 ! kc ; stop
ec := ec + (eb*kc)
chan.3 ? eb
chan.5 ! eb
chan.2 ! ec ; mode
chan.5 ? ec ; mode

b)

chaa.3

chan.2 chan.5
*

:ti:-

chan.1 chan.6

chall.4

chan.3

chan.2 chan.5

+=

chan.1 chan.6

chin.4

WHILE NOT stop

SE8
PAR

kf :=
kb :=

-$myf[Frb)
em e

IF
model

stop := TRUE
TRUE

SKIP
chan.1 ! kf ; kb ; stop
IF

NOT model
PAR

af := af + (tempefLkf)
eb := tempeb + (tempef+kb)

model
eb := kb

PAR
chan.2 ? tempef ; model
chan.3 ! eb
chan.4 ? tempeb c)

Fig. 9. OCCAM description for some of the PEs of the array of Fig. 7. The boundary processors n = (kp - 1) have some

modifications since they do not compute the a or c but assign to them the new values of reflection coefficients. (a) PE denoted by

a circle (MSE and TSE cases). (b) PE denoted by a circle with an asterisk (MSE case). (c) PE denoted by a box (MSE and TSE
case).

1. Bouras et al. / Signal Processing 51 (I 996) 167-I 90 185

eb(N - 1) (b(N - 1))

-Dl

Q
mu.u

ec

kc,iib,

1

ADD ADD ADD

T T 1’
MUL MUL MUL

-IT-l
i

kw z

Fig. 10. Functional block for the PE of the array depicted in Fig. 7, which is denoted by a circle with an asterisk (TSE case). MUL, ADD
and REG denote a multidier, an adder and a register, respectively

4.3. Implementation issues

The wavefront arrays discussed so far are the two
dimensional, thus being suitable for VLSI imple-
mentation. Although the number of PEs is extreme-
ly large the increasingly diminished dimensions of
the devices in current technologies along with new
technologies as wafer scale integration (WSI) or
multiple chip modules (MCM) allow for a possible
implementation of the algorithm in a single chip, in
the near future.

Dedicated PEs must be designed in order to
maximize performance. Simulations have shown
that both algorithms are well behaved using fixed-
point arithmetic with word-length greater than
16-bits. Thus fixed-point arithmetic will be used for
hardware implementation of the arrays. All PEs
have a very simple structure. They all consist of

a multiplier, an adder, a couple of registers and
some glue logic for the control. Since wave-front
arrays are employed, the ports must be imple-
mented by handshaking circuits. Notice that the
PEs assigned to (v,O) include extra circuitry to
perform division.

Multiple data paths can be utilized to achieve full
parallelism. Even in the case of PEs assigned to
(v,O), more than one divider must be used, when we
have to compute more than one reflection coeffi-
cient. However, the large number of PEs makes it
prohibitive within the existing technology. Many
choices could be made for the implementation of
the multiplier and the adder, such as bit-serial or
full parallel architectures, having trade-offs be-
tween area and speed. Since the area is the most
restrictive factor in our case, ‘slow’ but ‘small’ cir-
cuits must be used in order to implement the

186 I. Bouras et al. / Signal Processing 51 (1996) 167-190

algorithm in a single chip. The scheduling of the
operations is not so vital for the speed of the algo-
rithms except the priority given to the computation
of the b(N - 1) (or eb(N - 1)) in the TSE case.

5. An architecture with reduced number of
processors

In this section a more realistic approach towards
hardware implementation is described. Grouping
of the PEs of Fig. 7 along the ‘channel’ axis is
performed. We map every group of k PEs (k is the
number of channels) to one PE of the new archi-
tecture. The resultant architecture is illustrated in
Fig. 11 (3-channel case with filters of order 3).

Each PE in the new scheme has to handle the
operations performed by k PEs of Fig. 7. The input
data are serially loaded in the array in a similar

eb (b)

Fig. 11. A 2-D array for the 3-channel case with channel length
3, resulting from the folding of the array of Fig. 7. Input and
output of data are performed in a similar fashion to the one
described for the array of Fig. 7.

fashion as in the array of Fig. 7. Every PE of Fig. 11
has to be loaded with all the input data of k PEs of
Fig. 7, increasing the time needed for the initializa-
tion of the array by a factor of k. The same increase
in time is also there at the end of the computation,
when we have to output serially the results located
at the PEs of the array.

