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Abstract

Developers are often confronted with incompatible systems and lack a proper system abstraction that allows
easy integration of various hardware and software components. To try solve these shortcomings, building
blocks are identified at different levels of detail in today’s pervasive/communication systems and used in a
conceptual reasoning framework allowing easy comparison and combination. The generality of the conceptual
framework is validated by decomposing a selection of pervasive systems into models of these building blocks
and integrating these models to create improved ones. Additionally, the required properties of pervasive
systems on scalability, efficiency, degree of pervasiveness, and maintainability are analysed for a number of
application areas. The pervasive systems are compared on these properties. Observations are made, and weak
points in the analysed pervasive systems are identified. Furthermore, we provide a set of recommendations as
a guideline towards flexible architectures that make pervasive systems usable in a variety of applications.
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1. Introduction
Historically, networks first supported voice, then other
media. Future networks will add data of things,
i.e. intelligent context-aware and context-producing
devices and services that can communicate peer-to-
peer, via centralised or federated services. Pervasive
systems are considered important constituents of these
networks. They contain a large number of collaborating
tiny sensing, actuating, routing, and processing devices.

A great number of pervasive systems have emerged
over the last decade, most of which serve dedicated
application areas such as environmental monitoring,
supply chain monitoring and remote health monitor-
ing [1–4]. Some generic architectures have been devel-
oped in research projects that unleash the potential of
pervasive systems to multiple applications. Unfortu-
nately, none of these generic architectures have matured
into a widely accepted architecture yet.

Our main objective is to provide a mechanism
for shared usage of pervasive systems in multiple
applications. This is because the effective use of legacy
systems in new contexts and integrating them in
new systems turns out to be tedious. It is difficult
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to exploit opportunities of reuse and to identify
and implement effective measures for modifications.
Recently, technologies like web services and Service
Oriented Architecture (SOA) have been adopted in
pervasive systems architectures to provide service
discovery and service composition. In some cases [5]
these technologies have even been used within clusters
of sensor nodes in a pervasive system. Although these
technologies offer great flexibility, they can jeopardise
the efficiency of these systems (see Section 3.6).

In general, a common reasoning framework in which
existing pervasive systems architectures can be assessed
in multiple dimensions is missing. Such a framework
should support: (i) comparison of existing systems;
(ii) effective integration of heterogeneous systems; (iii)
modification of existing systems; (iv) easy system
deployment in new contexts; (iv) identification of and
fixing weak spots.

Unified Modelling Language (UML), a well-known
and widely used modelling language, does not yet
provide a view in which the important properties
of pervasive systems can be modelled together in a
comprehensive way. Furthermore its precise notation
adds a level of detail that is not required for the
conceptual framework advantages listed above, and can
therefore be distracting.
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To this end, it is our objective to create a simple
conceptual framework for reasoning about pervasive
systems, as well as for comparing and integrating
such systems. For doing so, it is obviously essential
to derive the key entities and principles of pervasive
system architectures and their modules. Therefore,
we identify generic entities, called resources, and
interactions between them found at different levels of
detail in pervasive systems. The general applicability
of these resources is validated by decomposing a
number of generic pervasive systems into their resource
compositions in Section 3. A resource composition gives
an overview of the resource interactions at different
levels, to which we refer as the communication view.

In addition to the communication view of each
pervasive system, we analyse the required properties
for scalability, efficiency and pervasiveness in different
application areas. These properties are also used to
compare the analysed pervasive systems. From these
comparisons and observations, the disadvantages of
these systems become apparent, which helps us to
define a guideline towards an overall architecture that
diminishes the identified weaknesses. In Section 4, an
improved pervasive system is created from existing
ones to show the strength of our reasoning framework,
and to identify the integration points.

To summarise, the contributions of this paper are
threefold: (i) we propose a conceptual framework for
pervasive systems (Section 2) and analyse the requrired
properties of pervasive systems in different application
areas, (ii) we use this framework to decompose
and compare a number of existing pervasive system
architectures with respect to the required properties
(Section 3), (iii) we use this framework to integrate
existing pervasive systems by indicating integration
points (Section 4). We conclude with directions towards
a flexible architecture for shared use of pervasive
systems (Section 6).

1.1. Related work

A great number of pervasive architectures are available
nowadays. Some focus on context retrieval from sensors
and databases like Aura [6], others also add context
reasoning and awareness like Gaia [7]. In this paper
we add attention to the sensing and actuation in
pervasive architectures, such as with a Wireless Sensor
and Actuator Network (WSAN), and how these can be
used by applications. A recent survey [8] highlights
advantages of WSAN middleware: providing system
abstraction, shared and deployable functionality, and
resource management. As noted in that survey, the main
WSAN challenges, i.e. context-awareness and data-
centricity, have not yet properly been addressed.

Recently, the pervasive middleware design direction
shifted towards web-based and service oriented archi-
tectures [9–12]. Another survey [13] addresses existing
pervasive architectures and evaluates them in terms of
context abstraction level, communication model, rea-
soning system, extensibility, and reusability. This sur-
vey concludes that most of the current architectures
are centralised and application-dependent, and suffer
from lack of generality and single point of failure. In
this paper we analyse more generic pervasive architec-
tures and explicitly model the communication type. We
make it explicit where combined systems can interface.
Gajjar et al. [1] give design directions for WSANs in
different application areas. In this paper we focus on
architectures using WSAN and extend their work with
architecture requirements per application area.

Our proposed conceptual reasoning framework
builds on modelling concepts and model-driven design.
UML provides a good starting point for modelling
pervasive systems. Unfortunately, it only provides
limited support for modelling behavioural patterns like
synchronous and asynchronous communication, push
and pull. A recent modelling paper [14] proposes to use
stereotypes to express these architectural primitives, an
idea that we adopt in our framework.

