Noncovalent Synthesis of Nanostructures: Combining Coordination Chemistry and Hydrogen Bonding** Wilhelm T. S. Huck, Ron Hulst, Peter Timmerman, Frank C. J. M. van Veggel,* and David N. Reinhoudt* For the synthesis of nanosized particles with structures defined at the molecular level, conventional methods of multistep covalent synthesis have reached their limitations. Consequently, noncovalent synthetic methodologies that equal the precision of covalent synthesis but proceed by simple assembly of building blocks are needed. Such methods should be self-correcting under conditions of thermodynamic equilibrium. Zimmerman et al.[11] have exploited hydrogen bonding in the self-assembly of dendrimers centered around a hydrogen-bonded, hexameric nucleus, and we have described a divergent assembly route to dendrimers using coordination chemistry.[2,3] Hitherto, the combination of two different types of compatible, noncovalent interactions for the assembly of finite nanostructures has not been employed.^[4] Here we describe the combined use of hydrogen bonding and coordination chemistry in the assembly of nanosized metallodendrimers with molecular weights of up to 28 kDa. The combination of three metallodendrimer wedges, constructed by coordination chemistry, into a hydrogen-bonded rosette^[5, 6] allows fast and controlled assembly of nanostructures by both divergent^[7] and convergent^[8] strategies. Scheme 1. Controlled assembly of rosette dendrons. [*] Dr. Ir. E. C. J. M. van Veggel, Prof. Dr. Ir. D. N. Reinhoudt, Drs. W. T. S. Huck, Dr. P. Timmerman Luboratory of Supramolecular Chemistry and Technology and MESA Research Institute Dr. R. Hulst Luboratory of Chemical Analysis University of Twente P. O. Box 217, NL-7500 AE Enschede (The Netherlands) Fax: Int. code + (53) 489-4645 e-mail: smct@ct.utwente.nl [**] We thank the Dutch Foundation for Chemical Research (SON) for financial support. Dendrons DG₀^[9, 10] to DG₃ (Scheme 1), which contain one barbituric acid residue capable of hydrogen bonding, were synthesized on a 50 mg scale by controlled assembly of appropriate building blocks. DG₁ was assembled from DG₀ by activating the Pd center with AgBF₄. This gives an intermediate, cationic solvento complex, to which the bis(Pd-Cl) building block BB-Cl^[3] coordinates (through its cyano moiety). The higher generation dendrons DG₂ and DG₃ were assembled in a one-pot procedure by repeating these activation and addition steps. The activation by $AgBF_4$ and the assembly of the building blocks are fast and quantitative reactions; purification is not necessary, and precipitated AgCl is easily removed by filtration. DG_1-DG_3 were characterized by ¹H NMR spectroscopy, ES-MS (ES = electrospray), and elemental analysis (Table 1). [11] In Table 1. Selected physical data for DG_0-DG_3 . DG₀: M.p. 143-144 °C; ¹H NMR (250 MHz, CDCl₃, 25 °C, TMS): δ = 8.40 (s, 2H, NH), 7.81-7.75 (m, 4H, Ar_sH), 7.42-7.23 (m, 6H, Ar_sH), 6.83 (s, 2H, Ar_{pd}H), 4.53 (br. s, 4H, CH₂S), 3.40 (s, 2H, C(O)CH₂), 1.92-1.88 (m, 2H, CH₂), 1.6 (br. s, 2H, H₂O), 1.31-1.25 (m, 4H, CH₂), 0.87 (t, 3H, CH₃); ¹³C NMR (CDCl₃): δ = 171.7, 150.4, 147.6, 132.0, 131.5, 130.3, 129.8, 115.2, 53.0, 51.6, 40.1, 38.8, 26.1, 22.4, 13.6; FAB-MS (*m*-nitrobenzyl alcohol, NBA): m/z = 669.2 ([M - Cl]⁺), calcd 667.9; elemental analysis calcd for C₃₀H₂₉O₅S₂N₂PdCl·H₂O: C 49.94, H 4.33, N 3.88; found: C 50.34, H 4.28, N 3.76. DG₁: M.p. 146–147 °C; ¹H NMR (250 MHz, CD₃NO₂, 25 °C, TMS): $\delta = 8.77$ (s, 2H, NH), 7.79-7.73 (m, 12H, Ar₈H), 7.50 (s, 2H, ArH), 7.38-7.30 (m, 19H, Ar₈H, ArH), 6.68 (s, 6 H, Ar_{Pd}H), 5.06 (s, 4H, CH₂O), 4.6 (br. s, 12H, CH₂S), 3.94 (s, 2H, CH₂CN), 3.39 (s, 2H, C(O)CH₂), 1.96-1.93 (m, 2H, CH₂), 1.35-1.31 (m, 4H, CH₂), 0.90 (t, 3H, CH₃); ES-MS: m/z = 1765.0 ([$M - BF_4$]⁺), calcd 1766.4; elemental analysis calcd for C₈₀H₇₀O₇S₆N₃Pd₃Cl₂BF₄·2H₂O: C 50.82, H 3.94, N 2.22, S 10.17, Cl 3.76; found: C 50.61, H 3.92, N 2.40, S 9.64, Cl 4.06. DG₂: M.p. 149–150 °C; ¹H NMR (250 MHz, CD₃NO₂, 25 °C, TMS): δ = 8.54 (s, 2 H, NH), 7.69–7.64 (m, 28 H, Ar₈H), 7.39 (s, 6 H, ArH), 7.33–7.28 (m, 45 H, Ar₈H, ArH), 6.67 (s, 14 H, Ar_{Pd}H), 4.98 (s, 12 H, CH₂O), 4.5 (br. s, 28 H, CH₂S), 3.81 (s, 6 H, CH₂CN), 3.27 (s, 2 H, C(O)CH₂), 1.95–1.91 (m, 2 H, CH₂), 1.35–1.32 (m, 4 H, CH₂), 0.80 (t, 3 H, CH₃); ES-MS: m/z = 3986.0 ([M – 2BF₄]⁺), calcd 3983.2; elemental analysis calcd for $C_{180}H_{152}O_{11}S_{14}N_5Pd_7Cl_4B_3F_{12}$: C 52.01, H 3.69, N 1.68, S 10.80, Cl 3.41; found: C 52.24, H 3.84, N 1.66, S 10.63, Cl 3.32. DG₃: M.p. 157–158 °C; ¹H NMR (250 MHz, CD₃NO₂, 25 °C, TMS): δ = 8.56 (s, 2H, NH), 7.70–7.66 (m, 60 H, Ar₈H), 7.39 (s, 14H, ArH), 7.31–7.25 (m, 97 H, Ar₈H, ArH), 6.65 (s, 30 H, Ar_{Pd}H), 4.97 (s, 28 H, CH₂O), 4.5 (br. s, 60 H, CH₂S), 3.79 (s, 14 H, CH₂CN), 3.28 (s, 2 H, C(O)CH₂), 1.92–1.89 (m, 2 H, CH₂), 1.35–1.31 (m, 4 H, CH₂), 1.07 (t, 3 H, CH₃); ES-MS: m/z = 8625.9 ([M – BF₄ – Cl]⁺), calcd: 8632.7; elemental analysis calcd for C₃₈₀H₃₁₆O₁₉S₃₀N₉Pd₁₅Cl₈B₇F₂₈: C 52.09, H 3.64, N 1.44, S 10.98, Cl 3.24; found: C 52.41, H 3.74, N 1.42, S 10.77, Cl 2.85. all cases coordination of the cyano groups to the Pd centers was confirmed by FT-IR (the band for the C \equiv N stretch shifts from 2250 to 2290 cm⁻¹ upon coordination). ES-MS spectra of solutions in CH₃NO₂ clearly show formation of the dendrons with the masses 1765.3 Da (DG₁, 1766.7 calcd for [M – BF₄]⁺), 3986.0 Da (DG₂, 3983.2 calcd for [M – 2BF₄]⁺), and 8625.9 Da (DG₃, 8632.7 calcd for [M – BF₄ – Cl]⁺). The rosettes were subsequently constructed by addition of N-octadecanyl-N'-(2-N-tBoc-amino)phenylmelamine (1) to DG_1-DG_3 ; the assembly with DG_3 is depicted in Scheme 2. The barbituric acid groups bind to the melamine through six hydrogen bonds in a cyclic [3+3] fashion to form the hexameric rosette. Whereas DG_1-DG_3 are only soluble in CH_3NO_2 , the assemblies readily dissolve in CH_2Cl_2 after addition of 1. This increased solubility is a common feature of rosettes. [13] The structural assignment of RG_1-RG_3 in solution (concentrations > 4mm) is based on low temperature ¹H NMR (400 MHz) experiments in CD_2Cl_2 . The characteristic signals for the rosette structure^[14] are present in the range of $-60\,^{\circ}C$ to $-30\,^{\circ}C$ Figure 1); they disappear at temperatures above $-20\,^{\circ}C$. Whitesides et al.^[15] have shown that monorosettes are not kinetically stable on the NMR timescale. The Scheme 2. Rosette formation of DG₃ with melamine 1. Rosette formation was further confirmed by build-up curves measured for the NOE interactions between the methylene bridge protons as well as other isolated resonances. This enabled us to determine the rotation correlation times τ_e . [18] Assuming isotropic tumbling and exclusive dipole—dipole relaxation—that is, no internal motion—the cross relaxation rates τ_{12} were determined, and the corresponding τ_e values calculated. [19] As expected, the τ_e values increase with increasing size of the rosette dendrimers (Table 3). [19] Table 3. Rotation correlation times τ_e and molecular weights. | $\tau_{\rm e} \times 10^{-9} [\rm s]$ | M _{cated} [Da] | |--|-------------------------| | 1.32 | 7266 | | 2.75 | 14177 | | 3.55 | 27972 | | | 1.32
