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Effective Bandwidth Vectors for Multiclass 
Traffic Multiplexed in a Partitioned Buffer 

V. G. Kulkarni, L. Gun, Senior Member, ZEEE, and P. F. Chimento 

Abstract- We consider a traffic model where a single source 
generates traffic having J ( J  2 2) quality of service (QoS) classes. 
QoS in this case is described by a cell loss probability objective 
c j  for QoS class j. We assume that c l  2 2 . . . 2 E J ,  in other 
words, class J has the most stringent QoS requirements and class 
1 the least. The traffic from li such independent heterogeneous 
Markov-modulated fluid sources is multiplexed into a single 
buffer of size B. There are J - 1 thresholds { B 3 ,  1 5 j 5 J - l} 
such that 0 < BI < BZ < ... < BJ-1 < B. Let BO = 0 and 
B J  = B. If the buffer content is in (B3-1 ,  B J ) ,  1 5 j 5 J only 
traffic of class index j or above is accepted and all other traffic 
is rejected. For this system of K sources we define an effective 
bandwidth vector of size J such that QoS requirements for all 
classes are satisfied if each component of the vector is less than 
the channel capacity. We propose several bandwidth vectors that 
can be computed for each source separately. Numerical studies 
are reported on the efficacy of these bandwidth vectors. 

I. INTRODUCTION 
HE emerging high speed networks achieve efficiency T and higher resource utilization by using statistical multi- 

plexing. Under statistical multiplexing the traffic from several 
sources gets superimposed onto a single buffer and is trans- 
mitted to the network in a first-come-first-served fashion. In 
the high-speed networks using asynchronous transfer mode 
( A m ) ,  each source is assured a given quality of service (QoS), 
and the admission control scheme is designed to assure that a 
source is admitted into the network only if there is sufficient 
capacity in the network to guarantee the QoS. 

Stochastic fluid models and the theory of large deviations 
have been used in the literature to define what is called 
effective bandwidth or equivalent capacity for each source. The 
effective bandwidth is a number that depends on the source 
characteristic, the QoS requirement of the source and the buffer 
size. The most useful property of the effective bandwidth is 
the following: If the sum of the effective bandwidths of all 
the sources multiplexed onto a buffer is less than the speed of 
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the channel removing data from the buffer then (in certain 
asymptotic sense) the QoS requirements of all the sources 
are satisfied. This is what makes the concept of effective 
bandwidths very useful in admission control. Several authors 
have studied this concept from different angles [3] ,  [6]-[81, 
P I ,  [ I l l .  

The above method of admission control indeed works very 
satisfactorily as long as the QoS reuirements of all the sources 
are the same or at least close. In practice all the sources get 
the QoS of the most stringent source, since they all get the 
same QoS. This manifests itself in less than optimal resource 
allocation. This is a major drawback of this method. 

When the source QoS requirements are varied, or when 
every source generates traffic belonging to multiple classes 
with varying QoS requirements (such as MPEG-2 multilay- 
ered video, or sources policed by leaky bucket regulators), 
the above call admission procedure needs to be changed. 
In particular, when a source, such as a multilayered video 
codec, transmits, the information from different layers that 
emanate from that single source may have very different QoS 
requirements. So, for example, some signals may have only 
enhancement effects on the final image, or enhancements of 
sound quality, and so can be transmitted at a much lower QoS 
than signals having to do with the more fundamental quality 
of the way the information is presented [13]. 

One method is to classify the traffic into multiple classes 
according to their QoS requirements and to employ a separate 
buffer for each class of traffic. Then the effective bandwidth 
methodology can be applied to each buffer separately. This, 
however, has several drawbacks: First, we need a scheduler to 
schedule the transmission from the various buffers to ensure 
first in first out discipline for each connection (source). Second, 
the buffer utilization is inferior. Third, if the cells of different 
priorities emanate from a single source (that is, they are part of 
a single stream), then having seperate buffers for differing QoS 
requirements forces resequencing at the destination, which is 
highly undesirable. Fourth, having seperate logical buffers for 
each QoS requirement complicates the implementation. 

To overcome the above disadvantages one can consider 
a shared buffer scheme. Under this scheme the traffic is 
classified as before. Suppose there are J classes, indexed 1, 
2, . . . , J .  We assume that class J has the most stringent QoS 
and class 1 has the least stringent one. The buffer is of size 
B. There are J - 1 thresholds { B j ,  1 5 j 5 J - 1} such 
that 0 < B1 < B2 < . . .  < B J - ~  < B. For convenience, 
define Bo = 0 and BJ = B. If the buffer content is in the 
interval ( l 3 - 1 ,  B 3 ) ,  ( I  5 j 5 J )  only traffic of class index 
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j or above is accepted and all other traffic is rejected. The 
admission policy is more complicated when the buffer content 
is exactly at a threshold and will be stated precisely in the 
next section. 