Another UML-based modelling language for perva-
sive systems is PervML [15]. It is used to visually
and platform-independently model a pervasive system
from the point of view of both system analysts and
system developers. Since PervML targets the generation
of Open Services Gateway Initiative (OSGi) code and
only two example models are available, its generality to
model any kind of pervasive system is not obvious.

2. Conceptual framework and system properties
We propose a flexible conceptual framework that
allows: (i) assessment of pervasive systems using a
common notation, and (ii) identification of how to
incorporate different modules into an existing system.
In what follows, we explain the concept and building
blocks of our conceptual framework as well as their
types and properties, and analyse them in different
application areas.

2.1. Conceptual framework
Our conceptual framework builds on the concept of
entities. An entity is identifiable and consequently it has
a set of properties. Some properties of an entity can be
good in one context and may be bad in another. The
main entities that can be identified in pervasive systems
(and communication systems in general) are: resource,
port, and link. A basic resource has an input port and
output port and transforms input events or streams
into output events or streams. Links can carry data or
control signals. Data links connect output ports to input
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Figure 1. Main entities and interactions of resource.

ports, whereas control links are used to schedule actions
or access the properties of an entity.

Figure 1a illustrates the principal entities of a
resource. One may notice that not all details of this
model are always equally relevant. Therefore, in the
remainder of this paper, we will use a compressed
form as shown in Figure 1b. The model implicitly
holds properties in a container, which are made explicit
whenever appropriate.

Resources may be compound or basic. A compound
resource can contain other resources that are connected
via links. Figure 2b provides an example of a compound
resource. When a compound resource uses other
external ports than the ones contained resources require
or provide, a transformation is required. A dedicated
resource called transformer is introduced that takes care
of this transformation and makes it more explicit. To
distinguish the transformer from other resources, it is
drawn as a rectangle instead of an ellipse.

The operation of a compound resource is coordinated
by a manager , which is a dedicated resource that can
manage the configuration of the contained resources,
their execution, resource scheduling and maintenance.
Note that there can only be one manager per compound
resource. In embedded devices, the manager is usually
the operating system or scheduler. In bigger software
systems, an execution environment, event loop or
scheduler are also candidate managers. To distinguish
the manager from other resources, it is depicted as a
rectangle with rounded edges.

Figure 2a provides an overview of all the resource
and link types. It also shows the inheritance relation
between the different resource types. Storage is added
to denote a resource dedicated to information storage
and retrieval. The link types and notation of interaction
protocols and interfaces are further detailed below.

In order to make architecture comparisons presented
in the following sections easier, we will use our com-
pressed notation and borrow notations like multiplicity
and inheritance from UML where appropriate (appro-
priate notations can come from different types of UML
diagrams). Multiplicity is denoted by numbers on either
end of the communication link between resources (like
UML associations in a class diagram) and specifies how
many instances can exist on each side of the relation.

Note that the communication link between resources
are drawn as in UML sequence diagrams:

• an open arrow head denotes an asynchronous
message. Asynchronous messages are normally
used to push information (including requests).
The “pull” stereotype [14] can be added to the link
to explicitly specify information pull.

• a solid arrow head denotes a synchronous
message, the corresponding return message is not
drawn. Synchronous messages are mostly used to
pull information and can contain information in
the request message. The “push” stereotype [14]
can be used to explicitly specify information push.

The interaction type is specified as a label on the
communication link between resources, using the
following EBNF notation:

type = [M“:”]P [“/”T ]
M = (method|message)[“,”(method|message)]∗
P = (protocol|interf ace)[“,”(protocol|interf ace)]∗
T = transport[“,”transport]∗

A method is usually a synchronous call to a resource
according to an interface specification. A message is
usually an asynchronous protocol message. Protocols and
interfaces can be used over different transports, such as
TCP, SSL, HTTP, Simple Object Access Protocol (SOAP)
and RS232.

In Figure 2b, the “0..1” on the Manager side specifies
that Resource1, Resource2 and Interface can only have
0 or 1 managers, just like associations in UML class
diagrams. The Manager, on the other hand, can control
any number of Resource1, Resource2 and Transformer,
denoted by “*” on the connecting arrow. Inheritance
is denoted by a directed hollow arrowhead as shown
in Figure 2a), just like in UML class diagrams.
Stereotypes can be added to the arrow to specify the
type of inheritance. From now on we will only explicitly
model the multiplicity where this adds value, e.g. when
there are many-many or one-many relations. From
here onwards, the compressed notation is called the
communication view.

Since different groupings of resources into compound
resources are possible, a similar grouping should be
made to allow for comparison and integration of
models. The models in this paper therefore use a
grouping that at the highest level identifies components
that communicate over TCP/IP, serial lines or via radio
links.

2.2. Resource types
Pervasive systems tend to have recurring and hierarchi-
cal categories of resources. The main categories include:
Sensors, Actuators, Repositories, and Services. Sensors
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(a) Communication view notation

(b) Compound resource

Figure 2. Notation and compound resource example

observe physical signals such as light, temperature and
movement, whereas Actuators control these physical
signals. Repositories are used to store parameters, ser-
vices, programmes, and other data. Finally, a Service
is a (possible) combination of sensors, actuators, or
repositories.