Following the array processor of Fig. 7, multiply
and add processors are represented by a circle,
while units equipped with division circuitry are
denoted by a box. This 2-D array is of primary
interest when VLSI implementation is considered,
due to the reduced number of PEs that are utilized.
Indeed only (k + 1)~ processors are employed. This
significant hardware reduction is traded off by an
increase of computation time. The computational
load of each PE is increased by a factor of k,
resulting in an overall time of O(k2p) time units.

Implementation of the algorithm in a massively
parallel machine composed of standard DSP pro-
cessors is more effectively carried out by the above
architecture. Indeed parallel machines have large
communication cost because their processors are
intended for general use. The architecture allows
grouping of the variables and thus reduction of the
communication overhead. The efficient architec-
ture depicted in Fig. 6, for the implementation of
the multichannel Schur algorithm, was pro-
grammed on Parsytec’s GC512 highly parallel ma-
chine, consisting of 512 transputers. A particular
problem encountered was the excessive time
needed for input and output of data, since only one
processor was available for the communication
between the machine and the host computer.

A suitable dedicated processor for wavefront im-
plementation is shown in block diagram form in
Fig. 12. A double data path is utilized to increase
processor speed, to simplify control and to take
advantage of the specific structure of the pertinent
algorithms. Also using multiplexers and decoders
we create a data path in order to load the initial
values to the array and to obtain the results from it.
The circuit that mostly affects the PE speed is the
multiplier. This is also the case in most DSP ap-
plications. At present a wide range of fast multipli-
cation algorithms are available to the designer [14,
20-J. A parallel multiplier based on the modified
Booth algorithm seems to be appropriate in our

I. Bow-as et al. J Signal Processing 51 (1996) 167-190 187

4
Fig. 12. The block diagram of an ASIC processor suitable for the 2-D array of Fig. Il.

case. It assures a high speed performance and
a compact layout as well. In our case there is an
extra advantage since in each phase of the algo-
rithm a value of variable k is multiplied with a num-
ber of variable e values. Thus, the delay due to the
modified Booth algorithm encoding, is counted
only once, for a number of multiplications equal to
the number of channels. It should be pointed out
that good performance could be achieved even with
the use of single-level-metal CMOS technology
[14, 201. This enables the utilization of the remain-
ing metal levels for the interconnections of the
whole array. The processor also includes two fast
adders (e.g., CLA adders), two FIFOs, each one
equal to at least the number of channels, four ports
suitable for handshaking, some registers and a simple

control unit. The FIFOs may need some extra space
to cope with any communication bottleneck.

The two FIFOs are initially loaded with initial
values of efv,h and e bP3h by activating the appropri-
ate data path. At each phase the new values of kf, kb
arrive at the processor. These in turn pass to its
neighbor and simultaneously are stored in the two
registers. After the computation of the new values
ef (or a) and eb (or b), the first value of es is passed
to the neighboring processor while the other ones
return to the FIFO. After the end of the phase the
value of er that arrives at the processor is placed in
the last position of the FIFO. All values of eb (or b)
pass to the neighboring processor as indicated in
Fig. 11. Similar operations are performed by the
processors that compute ec (or c).

188 I. Bowos et al. / Signal Processing SI (1996) 167-l 90

e’ l(O)
ew(O

ea 3(O)
e-(o) ey1

cd?) a;(P) 4(P) 4(P)
b:@) b:(p) b:(p)

Fig. 13. A 3-D wavefront array for the 3-channel case, suitable for both the MSE and TSE case. PEs denoted by circles perform
multiplication and addition. PEs denoted by boxes apart from multiplication and addition, perform division as well. The indices m and
1 used to describe the input data are m = kp and I= kp - 1.

I. Bourns et al. 1 Signal Processing 51 (1996) 167-190 189

In the total squared error case of Table 2, the
structure of the algorithm is essentially the same,
i.e., the dependence graph does not change apart
from some of the nodes which perform some extra
multiply-add operations. More precisely, the pro-
cessors computing the vector c have now to per-
form three operations at a time. One design alter-
native is to increase the data paths. A possible
remedy is to allocate the third operation to one of
the existing data paths slightly increasing the over-
all computation time of the array. In this case
a careful scheduling of the operations must be ac-
complished giving priority to the computation of
b(N - 1) (or eb(N - 1)). In both cases a third FIFO
must be used to store the additional variables.