The above scheme of differentiating traffic from different 
traffic classes is called a buffer sharing scheme. It is intuitively 
clear that the above mechanism would provide highest QoS 
to class J and lowest QoS to class 1 traffic. Furthermore, 
the scheme maintains the first-in-first-out ordering among all 
accepted traffic and eliminates the need for schedulers. It is 
also easy to analyse [3], [13] and is shown to be optimal 
within a large class of service policies [2], [12], [14]. For 
these reasons this scheme is very attractive. 

In this paper we analyse this scheme and show how the 
concept of effective bandwidths can be extended to this 
configuration. The aim is construct a vector of size J (called 
the effective bandwidth vector) for each source such that 
the QoS requirements are satisfied for all classes if the each 
component of the sum of the effective bandwidth vectors is 
less than the channel speed. 

The purpose of constructing such a vector is to try to reduce 
the bandwidth requirements of the source stream as a whole. 
So, for example, if no priority differentiation is made, then all 
the cells from that particular source must be treated as though 
they required the most stringent QoS. Intuitively, one would 
expect the bandwidth requirements to be less when there is 
priority differentiation. For a given number of sources and for 
a given trunk capacity, bandwidth savings can be defined as 
the difference between the total effective bandwidth required 
by the sources with no differentiation and that required by the 
sources with two or more levels of priority. 

The paper is organized as follows: The model is described in 
detail, and the bulk of the notation is introduced in Section 11. 
Section 111 contains the relevant results from the descriptive 
analysis of this model. This section essentially restates the 
results of [3] using our notation. In Section IV we present 
the asymptotic analysis of the loss probability (QoS). The 
asymptotic region is precisely defined in this section. It also 
states a sufficient condition for the priority differentation to 
produce savings. Using the results of this section, we construct 
an effective bandwidth vector for the system of K sources 
in Section V. Unfortunately, this bandwidth vector is not 
additive, i.e., it cannot be written as a sum of K effective 
bandwidth vectors, one for each source. Hence we study 
several possible candidates for effective bandwidth vectors for 
a single source. The most logical candidate, unfortunately, 
provides only an approximation, and not a bound. Hence, 
we propose several candidates that can be proved to provide 
bounds, although loose. In Section VI we discuss numerical 
algorithms to compute the effective bandwidth vectors. We 

illustrate the concepts in Section VI1 by numerical examples 
using a voice-multiplexing example. 

11. THE MODEL 

In this section we describe the precise model of multiplexing 
K Markov modulated fluid sources, each producing fluid 
belonging to J different classes onto a single buffer of size 
B that is serviced by a channel of capacity c. Let Z k ( t )  
be the state of the kth source (i.e., the state of the external 
environment that controls the traffic stream generated by the 
kth source) at time t. { Z k ( t ) , t  2 0} is assumed to be an 
irreducible continuous time Markov chain (CTMC) with state 
space Nk = { 1 , 2 ,  . . . Nk} and generator matrix Gk, (1 5 
k 5 K ) .  When the kth source is in state i, it generates 
class j fluid at rate A i , i .  As explained in the introduction, the 
admission policy is based upon a space reservation scheme, 
using thresholds { B j ,  1 5 j 5 J - l} . 

Let X ( t )  be the amount of fluid (of all classes) in the buffer 
at time t .  When BjPl  < X ( t )  < Bj , only fluid belonging 
to classes { j ,  j + 1, . . . , J }  is admitted into the buffer. Thus, 
when 0 5 X ( t )  < B1, fluid of all classes is admitted, while 
when B J - ~  < X ( t )  < B J ,  only fluid of class J is admitted. 
At threshold Bj fluid of class j is admitted at such rate that the 
buffer content does not rise above Bj. To make this precise, 
we give an expression for I j ( t ) ,  the rate at which the fluid 
of class j is admitted into the buffer at time t. First, we need 
the following notation 

With this we can write (2), seen at the bottom of this page, for 
1 5 j 5 J .  We use (x)+ = max(0, x) and (x)- = min(0, z). 
Now, let @(Bj)  be the long-run probability that the buffer 
content is above the threshold Bj .  We take this probability 
to be the surrogate for the loss fraction for fluid of class j .  
The QoS guarantee is that this loss fraction is kept below a 
prespecified quantity tj. Obviously, t l  > 62 > . . . > t~ > 0. 
Thus, using the surrogate, the QoS is satisfied for all the classes 
of traffic if 