Transformers are often bi-directional and may
be in the form of Software–Software, Hardware–
Hardware, Hardware–Software, and Human–Machine.
A software–software transformer transforms data from
one domain to another, for example a software module.
Hardware–hardware transformers are merely physical
channels, whereas hardware–software transformers
can for instance be a transition between analogue
continuous domain to digital quantised domain;
sensors and actuators fall in this category. A human-
machine example is a Graphical User Interface (GUI)
that shows a graphical representation on a screen or
captures user actions from input devices like a mouse
and a keyboard.

2.3. Properties of pervasive systems
To date, pervasive systems have been used in various
contexts and still have the potential to be deployed in
many more. These systems present different properties
and attributes, which make them suitable for specific
application areas or contexts. Based on our own
experience and literature study (e.g., [14, 16–18]), we
identify the following groups of properties (scalability,
efficiency, pervasiveness, and maintainability) that
characterize pervasive systems:

Scalability. Scalability of a system is high when it
can grow while still being manageable and responsive.
Scalability is low otherwise. For scalability we define
the following properties and parameters (inspired by
[16] amongst others):

• Resource binding: Explicit binding between
applications and resources is discouraged, since it
requires a WSAN node to signal and process on a
per application basis. This is related to the notion
of localised scalability [16]. The binding can be
tightly coupled, loosely coupled, or uncoupled. A
looser binding enhances scalability.

• Node configuration: Examples of WSAN resource
configuration are setting sampling and reporting
periods, and alarm thresholds. The most static
case is that it requires reprogramming of the node.
Online configuration using an open protocol is
considered better. The most scalable is controlled
configuration, in which authentication and autho-
risation are checked and concurrent requests are
managed. This is related to the notion of Effective
Use of Smart Spaces [16]. When possible, also the
typical frequency of re-configurations is shown.

• IP Reachability: IP Reachability refers to being
able to work through firewall and private network
boundaries (and associated Network Address
Translation (NAT) traversal) to reach a WSAN
(e.g. for remote node configuration or actuation).
When components are not reachable via IP,
additional measures are required per installation
(for instance adding firewall rules, or STUN) to
make the system work across the Internet, which
makes the system less scalable. When possible,
also the typical frequency of remote maintenance
is shown.

• IP Mobility: IP Mobility controls the changes
of network attachment of devices and their
contained applications, services, and context
sources. Mobility is an integral part of pervasive
systems [16]. Scalability increases when devices
can remain connected while moving around
or reconnect without much deployment or
communication overhead. When possible, also the
typical number of mobility changes is specified.

• WSAN Mobility: WSAN Mobility refers to
changes of attachment of sensor and actuator
nodes within and across WSANs. Scalability
increases when nodes can move freely within the
WSAN coverage area while still being reachable
and able to send measurements. Scalability
increases even more when the WSAN supports
multiple hops and when nodes can also move
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between WSANs. When possible, also the typical
number of mobility changes is specified.

• #Domains: Estimated number of supported peer-
ing domains or clusters. Peering enables applica-
tions to transparently use resources from another
domain or cluster, and increases scalability.

• #WSANs/domain: Estimated number of WSANs
supported per domain or cluster (or in the overall
system when peering is not supported).

• #Nodes/WSAN: Estimated number of nodes
supported, per WSAN when applicable, else in the
overall system.

• #Apps/node: Supported number of concurrent
applications using sensor information from one
or more nodes. This is typically 1 for dedicated
pervasive systems. Increasing this number may
limit the efficiency of the interactions (see below).

Efficiency. Efficiency of a system increases when
latency and bandwidth overhead in communication
decrease. With respect to efficiency we define the
following properties (inspired by [8, 18] amongst
others):

• Application type: The application type can
be generic or dedicated and can run close to
the WSAN (local) or elsewhere. A dedicated
pervasive application can be fine-tuned to be
more efficient than a generic pervasive system
that has support for many different applications
running in parallel. When possible also the typical
number of applications is shown per application
type.

• Dependencies: Systems may be stand-alone or
depend on another component, like WSAN,
WAN/LAN connectivity, and applications (apps).
A stand-alone system can be more efficient since
it does not need to interact.

• Interaction complexity: The order of complexity
of the interactions is defined in terms of number
and size of messaging required. Lower interaction
complexity leads to improved efficiency.

• WSAN link: This refers to the interaction protocol
that is used among WSAN nodes (including
the gateway). Messages are sent either with or
without a response (acknowledgement) message.
Bidirectional asynchronous messaging is the
preferred type of interaction, since it allows
reaching dormant WSAN nodes statelessly and
thus reduces the overhead in WSAN nodes. When
undetermined, proprietary, de facto or open is used
to indicate the typical level of standardization.

• Application link: This refers to the interaction
protocol between the application and the WSAN
or device. Asynchronous messaging is a natu-
ral extension of WSAN messaging, whereas syn-
chronous messaging, like request/response in web
services, involves additional logic (processing of
responses) and associated energy consumption
and bandwidth. When undetermined, proprietary,
de facto, or open is used to indicate the typical level
of standardization.

• WSAN multicast: This refers to the ability to
efficiently send messages to a group or to all nodes
in a WSAN. Link layer broadcast and/or multicast
support for messages towards WSAN nodes
makes communication in WSANs much more
efficient in terms of energy consumption and
bandwidth. When undetermined, the beneficial
effect of multicast can be indicated.

Pervasiveness. Availability of the following properties
make the system more pervasive [13, 17] (note that
mobility is already covered under scalability):

• Sensing: Specifies whether sensing is supported.

• Actuation: Specifies support for actuation. Actua-
tion may also be controlled (authenticated, autho-
rised and management of multiple requests).

• Reasoning: Reasoning refers to aggregation,
merging of sensor data or context. Reasoning can
be done through algorithms, programs, rules or
inferencing in different parts of the system.