2.75 | Figure 1. Low-temperature ¹H NMR spectra (400 MHz) of RG₁ in CD₂Cl₂. characteristic signal at $\delta = 14.15$ corresponds to the hydrogenbonded imido protons of the barbituric acid residues (H_n). Based on 2-D NOESY and TOCSY experiments, the two signals at $\delta = 11.50$ (H_d) and 12.01 (H_e) can be assigned to the melamine NH protons. The 2-D NOESY spectrum shows strong NOE cross signals of H_n with H_e and H_d (NH-C₁₈H₃₇ and NH-phenyl) of the melamine residue. The extremely downfield-shifted signal for the NH-tBoe proton (H_b) at $\delta = 13.10$ does not show a NOE cross peak with H_n. Long range COSY and TOCSY experiments give further evidence that H_b, H_e, and H_d are connected to the same fragment. The distances between the imido protons H_a and the secondary amine protons H_e and H_d were determined with the NOE initial rate approximation [16] and are in agreement with a rosette structure (Table 2).[6, 17] The gradual increase of these distances upon increasing size of the assemblies may be an indication of increasing steric interactions between the dendrons in the rosettes. Table 2. Interatomic distances in RG_1 - RG_3 as determined by 2-D NOESY experiments. | Rosette | Η,—Η, [Å] | H"—H _d [Å] | |-----------------|---------------|-----------------------| | RG, | 2.5 ± 0.1 | 2.8 ± 0.1 | | RG ₂ | 2.6 ± 0.2 | 3.1 ± 0.2 | | RG_3 | 2.8 ± 0.4 | 3.4 ± 0.4 | These are the first nanosized assemblies held together by two different types of noncovalent, compatible interactions: coordinative and hydrogen bonds. From a synthetic point of view it is important that the two types of interactions are "orthogonal", that is, mutually compatible. This is a prerequisite for a generally applicable methodology. Received: November 18, 1996 [Z97921E] German version: Angew. Chem. 1997, 109, 1046-1049 **Keywords:** dendrimers · hydrogen bonds · nanostructures · NMR spectroscopy - [1] S. C. Zimmerman, F. Zeng, D. E. C. Reichert, S. V. Kolotuchin, *Science* 1996, 271, 1095-1099. - [2] W. T. S. Huck, F. C. J. M. van Veggel, B. L. Kropman, D. H. A. Blank, E. G. Keim, - M. M. A. Smithers, D. N. Reinhoudt, J. Am. Chem. Soc. 1995, 117, 8293-8294. - [3] W. T. S. Huck, F. C. J. M. van Veggel, D. N. Reinhoudt, Angew. Chem. 1996, 108, 1304-1306; Angew. Chem. Int. Ed. Engl. 1996, 35, 1213-1215. - [4] Examples of infinite networks: M. M. Chowdry, D. M. P. Mingos, A. J. P. Smith, D. J. Williams, *Chem. Commun.* 1996, 899-900; A. D. Burrows, C.-W. Chan, M. M. Chowdry, J. E. McGrady, M. D. P. Mingos, *Chem. Soc. Rev.* 1995, 331-339. - [5] G. M. Whitesides, E. E. Simanek, J. P. Mathias, C. T. Seto, D. N. Chin, M. Mammen, D. M. Gordon, Acc. Chem. Res. 1995, 28, 37-44. - [6] R. H. Vreekamp, J. P. M. van Duynhoven, M. Hubert, W. Verboom, D. N. Reinhoudt, Angew. Chem. 1996, 108, 1306—1309; Angew. Chem. Int. Ed. Engl. 1996, 35, 1215—1218. - [7] D. A. Tomalia, A. M. Naylor, W. A. Goddard III, Angew. Chem. 1990, 102, 119-157; Angew. Chem. Int. Ed. Engl. 1990, 29, 138-175. - [8] C. J. Hawker, J. M. J. Fréchet, J. Am. Chem. Soc. 1990, 112, 7638-7642. - [9] Synthesis of DG₀: 5-(1-butyl)-5-(2-hydroxycarbonylmethyl)barbituric acid [10] was coupled through the acid chloride to 3,5-bis(phenylthiomethyl)phenol and isolated in 33% yield after purification. Subsequent cyclopalladation with [Pd[CH₃CN]₄](BF₄)₂, stirring with brine, and purification by column chromatography (SiO₂, CH₂Cl₂/MeOH 95/5) gave DG₀. - [10] P. Tecilla, V. Jubian, A. D. Hamilton, Tetrahedron 1995, 51, 435-448. - [11] B. N. Storhoff, H. C. Lewis, Coord. Chem. Rev. 1977, 23, 