111. THE ANALYSIS 

Let Z ( t )  = ( Z l ( t ) ,  Z z ( t ) ,  . . . , Z,(t)) be the state vector 
of the K sources. It is clear that { ( X ( t ) : Z ( t ) ) , t  2 0) is 
a Markov process with piecewise deterministic paths. The 
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dynamics of the process is given by The above boundary conditions are intuitive. Equation (21), 
for example, says that there is no mass at (B, , n)  in steady 
state if the drift on either side of B, is away from BJ. The (E,"=, I,(t)  - C)+, if ~ ( t )  = o 

E,"=, I,(t) - C, if < X ( t )  < (4) spectral solution to (14) is given by 
d t  

+(x) = a",;e"'.", 1 5 J 5 J (23) (E,"=, I J ( t )  - C)-, if X ( t )  = B.  r 

Now, { Z ( t ) , t  _> 0} is a CTMC with state-space = 
NI x N2 x . . . x NK where ni, = { 1 , 2 ,  . . . N k }  is the state- 
space of { Z k ( t ) ,  t > O}. The generator of { Z ( t ) ,  t > 0} is 
given by 

G = G I @  G2 CB . . .  @ GK (5) 

where @ represents the Kronecker sum. Let 

p k ( i )  = lim P { Z k ( t )  = i}, (i E N k , k  = 1 , 2 , . . . , K )  
t-02 

(6) 
p ( n )  = hIlP{Z(t) = n} ,  (n  E N) (7) 

be the limiting distribution of 2. Now let 

~ ( x , n )  = lim P { X ( t )  > x , Z ( t )  = n} ,  

and 

(x 2 O,n E N) 
(8) 

4.) = [ 4 x , n ) l n € N .  (9) 

nj(x) = ~ ( x ) ,  Bj-1 < IC < Bj.  (10) 

t+oo 

For 1 5 j 5 J ,  we use the notation 

Next, we state the differential equations satisfied by &(x). 
First, we need the following notation 

A[ = d i a g ( A ~ , , , A i , 2 , . . . , h [ , N ~ ) ,  1 I j  5 J (11) 

(13) 

The {7rj(x)? 1 I j I J }  satisfy the following differential 
equations 

d 
- x 3 ( ~ ) D j  = T'(Z)G, Bj-1 < z < Bj. (14) dx 

A'= A( @ A i @ . . . @ A & ,  1 < j  5 .7 (12) 
Dj = A' - c I ,  1 I j 5 J.  

Next, we state the boundary conditions. For 1 5 j I ,I, let 

where each (q:, 4:) pair is an (eigenvalue, eigenvector) pair 
satisfying 

vq5D3 = 4G. (24) 

Elwalid and Mitra in [4] show how the (eigenvalue, eigen- 
vector) problem of the above equation involving the large G 
matrix can be reduced to a coupled (eigenvalue, eigenvector) 
problem invoving the smaller matrices Gk. We briefly state 
the main result. For j ,  1 I j 5 J ,  and I C .  1 5 k I K ,  define 

Theorem 3.1-Elwalid-Mitra: Let 1 5 j 5 J be fixed. i) A 
pair ( q ,  4)  satisfies (24) if and only if the following equations 
hold 

gi(v)4[ = 4[AL(V); 1 I I K (26) 

Cgb(71) = C (27) 

4 = 4 i @ & @ -  @ 4 & .  (28) 

K 

k = l  

ii) For q < 0 the solution g i ( q )  to (26) with the maxi- 
mum real part is a simple real, solution, called the maximal 
real eigenvalue, denoted by gL*(q) and it decreases mono- 

~;"="lpk(z)i\::i) as q increases from --3o to 0. iii) For 

the dominant eigenvalue qJ*,  is given by the unique solution 
in (-30,o) to 

tonically from maxi=], ..., N hi,z) to Atmean(=  

A J , m e a n ( =  A j , m e a n )  < < Aj,muz(= E K  k = l  ~ j . m a z ) ,  k 
k=1 k 

K 

=ygf*(q.'*) = c.  
k=l  

Nj + - - { n  E N  : D J ( n , n )  > O} (15) 

(16) 

Furthermore, qJ* is a monotonic, strictly decreasing function 

We consider the case of distinct eigenvalues, in which case 
N? = {n  E N :  D j ( n , n )  < O}. 

of E (Aj,mean ~ 3 , m a x  1. 