Maintainability. Maintainability properties relate to
the changeability of components, and the matu-
rity/stability of the system and its components:

• Changeability: Specifies the minimum level of
interchangeability and stability of hardware,
ranging from prototype, specific, various (i.e. a
mix of specific and standardized) to standardized
hardware.

• Maturity: A pervasive system can be a model,
a simulation, a prototype, or a commercially
available product.

2.4. Typical application area requirements
This section describes the typical needs of different
application areas with respect to pervasive systems,
using the properties described in Section 2.3. The
following application areas are considered [4]:

• Cool chain logistics: In the cool chain market,
it is important to optimise the quality of
perishable products by ensuring optimal storage
and transport conditions. In addition, assets can
be tracked when they enter or leave certain areas.
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• Environmental/habitat monitoring: In this
application area, monitoring is done in the
environment or the habitat of living beings.
The monitoring is usually for extended periods
where user-intervention is either expensive or
disturbing. Data mules are sometimes used to
collect the sensor information when no wireless
coverage is available. In habitat monitoring also
the animals themselves can wear a sensor node.

• Surveillance: Building, vehicle and infrastruc-
ture monitoring to detect forcefully opened or
unlocked doors/windows, theft and damage.

• Smart spaces: Smart spaces adapt to the needs
of the users that enter and leave. They typically
contain sensors and actuators that can be
monitored and controlled by applications running
in the environment and on user devices.

• Remote eHealth: In remote eHealth, sensor
networks consist of few wireless sensor nodes on
or around a living being’s body. Typically, these
nodes are integrated with a smart phone or a
stationary device at home. Monitoring vital signs,
and tracking are the main objectives of these
sensor networks. Analysis is often done offline but
increasingly becomes real-time.

Analysing the different application areas. Note that the
scoring of requirements on the different properties is an
educated guess based on a number of papers [1–4], since
the use of sensor networks in most application areas is
still in the early stages of deployment. The typical items
used in the application areas are shown in Table 1. The
typical application area requirements are depicted in
Table 2. The specified values for scalability, efficiency,
pervasiveness and maintainability properties depict the
minimum workable option in each application area.
For scalability, four new parameters have been added
for a WSAN. The IP transfer period indicates how often
sensor updates are made available to applications. The
Sampling period indicates how often WSAN nodes take
measurements. The WSAN IP messages per second equals
Number of nodes per WSAN / (60 * Sampling period),
multiplied by the Number of WSANs per domain this
gives the Domain IP messages per second.

3. Generic pervasive systems
This section describes a number of generic pervasive
system architectures from research projects. It uses
the conceptual framework and the properties from
Section 2 to decompose (using a similar grouping) and
compare them. Other popular pervasive architectures
like SOCAM [9], Gaia [7] and Aura [6] could be
decomposed in a similar manner and scored against the
properties using available literature.

Figure 3. Smart Surroundings communication view

3.1. Smart Surroundings
One of the main goals of the Smart Surroundings
project [19] was to support many diverse ubiqui-
tous and context-aware applications concurrently and
remain open towards unforeseen use cases. The archi-
tecture design aimed at enabling execution of many
software components developed in different languages
and running on different platforms across distributed
and embedded devices and technology platforms. Its
integration technique has two steps, i.e., (i) defining
an eXtensible Markup Language (XML)-like message
exchange interface on top of TCP/IP, and (ii) designing
a publish-subscribe mechanism on top of Extensible
Messaging and Presence Protocol (XMPP). Result of this
project is an integrated demonstrator composed of mul-
tiple heterogeneous prototypes and systems developed
within the project that exchange their real-time data.
Figure 3 illustrates the communication view of Smart
Surroundings.

3.2. Hydra
The goal of the Hydra [20] project is to develop a
middleware that enables any device to be detectable
and usable from Hydra applications and to develop
tools for solution providers of ambient intelligent
applications using such devices. A complementary goal
is developing tools for device producers to enable
their devices to be part of an ambient intelligence
environment.

The Hydra architecture is divided into middleware1

for applications and devices. This middleware has
three stacked layers: network, service, semantic, and
one cross-layer for security. The middleware uses web
services based on SOA and the semantic web. The
service and semantic layers make devices available
as services that advertise their capabilities and
properties using a device ontology. Applications can
then search and use these device services remotely
and context-aware applications and workflows can
be composed of application and device services.

1Hydra middleware has been renamed to LinkSmart middleware.
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Table 1. Typical associations in different application areas

Application area Cool chain Environmental Surveillance Smart Remote
/association logistics monitoring spaces eHealth
Mobile entity truck, node data mule, node vehicles user-device,

object
smartphone

domains depot,
warehouse

geographic area building, infras-
tructure

place clinic

WSANs areas, trucks sub-areas vehicles, areas,
different types

different types patients

Nodes roll container animal, object door, window object object, user
device

Apps views, triggers views, triggers views, triggers experiences views, feedback

Table 2. Typical requirements for different application areas

Framework Cool chain Environmental Surveillance Smart Remote
/property logistics monitoring spaces eHealth

Sc
al

ab
il

it
y

Resource binding loosely none loosely loosely loosely
Node config monthly monthly yearly per minute weekly
IP Mobility #reconnects #reconnects #reconnects #reconnects #reconnects
WSAN Mobility #movements #movements #movements #movements #movements
IP Reachability monthly monthly hourly per minute weekly
IP Transf period per minute per day per minute per minute per hour
#domains 6100 61000 6100 6106 61000
#WSANs/domain 61000 61000 610 610 610000
#Nodes/WSAN 62000 610000 6100 6100 610
#Apps/node 610 6100 610 6100 610
Sampling period 10 minutes 30 minutes 1 minute 1 minute 10 minutes
WSAN IP mesg/s 63.333 65.556 61.667 61.667 60.01667
Domain IP mesg/s 63333 65556 616.67 616.67 6166.7
Overal medium-high high low-medium medium medium