6. A highly pipelined 3-D array

An alternative architecture for the implementa-
tion of the proposed algorithms is depicted in Fig.
13. It is a three dimensional array consisting of
(k -t- l)k2p2 PEs, needed to handle the k channel
setup. As with the previous arrays, the circles rep-
resent multiply-add processors while boxes per-
form division as well. The PEs are identified by
a triplex (v,h, n) (v = 1, . . . , k + 1, h = 1, . . . , kp,
n = 1, . . . , kp). The PEs (k + l,h, n) compute the
solution vector c (and vectors w and b(N - 1) in the
TSE case), while the rest compute the forward and
backward predictors u and b. The functional opera-
tions of each PE are similar to that utilized by the
2-D array counterparts. The input and output data
are illustrated in Fig. 13. To clarify the computa-
tional flow, input and output data are indicated in
the figure. The main advantage of this array is that
it is susceptible to pipeline with latency kp time
units. This attractive feature compensates for
the excessive number of PEs. This particular
implementation is suitable for block adaptive pro-
cessing [21,24]. Indeed, it is more efficient than the
triangular array processors developed in [21] for
the adaptive Schur algorithm, since matrix opera-
tions are replaced now by scalar counterparts.

7. Conclusions

Efficient VLSI architectures of highly concurrent
algorithms for the order recursive solution of block

Toeplitz like systems have been presented. The pro-
posed structures can be implemented either on 3-D
or on 2-D arrays of VLSI processors, compromising
between execution time and number of processors.

Appendix A

All processes in Fig. 9(a) with the same indenta-
tion belong to the same process. For explanation
reasons we give a number at the right of each
process. All the subprocesses with the same number
at their left belong to the same process. The sym-
bols kf, kb, eb, ef denote the variables kf, kb, eb (or
b), d (or a), respectively, the symbols tempeb, tem-
pef denote temporal variables for the eb (or b), ef (or
a), the stop and model are logical variables and
chan.1, chan.2, chan.3, etc., are the six channels of
the processor element.

WHILE NOT stop

SEQU)
(1.a)chan.l ? kf; kb; stop
(l.b)chan.6 ! kf; kb ; stop
IF

(l.c)NOT model
PAR(2)

CWSEQP)
(3.a)ef := tempef + (tempeb*kf)
(3.b)chan.2 ! ef; model

(2.b)eb := tempeb + (tempef*kb)
(l.c)model

PAR(4)

WaWQ(3
(5.a)ef := tempef + (tempeb*kf)
(5.b)chan.2! ef; model

(4.b)eb := kb
(4.c)model:= FALSE

(l.d)PAR(6)
(6.a)chan.3 ! eb
(6.b)chan.5? tempef; model

(l.e)chanA? tempeb

While the logical variable stop has the false
Do sequentially (1)
(1.a) The variables kf, kb, stop take serially their
new values from the channel chan.1.
(1.b) The variables kf, kb, stop output their values
serially to the channel chan.6.

190 I. Bouras et al. / Signal Processing 51 (1996) 167-190

(lx) Zf the logic variable model has the value false
do in parallel (2)
(2.a) Do sequentially (3)
(3.a) Add the result of the multiplication of tempeb
and kf to the tempef and assign the result to the
variable ef.
(3.b) The variables ef and model output their values
to the channel chan.2.
(2.b) Add the result of the multiplication of tempef
and kb to the tempeb and assign the result to the
variable eb.
(1.~) If the logic variable model has the value false
do in parallel (4)
(4.a) Do sequentially (5)
(5.a) Add the result of the multiplication of tempeb
and kf to the tempef and assign the result to the
variable ef.
(5.b) The variables ef and model output their values
to the channel chan.2.
(4.b) Assign the value of the variable kb to the vari-
able eb.
(4.~) Assign the value false to logic variable model.
(1.d) Do in parallel (6)
(6.a) Output the value of variable eb to the channel
chan.3.
(6.b) The uariables tempefand model take their new
values from the channel chan.5.
(1.e) The variable tempeb takes its new value from
the channel chan.4.