1-23. - [12] J. P. Mathias, E. E. Simanek, G. M. Whitesides, J. Am. Chem. Soc. 1994, 116, 4326-4340. - [13] C. T. Seto, J. P. Mathias, G. M. Whitesides, J. Am. Chem. Soc. 1993, 115, 1321-1329. - [14] J. P. Mathias, E. E. Simanek, J. A. Zerkowski, C. T. Seto, G. M. Whitesides, J. Am. Chem. Soc. 1994, 116, 4316-4325. - [15] R. R. Ernst, G. Bodenhausen, A. Wokaun in *Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Vol. 14* (Eds.: R. Breslow, J. B. Goodenough, J. Halpern, E. Rowlinson), Clarendon, Oxford, 1987, p. 490. - [16] Data obtained for RG₃ shows a larger error due to the large size of the molecule. - [17] K. Wüttrich, NMR of Proteins and Nucleic Acids, Wiley, New York, 1986, chap, 6. - [18] For a two-spin system with atoms 1 and 2, the cross relaxation constant τ_{12} and rotation correlation time τ_e are related as in Equation (1). Isotropic tumbling $\tau_{1/2} = 1/10(\mu_0/2\pi)^2 ([\gamma_H^4(h/2\pi)^2]/r^6(\tau_e/(1+4\omega^2\tau_e^2) - \tau_e)$ (1) and pure dipole—dipole relaxation are assumed. μ_0 = dielectric constant, γ = gyromagnetic constant, r = distance between atoms 1 and 2, and ω = Larmor frequency. Measurements were conducted with a 400 MHz instrument, [19] T. L. James, G. B. Matson, I. D. Kuntz, J. Am. Chem. Soc. 1978, 100, 3590-3594. ## Novel Clusters of Transition Metals and Main Group Oxides in the Alkylamine/Oxovanadium/Borate System Job T. Rijssenbeek, David J. Rose, Robert C. Haushalter,* and Jon Zubieta* Dedicated to Professor Hans Georg von Schnering on the occasion of his 66th birthday Hydrothermal synthesis is an area of rapidly increasing importance for the synthesis of new and structurally complex, hybrid, organic-inorganic, solid-state compounds. Utilizing the ability of polar organic molecules to direct the crystallization of inorganic frameworks by incorporation in a geometrically specific manner through multipoint hydrogen bonding, we have been able to prepare several new classes of materials. Presynthesized organic molecules were used to imprint structural information onto inorganic oxide lattices, and microporous solids with the largest cavities and lowest framework densities known, [1] lamellar transition metal oxides or phosphates with organic cations^[2] or coordination compounds^[3] between the layers, polyoxometalates linked by coordination compounds into 2-D and 3-D solids, [4] materials with interlaced 1-D organic and inorganic chains, [5] and organically templated transition metal halides^[6] have all been made. Even polyoxometalate metal species, $^{[7]}$ including the unusual $[H_{16}(VO_2)_{16}]$ (CH₃PO₃)₈]⁸, [8] have been synthesized by hydrothermal synthesis. We report here the use of this technique for the synthesis of 1 and 2 (en = ethylenediamine), which represent a novel type $(enH)(enH_2)_4[(VO)_{12}B_{17}O_{38}(OH)_8]\cdot H_2O - 1$ $(enH_2)_5[(VO)_{12}O_6\{B_3O_6(OH)\}_6]\cdot H_2O - 2$ [*] Dr. R. C. Haushalter, J. T. Rijssenbeck NEC Research Institute 4 Independence Way Princeton, NJ 08540 (USA) Fax: Int. code + (609)951-2483 Prof. J. Zubieta, D. J. Rose Department of Chemistry Syracuse University Syracuse, NY 13244 (USA) Fax: Int. code + (315)443-4070 e-mail: jazubiet@mailbox.syr.edu of clusters of transition metals and main group oxides in the organic cation/vanadium/borate system and possess unprecedented structures. Although a large number of borate mineral structures are known,^[9] and substantial progress has been made in classifying and understanding their structures, synthetically prepared and structurally characterized examples are rare.