E
ffi

ci
en

cy

Application type dedicated,
optional local

610
dedicated

dedicated local,
optional central

6100 generic dedicated,
optional local

Dependencies all all all all all
Inter.complexity low-medium low medium medium medium
Application link proprietary standard proprietary standard standard
WSAN link proprietary proprietary proprietary proprietary proprietary
WSAN multicast benefits benefits no benefits no
Overall medium/high high medium medium low/medium

Pe
rv

as
iv

e

Sensing + + + + +
Actuation – – +/– + +
Reasoning – +/– + + +
Overall low medium high high high

M
ai

nt
ai

n. Changeability standardized various specific various specific
Maturity product prototype product prototype product
Overall high low medium low medium
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(a) Hydra interactions (b) Application middleware (c) Device middleware

Figure 4. Hydra communication view

Additionally, applications can subscribe to context or
other middleware events related to a specific topic,
independently from the application or device that
generates them. The communication view in Figure 4
depicts how application and device middleware
resources in Hydra interact.

3.3. Daidalos

The goal of Daidalos [21] was to enable seamless
pervasive access to content and services via hetero-
geneous networks that support user preferences and
context. Daidalos demonstrated its integrated concepts
in December 2008, in which a prototype from the
UbiSec&Sens [22] project was used as sensor network.

The Daidalos architecture enables federation between
multiple domains; each domain hosts a Daidalos plat-
form that consists of service provisioning and perva-
sive service support. The corresponding communica-
tion view is depicted in Figure 5a.

Context information can have various forms in
Daidalos, i.e., it can be from a Network Monitoring
Entity (NME) in the Mobile Terminal or in one of
the routers, from the Session Initiation Protocol (SIP)
user agent (MMSP-UA) or sensors in the terminal, it
can also be sensor information from a device in the
Access Network. Additionally, a complete WSAN can be
attached to one of the Access Routers.

Context Managers (CMs) in both Mobile Terminal,
Access and Core Network provide a means to
stream context information from all context sources
to a distributed database. Also higher-level context
information can be stored or inferred. In these
Context Managers, context is stored using ontologies.
Applications can query and obtain context information
from any of the Context Managers when they are
permitted based on their credentials.

3.4. Ambient integration middleware
Recently Ambient middleware [2] was developed to
enable easy integration with applications and to enable
remote monitoring and maintenance. The communica-
tion view in Figure 6a shows the interaction between
the different components. Note that AmbientStudio,
the ConnectBox and Interconnect all share the same
Ambient middleware (AmbientMW).

Multiple WSAN Gateways (GW) can be connected
via RS232 using the AmbientMW in a ConnectBox
device or AmbientStudio on a PC. This makes GWs,
MicroRouters (MR) and SmartPoints (SP) remotely
available.

The AmbientMW offers the ConnectAPI to ease
integration with third-party applications using asyn-
chronous XML messages over a TCP/IP connection
(optionally encrypted with Secure Socket Layer (SSL)).

The AmbientMW also offers AmbiLink to ease remote
monitoring and maintenance of sensor networks using
compact asynchronous binary messages over optionally
SSL encrypted TCP/IP connections.

The SmartView web application enables monitoring
temperature, humidity and/or shelf-life of static
location or cargo with an attached SmartPoint.
The SmartView Bridge uses the ConnectAPI to
receive sensor measurements from AmbientStudio or
ConnectBoxes and forwards the samples to SmartView.

3.5. SENSEI
The Integrated European project SENSEI [5] developed
a common framework to make WSANs available to
services and applications. SENSEI can handle sensor,
actuator, and context resources and is able to create
compound resources from basic ones. It also provides
a common interface for integrating existing sensor
platforms.

SENSEI uses a Representational State Transfer
(REST)-style architecture over HTTP, which allows
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(a) Daidalos interactions (b) Pervasive Service Support (c) ContextManager

Figure 5. Daidalos context related communication view

(a) Ambient Middleware interaction (b) Ambient middleware (AmbientMW) (c) WSAN (d) AmbientStudio

Figure 6. Ambient Middleware communication view

sending requests and returning a response. Requests
and responses can be simple text, but also complete
XML documents. Resources are identified with a URL,
which can be used to request the resource information,
or to post a command.

The interaction between the different SENSEI com-
ponents is depicted in Figure 7a. The project created
prototypes for most components and has demonstrated
their integration.

Native SENSEI. In a native SENSEI sensor network,
a similar REST-style communication is used between
the SENSEI Gateway and the Nodes in the sensor
network using IPv6 over Low power Wireless Personal
Access Networks (6LoWPAN). The SENSEI Gateway
translates REST requests/responses to/from the Binary
Web Service Protocol (BWSP), which is used inside
the sensor network. BWSP uses User Datagram
Protocol (UDP) as transport and can optionally disable

generation of response messages from the gateway.
XML messages are greatly reduced in size using
Efficient XML Interchange [23] (EXI). As a future
option, the SENSEI Gateway may also mediate when
multiple subscriptions are done for the same Node
resource. The interaction between the Native SENSEI
Gateway and Node is depicted in Figure 7b.