For simplicity we assume that { n  E n/ : D J ( n ,  n )  = 0} = (J. 
(The final results hold true even when this assumption is not 
satisfied.) Note that 

N:uN!=N.  l < j < J  (17) 

N:>N:>. . .>N:.  (19) 

~ ~ ( 0 ,  n)  = p ( n ) ,  n E Nk (20) 

d ( B J - ,  n )  = 0, n E N!. (22) 

NA CN! C_... LN? (18) 

With this notation we can write the boundary conditions as 
follows (See Elwalid and Mitra [3] for their derivation.) 

n'(B,-,n) = d+'(B,+,n),  n EN! UN:'' (21) 

we have IN1 eigenvalues. The unknowns {U:. 1 < j 5 J ,  r = 
1 , 2 ,  . . . , IN\} are obtained by using (20)-(22) which provide 
the correct number of equations for them. Now, for 1 5 j _< J 

(30) 

= 7rj(B,.n). (31) 

@ ( B J )  = P{BufferContent > B,} 

n € M  

Thus, the QoS requirements can be roughly written as 

q B J )  I € 3 ,  1 Ij i J. (32) 

Now that we have a way of computing the QoS requirements, 
we next study the asymptotic behavior of @(B,) as buffer size 
gets large and the QoS requirements get more stringent. 
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IV. ASYMPTOTICS which yields 

In this section we study the following asymptotic case a'$ E: ( B2) = -a2 E! (B2) 42 (N: )4(N? ) - '. (56) 
B, + 0O, 1 Ij 5 J (33) 

Next, (53) yields and c j  -+ 0, 15  j I J (34) 

so that BJ - B J ~ l  + b,, 1 5 3 5 J (35) a1E1(B1M(N3 
BJ = a'$E:(B1)c$$(N;) + a?E?(Bl)d?p-:) (57) 

and ~ log'' -+ Y,, 1 I j I .I (36) = a'$E:(B2)E:(B1 - Bz)~'$(N:)  + a?E?(B1)4?(N:) 

(58)  

(59) 

B, 

the condition b, > 0 implies that all threshold seperations 
B, - B,-l tend to infinity in the asymptotic region. The next +E2(B1 - B 2 ) 4 2 ( N 3 ] .  

theorem gives the asymptotic behavior of @(Bj)  . 

(35) we have 

The last equation follows by substituting (56) in (58). Now, 
in the asymptotic region under consideration, Et(B1 - B z )  
remains bounded above by 1, while E?(B1 - B2) goes to 

Theorem 4.1: In the asymptotic case described by (33) and 

j 00. Hence the first term in the square brackets in (59) can be 
ignored in the asymptotic region. Hence, we get @ ( ~ j )  = r x p { C q r * ( ~ r  - B,-l)}{constant + o(l)}, 

r=l 

15 j 5 J. (37) a?EY(B2) = alE1(B1)[.]E!(Bz - Bi) (60) 

Pro08 The proof is a tedious exercise in matrix algebra. 
We start by introducing the required notation 

E J ( z )  = Diag[e9:"]rERl. (49) 

With the above notation the QoS requirements of (32) can be 
written as 

@(Bj)  = a jE j (B j )@(N) l  5 ~ j ,  for 1 5 j I J (50) 

where 1 is a column vector of dimension IN\. Using the above 
notation we shall prove the theorem for the case J = 2 .  
The general case follows in a similar fashion. The boundary 
conditions in (20)-(22) can be written as 

&w:) = P W : )  (51) 

U1 El (B1) 41 (N:) = a2E2 (B1) 4 2  (N:) 
u2E2(Bz)42(N?) = 0. (54) 

a$E:&(N?) + U2E242(N?) = 0 

u~E'(B~)$'(N!) = u ' E ' ( B ~ ) ~ ' ( N ! )  (52) 

(53) 

Equation (54) yields 

(55)  

where [.] represents a matrix that does not dependent on B1 

or Bz. Using this convention we get 

a2E2(B2) = a$E:(B2) + u2E?(B2) 
= a2  E2 (B2) [.] 

(61) 
(62) 

= u ' E ~ ( B ~ ) [ . ] E ? ( B z  - B1)[.]. (63) 

A similar analysis shows that 

Combining (63)-(64) we get 

a2E2(B2) = [.]EI(B1)[.]E!(B2 - B1)[.]. (65) 

Now, (64) shows that, in the asymptotic region, a(B1) is a 
linear combination of terms of the type eqLB1, T E 721, and 
(65) shows that @(El2)  is a linear combination of terms of the 
type ev:B1+qt(B2--BI),T E R L , s  E RT. Using the dominant 
terms corresponding to ql* and ,I2* we get the theorem. 0 

Since there can be a nonzero probability mass at B,, it is 
important to realize that @ ( B 3 )  in the above theorem is in fact 
@(B,+), that is, it includes that mass. The next theorem gives 
a sufficient condition to check if the QoS criterion is satisfied 
for the traffic of all classes. 