References

Cl1

PI

c31

r41

c51

G. Glentis and N. Kalouptsidis, “Efficient order recursive
algorithms for multichannel least squares filtering”, IEEE
Trans. Signal Process., June 1992, pp. 135441374.
G. Glentis and N. Kalouptsidis, “Efficient algorithms for
the solution of block linear systems with Toeplitz entries”,
Linear Algebra Applications, January 1993.
G. Glentis and N. Kalouptsidis, “Solution of block linear
systems with Toeplitz entries using a channel decomposi-
tion technique”, Signal Processing, Vol. 37, No. 1, May
1994, pp. 15-60.
G.-O. Glentis and N. Kalouptsidis, “Efficient multichannel
FIR filtering using a step versatile order recursive algo-
rithm”, Signal Processing, Vol. 37, No. 3, June 1994, pp.
437-462.
A.K. Jain, Fundamentals of Digital Image Processing, Pren-
tice-Hall, Englewood Cliffs, NJ, 1989.

PI

c71

PI

c91

WI

Clll

WI

Cl31

Cl41

Cl51

II161

Cl71

Cl81

Cl91

WI

c211

PI

~231

c241

I.C. Jou, Y.H. Hu and W.S. Feng, “Novel implementation
of pipelined Toeplitz system solver”, Proc. IEEE, Vol. 74,
1986, pp. 1463-1464.
T. Kailath, Signal Processing in the VLSI Era, Prentice-
Hall, Englewood Cliffs, NJ, 1985.
N. Kalouptsidis, G. Carayannis, D. Manolakis and E.
Koukoutsis, “Efficient recursive in order LS FIR filtering
and prediction”, IEEE Trans. Acoust. Speech Signal Pro-
cess., Vol. 33, October 1985, pp. 1175-1187.
N. Kalouptsidis and S. Theodoridis, “Parallel implementa-
tion of efficient LS algorithms for filtering and prediction”,
IEEE Trans. Acoust. Speech Signal Processing, Vol. 35,
November 1987, pp. 1565-1569.
N. Kalouptsidis and S. Theodoridis, eds., Adaptive System
Zdentijication and Signal Processing, Prentice-Hall, Engle-
wood Cliffs, NJ, 1993.
S.Y. Kung, VLSI Array Processors, Prentice-Hall, Engle-
wood Cliffs, NJ, 1988.
S.Y. Kung and Y.H. Hu, “A highly concurrent algorithm
and pipelined architecture for solving Toeplitz systems”,
IEEE Trans. Acoust. Speech Signal Process., Vol. 31, Feb-
ruary 1983, pp. 66-76.
L. Ljung and T. Siiderstrlim, Theory and Practice ofRecur-
sioe Identification, MIT Press, Cambridge, MA, 1982.
G.K. Ma and F.J. Taylor, “Multiplier policies for digital
signal processing”, IEEE ASSP Mug., January 1990, pp.
6-20.
S.L. Marple, Digital Spectral Analysis with Applications,
Prentice-Hall, Englewood Cliffs, NJ, 1987.
D.I. Moldovan and J. Fortes, “Partitioning and mapping
algorithms onto fixed size arrays”, lEEE Trans. Comput.,
Vol. 35, No. 1, January 1986, pp. 1-12.
M. Morf, B. Dickinson, T. Kailath and A. Viera, “Efficient
solution of covariance equations for linear prediction”,
IEEE Trans. Acoust. Speech Signal Process., Vol. 25, 1977,
pp. 4299433.
J.G. Proakis, Digital Communications, McGraw-Hill, New
York, 1983.
E. Robinson, Multichannel Time Series Analysis with
Digital Computer Programs, Holden-Day, San Francisco,
CA, 1967.
R. Sharma et al., A 6.75-m 16 x 16-bit multiplier in single-
level-metal CMOS technology”, IEEE J. Solid-State Cir-
cuits, Vol. 24, No. 4, August 1989, pp. 922-927.
P. Strobach, “Recursive triangular array ladder algo-
rithms”, IEEE Trans. Signal Process., Vol. 39, January
1991, pp. 122-136.
S. Treiter, “Principles of digital multichannel filtering”,
Geophysics, Vol. 35, No. 5, 1970, pp. 785-811.
R. Wiggins and E.A. Robinson, ‘Recursive solution to
multichannel filtering problem”, J. Geophys. Res., Vol. 70,
1965, pp. 1885-1891.
Xiao-Hu Yu and Zhen-Ya He, “Efficient block implemen-
tation of exact sequential least squares problems”, IEEE
Trans. Acoust. Speech Signal Process., Vol. 36, 1988, pp.
392-399.