AmbientREP. The Ambient Resource EndPoint (Ambi-
entREP) connects Ambient sensor networks with the
SENSEI framework via the AmbientMW (see Section
3.4). So far, temperature, humidity, battery level, and
location have been integrated in the AmbientREP using
a subset of the wide variety of Device Driver Interface
(DDI) drivers available on SmartPoints, MicroRouters,
and Gateway. Also LEDs can be turned on the Micro-
Routers and Gateway. The interaction between the dif-
ferent components is depicted in Figure 7c.
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(a) SENSEI interactions (b) Native REP (c) Ambient REP

Figure 7. SENSEI communication view

Since the underlying Ambient network provides
asynchronous updates of sensors, the AmbientREP
simply remembers the latest measurement and requests
a new sample when no sample is available yet. For more
frequent sensor updates, an application can subscribe
for sensor updates and will be notified when a matching
DDI message is received by AmbientREP.

3.6. Reflection and observations
This section reflects on how the generic pervasive
systems perform on the properties defined in Section
2.3. Furthermore it describes the observations that can
be made when comparing these systems.

Daidalos. Daidalos is very scalable, both horizontally
between domains and vertically between different
access technologies, networks, and third party applica-
tion providers. Daidalos treats WSANs as just another
context source and supports distributing this context
via a chain of context managers within and across
domains. It does not yet consider actuators in the
WSAN, although it does send feedback to network
management entities. With respect to reasoning, there
is context inference from low-level context to more
complex notions describing the environment. Daidalos
requires creation of a Context Source Manager to send
sensor/context to a Context Manager which allows var-
ious WSANs to be integrated. An application can both
subscribe to context events and request specific context.
The order of interaction complexity of the Daidalos
system is low, as sensor information is just fed into the
context managers without delay. Interested applications
will then get an (optionally inferred) context update.
There is no direct coupling between context producers
and context consumers and configuration/management
of WSANs is not yet considered.

Smart Surroundings. Application mobility is supported
in the sense that application can run anywhere and on
any type of platform as long as it can connect to the

Smart Surroundings framework. Since XMPP supports
a chain of servers between clients to exchange messages
over several hops, private networks with NAT and
firewalls can be easily traversed. Simple asynchronous
messaging in Smart Surroundings through XMPP offers
low interaction complexity. However there is a tight
binding between context producers and applications
using the context. In addition parallel execution of
applications is not supported. Therefore the scalability
is low. Reasoning occurs at the application level and is
not supported as a feature of the systems itself.

Hydra. Subscribing for types of notifications is power-
ful and unbinds producers from consumers. The dis-
tribution of events in Hydra is done at the applica-
tion layer and therefore multiplies the involved SOAP
messages. Hydra supports most kinds of federation, but
does not yet consider sharing of WSAN data between
peers. Hydra therefore offers medium scalability; no
evaluation results have been found with multiple appli-
cations that use a variety of devices concurrently, and
WSANs are not yet considered. The order of interac-
tion complexity of Hydra is high, each application and
each device needs to publish itself as a web service,
all communication between applications and devices
is based on SOAP, which adds considerable processing
and bandwidth overhead.

Ambient middleware. There is no binding between con-
text producers (sensor resources) and context con-
sumers (applications). The mobility support depends
on whether the client or server role is used. In principle,
an AmbiLink server supports mobility of ConnectBoxes
and associated WSANs, while the ConnectAPI client
and server offer mobility towards applications. Since a
great number of Ambient WSANs can be merged with
AmbiLink, made available to multiple applications,
and managed remotely, the scalability is medium. The
order of interaction complexity is low, as each sensor
update goes asynchronously to application(s) without
much delay. The communication via AmbiLink adds
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small latency, since there is an additional hop between
application and WSAN, and improves scalability. The
communication via ConnectAPI adds some latency by
converting to XML and improves flexibility for connect-
ing with applications.

Native SENSEI. Since each sensor update needs either
arequest to fetch it from the sensor resource or a sub-
scription to the specific sensor resource (i.e. the sen-
sor node), the interaction complexity is high. Context
producers and consumers are therefore tightly coupled.
The execution manager makes this binding less strong
by working on behalf of applications. Mobility is cov-
ered across WSANs, this means that moving a node
between WSANs does not update subscribers with the
new location (e.g. for updating/stopping the subscrip-
tion). Reachability can be a concern for SENSEI when
parts are behind firewalls or in private networks. On
the positive side, native SENSEI is able to connect to
a number of WSANs and be used by multiple applica-
tions and a number of framework components can peer
across domains (most notably the resource directory).
All things considered, the scalability of native SENSEI
is low/medium.

AmbientREP. The order of interaction complexity of
AmbientREP is medium, since the requests and
subscriptions for sensor updates are handled within
the AmbientREP and do not reach the WSAN nodes.
Therefore the context producers and consumers are
loosely coupled. The scalability of AmbientREP is
medium, i.e. a multitude of Ambient WSANs can feed
into one AmbientREP and they become available to
multiple SENSEI applications, and its resources are
locatable across domains via the peering Resource
Directory. Other properties are inherited from Ambient
middleware and SENSEI.

Comparison and observations. The generic pervasive sys-
tems architectures comparison are listed in Table 3 for
scalability, efficiency, pervasiveness and maintainability
properties. Comparing these systems yield the follow-
ing observations:

• Explicit resource binding: Two pervasive sys-
tems, i.e., Smart Surroundings and native SENSEI,
make an explicit binding between applications
and sensor resources. Such a tight binding is not
so bad for small systems, but as the system grows
and sensors are used by multiple applications this
will impact energy consumption of sensor nodes
and consumed bandwidth in both the WSAN and
the IP network, and thus hinders scalability.