Theorem 4.2: The QoS criterion of (32) is satisfied in the 
asymptotic region of (33)-(36) if there exist negative numbers 
{ y J r ,  1 5 j 5 J.  1 T 5 j }  such that 

7 J 

r=l  r=l  

and 
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Proofi From Theorem 2, in the asymptotic region of Since the maximum value of min(y21, 7 2 2 )  is y2 we see that 
the above equation implies (33)-(36) we can write 

where 

l < j < J .  
K 

d * ’ l ( Y Z )  < e. 
k=l (68) 

Now, if y2 5 71, then (77) implies 
K 

cs:*’l(Y1) < c 
k = l  

(77) 

Now, @(Bj)/e3 ----f 0 if ISj < 0 and @ ( B , ) / E ~  + 00 if IS ,  > 0 
in the asymptotic region under consideration. It can be easily 
seen that IS ,  < 0 if and only if there exists a set of negative 
numbers { yJT ,  1 5 T 5 j }  satisfying (66) and 

Furthermore, g%*’l(q) I g:*’l(q) implies 

K 

Cn%*%) < c. (79) 
k=l 

rlr* < y j r ,  1 5 T I j .  (70) 

Now, from EM it follows that qT* < yj, if Ck=l h- gi*(yj,) < 
e. Hence the theorem follows. 0 

One basic question in priority traffic is: Will the creation 
of several priority classes always result in savings? The next 
theorem shows that the answer is a conditional “yes.” 

Theorem 4.3: The priority differentiation results in savings 
if 

Proofi We shall give a very restricted proof, but it 
will provide an idea behind the general result. Consider 
two systems, each with K sources, that are identical in all 
respects except that priority one traffic of system one is treated 
as priority two traffic in system two. Using an additional 
superscript 1 to denote the system index 1 = 1 ,2 ,  we have 

This implies that 

Now for system two, the sufficient conditions of Theorem 3 
need to be satisfied only for j = 2: . . . , .I. Suppose this is the 
case. The condition in (67) for j = 2, when applied to system 
two, becomes 

Thus, condition (67) is satisfied for system one for j = 1 with 
711 = y1 and f o r j  = 2 with 721 = 7 2 2  = 7 2 .  F o r j  = 3 . .  . . . J 
the conditions in (67) are the same for both the system. Thus, if 
the sufficient conditions of Theorem 3 are satisfied for system 
two, then they are satisfied for system one, provided 7 2  5 71. 
This proves the result in this case. The general result follows 
in a similar fashion. 0 

Note that the condition in (71) implies that the ratio 
B3/B3-1 must be larger than log(cJ)/log(cJ-l) in order 
to achieve savings through priority differentiation. In fact, 
when log(c,)/B, is a constant, (independent of j )  one can 
see that the bandwidth requirements of a source with priority 
differentiation is the same as the one which treats all traffic 
as the highest priority traffic. This analytic insight is itself a 
benefit of this analysis. 

We note here that in [l], Choudhury, Lucantoni, and Whitt 
discuss the notion of effective bandwidth and point out some 
of its drawbacks. In general, an effective bandwidth approxi- 
mation based only on large buffer asymptotics can significantly 
overestimate or underestimate the number of sources that can 
be multiplexed on a trunk. If the sources are more “bursty” 
than Poisson, then effective bandwidth tends to underestimate 
the number of sources that can be multiplexed, and if the 
sources are less “bursty” then the number of sources are over- 
estimated. This argues that effective bandwidth results should 
be used carefully, perhaps combined with other procedures as 
in [5] .  

V. EFFECTIVE BANDWIDTH VECTORS 

The sufficient condition of Theorem 3 can be written in the 
following form 
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Definition: The vector where the minimum on the right-hand side of (81) is achieved. 
We introduce the following notation 

c * ( K )  = (?* (K) ,  c2*(K) ,  . . . , c J * ( K ) )  (83) 
qJr* = rnax yir*,  15 r 5 J 5 J (90) 

$* = (p*, p* . . . , p*) 
is called the effective handwidth vector for the system of k = 1 , 2 ,  , K  

K sources multiplexed onto a single buffer. However, it is (91) 

W ,  = E(.:, - qJT*)br .  1 5 2 5 J 5 J (92) 
l J  clear from the definition that the effective bandwidth vector 

of the K-source system cannot be represented as a sum of 
K effective bandwidth vectors, each associated with a single T = l  - 
source. In the next section we study one candidate for effective 
bandwidth vectors of a single source, which will serve as an 
approximation. 

ri* = (r?l*, r!2*, . . . , ry*) 
= qj* + w i e i ,  15 i 5 j 5 J 

(93) 

(94) 

An Approximate Bandwidth Vector 

Here we consider the case of independent and identical 
sources. Thus the generator matrix of the external environment 
driving each source is G, and the rate at which a source 
produces traffic of class j in state i is A;. Thus the maximal 
real eigenvalues are the same for all the sources, i.e. g r  ( 7 7 )  = 
g J * ( q ) .  Then we get 

K 

where e: is a vector with j components, all of which are 
zero, except the ith one, which is equal to one. Note that the 
defintion of (94) implies that rq* E AJ. 