^[10, 11] The general procedure for preparing 1 and 2, as well as other vanadium borate clusters, [12] consists of concentrated hydrothermal treatment of a vanadium oxide source (V_2O_3) or V_2O_5 with B_2O_3 or H_3BO_3 and amine at 170 °C in water. Large, structurally complicated, highly crystalline clusters spontaneously form in good yield from these simple starting materials and synthetic conditions. The structure of the $V_{12}B_{17}$ cluster in $1^{[13]}$ contains several highly interesting features, the most extraordinary of which may be the contorted vanadium oxide ring (Figure 1a). The ring can be described as two semicircles of five trans, edge-sharing VO₅ square pyramids that partially interpenetrate—like the seams on a tennis ball. The four ends of the semicircles connect through two additional VO₅ units to form a continuous V_{12} ring of unprecedented connectivity (Figure 1b). All 12 terminal vanadyl (V=O) groups radiate away from the cluster surface. The clefts formed by the ring are occupied by two novel B₈ and B_0 polyborate chains (Figure 1c). The $B_8O_{17}(OH)_4$ chain is composed of two linked B₃O₆(OH) FBBs (fundamental building blocks)^[7] that are capped on each end by a tetrahedral BO₃(OH) group. The second chain, B₉O₁₈(OH)₄(enH), retains the approximate shape of the first. However, the OH groups on the terminal boron atoms have been replaced by a pendant, planar BO(OH)₂ triangle on one end and an enH⁺ molecule on the other to give a tetrahedral BO₃N coordination environment (Figure 1a). The interior cavity of the cluster is occupied by poorly defined electron density, probably due to an occluded H₂O molecule. The intercluster space is filled by enH₂²⁺ and water molecules. The $V_{12}B_{18}$ cluster in $2^{[14]}$ consists of a puckered B₁₈O₃₆(OH)₆ ring sandwiched between two triangles of six alternating cis and trans, edge-sharing vanadium atoms. Each vertex of this novel triangular metal-oxo moiety contains a cis, edge-sharing VO₅ square pyramid, whereas the midpoint of each edge is occupied by a trans, edge-sharing VO, polyhedron (Figure 2a-c). Again, all the vanadyl groups radiate away from the cluster surface. The B₁₈ ring (Figure 2d,e) is composed of six B₃O₆(OH)⁴ FBBs and exists in a cyclohexane-like chair conformation with a B_3 unit at each of the six vertices. The two V_6 triangles are coordinated to each face of the B₁₈ ring through six "axial" B-O-V bonds and three B_2 -(μ_3 -O)-V bonds. On average, ten of the twelve vanadium atoms per cluster are V^{IV}, and two are V^V; this accounts for the dark red color of the crystals. The V oxidation states were determined by considering the other known charges present in the unit cell and confirmed by valence bond calculations, [15] which show a valence of about +4.22 for each V atom. This value is close to the +4.17 expected for a V^{IV}: V^V ratio of 5:1, and it appears that each vanadium site has an equal possibility of containing a V⁵⁺ ion. Consistent with the fact that borate minerals are often found in dry lakebeds,^[16] the borate starting material remains in solution if too much water is present during the synthesis of these oxovanadium borates, and single crystals of layered vanadium oxides^[2] are formed. We have observed, in this and other hydrothermal metal oxide systems, that the presence of a small amount of dissolved borate (from B₂O₃ or H₃BO₃) greatly enhances the dissolution of the starting materials and very favorably affects the subsequent crystallization of the metal oxide. 0570-0833/97/3609-1008 \$ 17.50+.50/0 ^[**] The work at Syracuse University was supported by the U. S. National Science Foundation (grant no. 9318824).