• Web services for applications: Protocols like
REST and SOAP offer great flexibility at the
application level. Choosing one over the other
usually depends on bandwidth and processing

constraints, and protocols that are already in use.
Requests and subscriptions require reachability
of the WSAN that normally sends a stream of
measurements. This can be impractical when that
WSAN is within a private networks or behind a
restrictive firewall, e.g. when the WSAN is in a
vehicle. Therefore, a mobile web-enabled WSAN
usually polls for reconfiguration and actuation
and needs a server for subscriptions and requests.

• Web services within WSANs: Energy and band-
width limitations in the WSAN make a poor
match with the added complexity of web services.
Precious bandwidth and energy is used to han-
dle acknowledgements for sensor measurements
and to notify multiple subscribed receivers. More-
over, latency is added by per-message connec-
tion set-ups. Protocols like BWSP help reduce the
web services overhead in the WSAN and make
the communication asynchronous. However, com-
bined with its high interaction complexity, the
efficiency of Native SENSEI is still barely enough
to support the considered application areas.

• Instant messaging for applications: XMPP and
SIP for Instant Messaging and Presence Lever-
aging Extensions (SIMPLE) are standardised and
open candidates for conveying presence infor-
mation (which can be any context) across the
Internet. However, efficient one-to-many messag-
ing still poses a great scalability problem for both.
On the other hand, distributed Context Managers
in Daidalos, Eventing in Hydra, and Subscription
in SENSEI offer more tailored messaging, driven
by context inference or subscriptions. Note that
the size of XMPP and SIMPLE messages are quite
high, which makes their usage in energy and
bandwidth constrained WSAN nodes impractical.

• Bandwidth limitations: The uplink from a WSAN
towards the application can have limited (and
often costly) bandwidth, for instance a General
Packet Radio Service (GPRS) link has typical
upload between 9 and 18 kilobit/s (download
upto 52 kilobit/s), which severely limits the
size and amount of messages that can be sent.
GPRS may therefore be too limited to use
instant messaging and web protocols with bigger
WSANs [2]. Of course a lot can be gained by
compression of aggregated messages, this would
be practical for messages that are not time-
critical. The communication view helps to make
the protocol type and the number of messages
explicit using the multiplicity on links from
sender to receiver. This makes it easier to estimate
the required bandwidth in each communication
direction.
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Table 3. Comparison of generic pervasive system architectures

Framework Smart Hydra Daidalos Ambient Native Ambient
/property Surround. MW SENSEI REP

Sc
al

ab
il

it
y

Resource binding tightly loosely none none tightly loosely
Node config – – – + +/– + (AmbientMW)
IP Mobility + + ++ +/– +/– +/–
WSAN Mobility n.a. n.a. external ++ ++ ++
IP Reachability overlay overlay MobileIPv6 overlay issues issues
#Domains n.a. n.a. 610 n.a. 610 610
#WSANs/domain n.a. n.a. 610 610 610 610
#Nodes/WSAN 610 610 external 62000 6100 62000
#Apps/node 610 610 610 6100 610 6100
Overall low medium med./high medium low/med. medium

E
ffi

ci
en

cy

Application type generic generic generic generic generic generic
Dependencies none WSAN WSAN,appl. WSAN,appl. appl. appl,AmbientMW
Inter.complexity low medium low low high medium
Application link XMPP SOAP OSGi DDI/XML REST/XML REST/XML
WSAN link – – various DDI BWSP DDI
WSAN multicast – – – + – +
Overall medium medium high high low/med. medium

Pe
rv

as
iv

e Sensing + + + + + +
Actuation +/– +/– – +/– + +/–
Reasoning none rules inference none rules rules
Overall low medium medium medium med./high med./high

M
ai

nt
ai

n. Changeability various various various Ambient various Ambient
Maturity prototype prototype prototype product prototype prototype
Overall low low low medium low low

• Asynchronous communication: Only Ambient
middleware explicitly uses asynchronous commu-
nication between the WSAN, other middleware
instances, and applications. On the application
link, both OSGi, ConnectAPI, and XMPP provide
asynchronous communication, which aids the sys-
tem scalability and reduces latency since message
providers do not need to wait for responses, the
provider resources are not necessary tied to its
consumers, and messages can more easily be sent
to multiple consumers without impacting the pro-
ducer. Content-based routing [24] could improve
efficiency with multiple interested applications.

• Quality of information: The importance of accu-
rate information and reliable message transfer dif-
fers per application area. Asynchronous protocols
could offer the flexibility to only sent acknowl-
edgements for messages that require it, or sent
one acknowledgement for a group of messages.
With REST, retries are sent when an acknowl-
edgement does not arrive while the message may
have arrived. Compared to REST, SOAP offers

additional security features, atomic transactions,
and reliable messaging. The stronger reliability
is usually only necessary for online purchases,
business processes and surveillance. They may
however also become important for remote con-
figuration and actuation.

• Shared control and reasoning: Although a num-
ber of pervasive systems support remote actu-
ation and configuration of WSAN nodes, only
SENSEI started defining specific modules that
resolve issues when multiple parties are con-
trolling/configuring the same sensor/actuator.
Additionally, most pervasive systems lack proper
authentication and authority checks to make
sure that WSAN configuration and actuation are
only invocable with proper credentials. Only
SENSEI defines a security mechanism to sup-
port fine-grained authentication, authorisation,
and accounting. So, only the analysed SENSEI-
based systems offer the required pervasiveness
properties for surveillance, smart spaces, health
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(a) Ambient/Daidalos interactions (b) Context source (c) Shared control

Figure 8. Combined Daidalos/Ambient communication view

and well-being. Smart surroundings and Ambi-
ent MW lack the required reasoning for envi-
ronmental monitoring, but an outlier-detection
module [25] may prove enough to satisfy this
requirement.