Theorem 5.1: The vector (yJ1*, yJ2*, . . . , y J J * )  is a convex 
combination of the j vectors {I?:*, i = 1 ,2 .  . . . , j } ,  1 5 J 5 J. 

Proofi The theorem is obvious for j = 1 since in that 
case A1 = {(TI)} is a singleton. Now consider the case 
where 2 5 j 5 J .  We further assume that the vectors 
{$* = ($'*, . . . . yi3*), k = 1,. .. , K }  lie in the interior of 
AJ. (The theorem holds even when they are on the boundary, 
but the proof is more tedious.) Then, from (89), we have 

(85)  ,qL*(y{'*) = <, for all 1 5 r 5 j .  (95) 
where cJ* = min rriax { g r * ( - y j r ) } .  (86) 

Now consider a fixed r ,  1 5 T 5 j . Since g;*(q)  is a 
decreasing function of 7, it follows that for all x E A j  with 
x, 2 y r *  we have g;*(x,) 5 < and there exists at least one 
i # T such that &(xi) 2 4". Hence 

( Y , I ; . . , Y , ~ ) E A ~  r=l, . . . , j  

Thus, we can define 

c* (cl*: c2*, . . . ~ C J " )  (87) 

as the effective bandwidth vector of a single source. (This max gp(xc;) = , max gp(x;). (96) 
i=l . . . j  r = l , .  . . , j ; t # r  is a direct generalization of the effective bandwidth vector 

defined in [IO]). Thus as long as the sources are identical and 
independent, the effective bandwidth vector of the K-source 
system is the sum of the effective bandwidth vectors of the 
individual sources, i.e. 

Now, let 
a Y E A j  such that 2, < Y r  5 Y{'* and ?li < 
Hence we have 

E A j  be such that xr  < T i r * .  Then, there exists 
for 2 f r.  

max g p ( x z )  = . rnax gf (xz)  (97) 

2 max g?(yi) (98) 

(99) = max gi?(yi). 

Hence, for each T ,  1 5 r 5 j ,  and x E A j  such that x, > q j r *  

there is a y E Aj such that x, > yr  2 q j r *  and y; > x;, 

i=l . . . j  F 1 , .  . . ,3$#r 

Z = l  ... '.' 

i=1, . . . , j  

c* (K)  = Kc*. (88) 

This motivates us to study the effective bandwidth vector 
defined by (87) as a candidate even if the sources are distinct. 

Now, consider the K distinct sources as described in Section 
11. For the kth source, define the effective bandwidth vector 
as c; = (e:*, c i* ,  . . . , c,"*) where 

I , J , z # T  

mirl max { & * ( T j T ) } .  (89) for i # r ,  and (;3* - 

( Y ~ I , . . . , ~ ~ ~ ) E A ,  r=l, . . . . j  
k -  

The question is, how does E:='=, c; compare with the system 
bandwidth vector c* ( K )  defined by (8 l)? Unfortunately, the 
sum provides neither an upper bound nor a lower bound. 
It only provides an approximation. This is because moving 
the sum in (81) outside the max operator increases the right- 
hand side, while further moving it outside the min operator 
decreases the right-hand side. 

The next theorem gives an important result. Let -yiT*, 1 5 
r 5 j be the point where the minimum on the right-hand 
side of (89) is achieved. Also let y J r * ,  1 5 r 5 j be the point 

for all IC = 1, . . . ~ K .  This implies that yJT* 5 qJT*.  The 
set {x E AJ : Z, 5 q J T * }  is the convex hull of the vectors 

0 
The above theorem can be used in two ways: First, it 

reduces the space over which one has to search for the system- 
optimal vector (yJ1*, . . . , yJJ* ) .  Secondly, it provides another 
candidate for an effective bandwidth vector with desirable 
properties, as described in the next section. 