• Application area scalability: The generic per-
vasive systems with tight resource binding are
clearly not scalable enough, and only Ambi-
ent middleware supports remote configureabil-
ity without reachability issues but lacks reason-
ing. Therefore, it makes sense to combine the
strengths of pervasive systems (see Section 4).

• Mobility of WSANs and their nodes: Multiple
WSANs should be able to coexist in the same
area [26]. For sharing sensor information in
different applications, compact asynchronous
messaging has the best efficiency properties [26].

• Maintainability: All analysed generic pervasive
systems offer a sufficient platform for deployment
in environmental monitoring and smart spaces.
Only the Ambient MW provides a sufficient plat-
form for deployment in all considered application
areas, except for the required standardization of
the hardware platform.

4. Combining pervasive systems
This section combines pervasive systems into new
ones with combined strength. For integrating multiple
systems it is important that these systems are modelled
on the same level of abstraction at the point where

interaction between the systems is expected. This means
that components involved in this interaction and their
candidate links must be explicitly modelled. This will
make it easier to analyse if and where transformations
need to be done between the systems.

The combination of different pervasive systems is
done at a conceptual level. For actual integration,
the details of protocols and interfaces may need to
be modelled as well. One example, AmbientREP in
Section 3.5 illustrates a combination of SENSEI with
AmbientMW that has been prototyped as well.

4.1. Combining Daidalos and Ambient middleware
When combining Daidalos with Ambient middleware,
a Context Source Manager instantiation is needed (see
Figure 5c) to convert ConnectAPI messages to the appli-
cable context type, and let the ContextManager store
and/or inference from them. A way to combine these
systems is shown in Figure 8. Since Daidalos does not
support sensor network configuration, AmbientStudio
can be used to maintain them as depicted in the figure.
However, it would be better to add functionality for
controlled and authorised configuration and actuation
to the Personalisation and Learning module of the
Pervasive Service Platform using the virtual identity
mechanisms of Daidalos and let it expose an interface
for actuation and configuration. Therefore, a controlled
configuration and actuation component (see Figure 8c)
is added to Pervasive Service Support (see Figure 5b),
in order to control service interaction for multiple users
and at the same time and translate the service instruc-
tions from SOAP to the ConnectAPI protocol.
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Since Ambient middleware focuses mostly on remote
configuration of and sharing information from mobile
WSANs, it is complementary to the Daidalos scalability
and efficiency properties. With respect to pervasive-
ness, Daidalos adds context inferencing and Ambient
middleware adds limited support for actuation. The
combined system allows thousands of nodes per WSAN
but not enough WSANs per domain to support all the
application areas. This is mainly limited by the context
manager. In order to support upto 5556 sensor readings
per second per domain (see Table 2), the scalability can
be increased by:

• Distributing the WSANs over multiple context
managers. But this will increase operational costs.

• Using node configuration and reasoning within
the WSAN to send only meaningful events [3, 27].

• Using context inferencing in the Daidalos context
manager to derive meaningful events for appli-
cations, such as temperature variations during
transport, while (off)loading and during storage.

5. Future work
To further increase the usefulness of the conceptual
framework, it can be enhanced in the following ways:

• Decompose and compare other popular pervasive
architectures with the conceptual framework such
as SOCAM [9], Gaia [7] and Aura [6]. In principle,
the conceptual framework could be applied to
communication architectures in general.

• Enable embedding of rules in each modelled
resource that describe the interaction behaviour
of the resource. These rules could for instance
be modelled as UML interaction diagrams of the
resource and its direct peers.

• Enable further specification of interaction links
between resources, such as typical message size,
bit-rate and round-trip time.

• Enable execution of model instances such that
quantitative measurements can be obtained for
different architecture deployments, i.e. where the
multiplicity of components is fixed.

6. Conclusion
We introduced a conceptual framework with flexible
building blocks for composing pervasive systems.
These building blocks provide an effective way to
compare different pervasive systems and modules. We
exemplified the use of this conceptual framework by
decomposing various pervasive systems. The mapping
turned out to be straightforward for the selected

pervasive systems. We also showed how easily models
can be combined into an integrated model and
identified where integration work is required.

Over the last years, progress has been made in a
number of areas with respect to the properties of
pervasive systems. Dedicated pervasive systems show
excellent properties for their task. The structured
approach of our conceptual framework helps identify
and evaluate these properties. Further, it clearly
indicates opportunities for integration and as such
exploits individual qualities of existing systems in
merged ones.

Despite the good progress in different application
areas, there is not yet a candidate architecture that
prevails on all properties. The identified weaknesses in
the compared architectures are:

• Synchronous messaging is not very efficient for
WSANs. An intermediate component can be used
to distribute a stream of asynchronous messages
from WSANs to multiple applications (as a web
service or by messaging protocols like XMPP
or SIMPLE) without having the energy and
bandwidth impact on the WSANs and its uplink.

• A number of pervasive systems lack reasoning
support, only few support remote WSAN config-
uration, and most lack support for shared but
controlled actuation and configuration.

• Message reduction in size and number is an
effective technique to limit resource utilisation.
Unfortunately only a few systems have native
support for these techniques, which is essential
for the scalability of WSANs and its remote usage.

• Most of the pervasive systems are still in
prototype stage or dedicated to a specific task.
They are often limited to specific sensor data
and context. Interoperability between different
WSANs is usually not possible.

• Binding sensor resources to applications hinders
scalability, and should be avoided.

Progress on these weaknesses and interoperability
between pervasive system architectures will enable
efficient and scalable architectures for shared use of
pervasive systems in multiple applications.
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