{I?:*, i = 1,. . . , j } .  Hence the theorem follows. 
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Additive Bandwidth Vectors 2) Average over sources: As a second choice, consider 

We begin by defining a class of effective bandwidth vectors. 
For k = 1 , 2 , .  . . , K define 1 

EJ7. = - K k=l y ; ' * . l I r I j 5 J  (112) 

where $* = (yL1*,... ,yp*) is the point where the 
minimum over the right-hand side of (89) is achieved. 
Thus the vector E ,  is an average of the vectors y:* and 

where { E J r ,  1 5 T 5 J 5 J }  is a given set of numbers so that 
E, = ([3i,...,EJ3) E A,. Define 

We study e; as a possible candidate for an effective bandwidth 
vector for the kth source. 

A Special Case 

Here we consider a special case where each source produces 
a single-priority fluid. However, the total number of priorities 

(i) c;, where is as defined in (89). (103) is still J .  The motivation is to study the multiplexing of sources 
of differing QoS requirements into a single buffer. 

We say that a source is of type j if it produces traffic with 
QoS requirement tj (i.e., priority j traffic). Let Kj be the set 
of sources of type j .  Now, consider a source k E Kt. We have 

Theorem 5.2: 

K 

(ii) e; 2 c*(K)where c * ( K )  is defined by (81). (104) 
k=l 

The inequality follows because <;r belongs to the set of yJT 
over which the minimum is taken. (ii) Using (101) and (89) 

This, along with (25)  implies that 

we get 

K K 

K 

( lo8)  which further implies that 

K 

2 rniri max . c{gk*(yj r )} .  (110) Now consider the computation of the approximate band- 
r=l  ... , >3 

k=l width vector cz as defined in (89). We have 

U 
c r  = r r i i n  rnax , {gL*(yjr)}> 1 5 j 5 J The property in (104) provides the justification for calling 

usual type, i.e., it is not defined in terms of the characteristics 
of the kth source alone. In fact, it depends upon the source 

still provides an implementable method of call admission. 
Next we consider two special sets of vectors {&; 1 5 j 5 

J } .  

(Y], .  " , ? i , )EAJ  r=l,.-,,J 

(1 17) e; an additive bandwidth vector. 

- - rriiri niax . { & ( y j T ) } ,  1 5 j 5 t Note that e; is not an effective bandwidth vector of the 
( Y J i  ," ' ,Y,,)EA, r=l,...,.I 

(118) 
- - rriiri max { niax {gF(yJT)}.~}, characteristics of all the sources in the system. However, it 

( 7 2 1  . . . . ,Y,,)EAJ r=l:...t 

t < j I J .  (1 19) 

1) Average of extreme points: As a first choice, consider The above minimum is achieved at yjT = yf'* where 

where r!* is an extreme point of A j  as defined in (93). 
Clearly, [ j  E Ai for all 1 5 j 5 J .  

Thus, computing the E j  vectors (using the average over sources 
method) for the additive bandwidth vectors using (25) is easy. 
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We get VII. NUMERICAL RESULTS 

Note that this method is particularly easy to use, since it 
involves using the fixed parameters yj and keeping track of 
( K t (  for each t = 1 , 2 , . . . ,  J. 

VI. COMPUTATIONAL ALGORITHM 

We begin by describing a numerical algorithm to compute 
the minimum in (81) and (89). The algorithm uses ideas of 
steepest descent as well as of binary search, and is based upon 
the following simple theorem, which we state without proof. 

Theorem 6.1: Let hi : (-co,0] --f [0, cc), 1 5 i 5 j be 
bounded monotone decreasing functions. Let (771, 772, . . . , 7;) 
be the value of IC = ( z ~ , x ~ , . . . , T c ~ )  where the function 
h ( z )  = maxi=1,2, ...,j hi(xi) achieves its minimum over IC E 
A;. If, for a given z E Aj, h r ( x 7 )  = max,=1. ..., j { h i ( l c l ) }  

then, 77, 2 IC,. 
This is a direct result of the structure of the minimization 

problem and the monotone nature of the h; functions. It yields 
the following algorithm to find (711, 712, . . . , q J )  . 

Algorithm A: Given: Monotone decreasing bounded func- 
tions hi : ( - c o , O ]  + [0; m). Two small positive numbers 
tolerance1 and tolerance2 to dictate the stopping criterion. 

Aim: To find ( T I ,  772, . . . , q j )  as defined in Theorem 6. I .  
Step 0: Set L = yj 
Step 1: Compute 

6 i (  &. 6, . . . , 6). 

Set IC = SL. 
Step 2: Let 

max 2=1,2:. 

and 

hmiIl = , rnin h;(z i ) .  
c=1 ,2 ; . . , j  

If k,,,,, - hmin 5 tolerancel, stop. n: is the desired 77. If 
- Iriaxi,l,2 ,.,,, ;{xi} 5 tolcrancc2. stop. IC is the desired 71. 

Step 3: Set L, = 2, and go to step 1. 
Remark: If the desired 77 vector is in the interior of A,, the 

algorithm stops due to the first stopping condition in Step 2. 
If 77 is on the boundary of A, , the algorithm stops due to the 
second stopping condition in Step 2. 

Note that this algorithm can be used to compute c y  in 
(89) as well as c J * ( K )  in (84) because both gc(zi) and 
E:='=, g: (xi) satisfy the properties of Theorem 6. I .  Once the 
algorithm produces the (yiT*) vectors, they can be used to 
compute the additive bandwidth vector defined by (102). This 
algorithm is used in all the numerical work reported below. 

Though most of this paper has concentrated on theoretical 
results, and the construction of approximate bandwidth vec- 
tors, we will show some numerical results. One can reasonably 
ask whether the procedures outlined above actually produce 
enough benefit to be worthwhile. In this short section, we give 
an example to show that priority differentiation may indeed 
be worthwhile. We use the same example as in [lo]. Here 
we extend the voice source example of that paper to explore 
the effects of multiple priorities and multiple homogeneous 
sources. 

Once again, we assume that the peak bit rate, including 
ATM overhead, is 72 170 b/s. The parameters of the two-state 
Markov chain controlling the source are: average talkspurt = 
350 ms. and average silence duration = 650 ms. We used four 
different configurations: 

1) No priority differentation: In this case, there is only 
one buffer threshold, 100 cells, which is the size of the 
buffer. The target loss probability used was the most 
stringent requirement of the traffic stream, 10-l'. 

2) Two priorities: In this case, we used two buffer thresh- 
olds: 55 cells, for low-priority traffic and 100 cells, for 
high-priority traffic. The target loss probability for low- 
priority traffic is 10-1 and for high-priority traffic it is 
10-l'. The peak bit rate is split evenly between the 
priori ties. 

3) Three priorities: For three priorities, we set the buffer 
thresholds at 55 cells (low priority), 91 cells (medium 
priority), and 100 cells (high priority). The target loss 
probabilities we set to 10-1 for low priority, 
for medium priority, and lo-'' for high priority. We 
split the peak bit rate among the priorities as follows: 
25% each for high and low priority traffic and 50% for 
medium priority. 

4) Four priorities: Finally, for four priorities we set the 
buffer thresholds to 55 cells, 60 cells, 91 cells, and 100 
cells (lowest priority to highest). We set the target loss 
probabilities to 1W4, and 10-l' (again, 
lowest priority to highest). The peak bit rate was again 
split evenly among all the priorities. 

In this experiment, we computed the additive effective 
bandwidth vector e; defined in (102). Recall that the e; vectors 
provide an upper bound for c*(K)  (104) but that since all 
the sources in this case are identical, the system effective 
bandwidth vector and the additive effective bandwidth vectors 
are the same. 

Table I shows the result of the computation of the effec- 
tive bandwidth for the four different configurations described 
above. 

The entries in Table I show the total effective bandwidth (in 
bits per second) required to support a given number of sources 
with a given number of priorities differentiated. We can look 
at the savings achieved from two different points of view: First 
is to look at the total effective bandwidth required by each of 
the priority configurations. Having two priorities saves about 
8% of the bandwidth over no differentiation. Three priorities 
saves about 11 % of the bandwidth and having four priorities 
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21 
22 

I047 

I 

1,515,568 1,399,466 I 1,353,172 1,294,818 
1.587.738 1.466.107 1 1.417.608 1.356.476 

TABLE I 
HOMOGENEOUS SOURCES: TOTAL BANDWIDTH USED 

24 1 1,732,078 
25 1,804,248 

Sources I Number of Priorities 
I 1 I 2 1  A I 4  

1,599,390 1 1,546,481 1,479,792 
1.666,031 I 1,610.918 1,541,450 

, I I  

23 1 1,659,908 I 1,532,749 1 1,482.045 1 1.418.134 

saves about 15% of the bandwidth in this case. Second, we can 
look at the savings from the point of view of the number of 
connections that would fit on a 1 S 4 4  Mb/s link. Note that we 
have ignored the usual framing and that also, ATM overhead 
prevents the usual 24 64kb/s connections from fitting in the 
DSl. 

In this example, using four priorities, we can fit about 
19% more connections into the given bandwidth than with 
no priority differentiation. With two and three priorities, we 
can fit 9.5% more connections. 

In this case, we did not find optimal buffer thresholds, as 
we did in [lo] and so the bandwidth savings are less than 
shown in that paper. 
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