gﬂ:mud&m]mm(}umum,wnm Vol. 15, No. |, August 1977
Rights Reserved by Academic Press NewYm'kl.ndm anededgw

On the Covering of Parsable Grammars
AntOoN NpHOLT*

Department of Applied Mathematics, Twente University of Technology,
Enschede, The Netherlands

Received May 4, 1976; revised November 30, 1976

The notion of a parsable grammar is introduced. A definition of cover is provided
which is a generalization of a well-known definition of cover. With this new definition of
cover we prove that every parsable grammar is covered by an LR(1) grammar or, if the
language is prefix-free, by a strict deterministic grammar. A consequence of this result is
that every LR(k) grammar is covered by an LR(1) or a strict deterministic grammar.

1. INTRODUCTION

Numerous parsing methods have been introduced in the literature. Each of these
methods also defines a certain class of grammars for which the method works.

It is natural to ask for the possibility to transform a grammar belonging to one class
into a grammar belonging to another class. If we consider the parsing problem there
are two conditions which have to be fulfilled. The grammar obtained by the transforma-
tion should generate the same language, and it has for each sentence a parse which is
equal to or can easily be converted to the parse of the same sentence in the original
grammar.

In this way it is possible to transform grammars which are difficult to parse into gram-
mars which can be parsed more easily. This is illustrated in Fig. 1. The conversion of one
parse to another parse is formalized (e.g. in [1, 3]) to a definition of covering of grammars.
Mickunas and Schneider [10] gave a direct transformation of an LR(k) grammar to an
LR(1) grammar (or under additional hypotheses to a LR(0) grammar) such that the main

cfg G cfg G’
wel(G) — Emstomation, g el(G) =L(G)
% J{
parse m of w <=—S0mYersion parse =’ of @

FiGgure 1

* Author’s present address: Department of Mathematics, Free University, P.O. Box 7161,
Amsterdam, The Netherlands.

99
Copyright © 1977 by Academic Press, Inc.
All rights of reproduction in any form reserved. ISSN 0022-0000

100 ANTON NIJHOLT

part of the original grammar is covered by the new grammar. A very complicated proof
of this result appeared in [9]. Moreover, Mickunas [8] presented another algorithm for this
transformation. In this paper we show that the proof of the property that every LR(k)
grammar is covered by an LR(1) or LR(0) grammar is rather trivial by using the standard
conversion of a deterministic pushdown tranducer to a context-free grammar. This
problem was presented as an open problem in [1, p. 709] and in [5].

The remainder of this section is devoted to some basic concepts concerning formal
grammars and automata.

DerFiNiTION 1.1. A context-free grammar (cfg for short) is a four-tuple G =
(N, Z, P, S), where N and X are two alphabets, N N Z' = ¢ (letters in Z'and N are called
terminals and nonterminals, respectively), ¥V = N U Z, S € N and the set of productions P
is a finite subset of N X V*. The productions in P are numbered for identification. If
(4, y) is in P then we write 4 — y or we use the notation i. 4 — y if 4 — y is the ith
production in P.

£ = i is defined for strings £, ¢ € V'* if there exist strings o, §, y€ V* and 4 € N so
that £ = adB, § = «pf,and 4 -y P.

If B € Z* we may write ¢ =, ¢ and if « € 2* we may write £ =; . In the usual way
we denote the transitive and the reflexive-transitive closure of = by =+, and -, respec-
tively, and the same can be done for =; and =, . The language generated by G is L(G) =
{weZ*| SE w). A sequence § = & = - = §,, where {, = S and £, =wel¥
is called a derivation of w. Each element of this sequence is called a sentential form. If =
is replaced by =; or =, this derivation is said to be a leftmost derivation (left parse) or a
rightmost derivation (right parse), respectively.

Sometimes we use the notation S =7 w, where 7 denotes a certain concatenation of
numbers of productions used in the derivation of w. If « € V* then | «| denotes the
length of o. The first & symbols of « are denoted by k: o If | « | < & then k: & = o The
empty string is denoted by e. A language L is said to be prefiv-free iff ueL and wvelL
implies v = e.

All cfg’s in this paper are reduced, i.e., each element of V' can appear in a sentential
form and each nonterminal can generate a string of terminals. A cfg G is said to be
unambiguous if each sentence in L(G) has only one left parse.

DeFniTION 1.2 [6). A cfg G = (N, Z, P, S) is said to be strict deterministic if there
exists a partition p of V' such that
(1) Zep,
(2) forany 4, A’'eNande, B, B eV* ifd—af, A — o and 4 = A’ (mod p)
then either
(i) bothB, B #ecand1:8=1:p (modp)or
(ii) B=p =cand 4 =4".

DeFINITION 1.3. A (reduced) cfg G = (N, Z, P, S) such that there is no derivation

COVERING OF PARSABLE GRAMMARS iol

S =+ S possible, is said to be an LR(K) grammar if, for each w, o', xeX¥; y, o, &,
B,BeV* 4,4 eN,i _
(i) S%,adw =, afw = ywand
(i) S5,a'4d'x =, a'f'x =yuw and
(i) k:w="Fk:o,
then A >B=A —f and |of| = | B |.
For an extensive treatment of LR(k) grammars and their languages the reader is
referred to [2]. .

Remark (see [6]). The class of strict deterministic grammars is a proper subclass of
the LR(0) grammars and they generate exactly the prefix-free deterministic languages.

DeriNiTION 1.4. A deterministic pushdown transducer (dpdt for short) is an eight-tuple
P =(0,2,T,4,8 gy, Z,,F), where Q is a finite set of states, Z, I, and 4 are alphabets
and § is a mapping from QO X (ZU{e}) X I'to O X I'* X 4* such that if 8(g, a, Z)
is defined, then §(g, ¢, Z) is undefined and if 8(g, ¢, Z) is defined, then (g, 4, Z) is un-
defined for all e Z. Further, g, €Q is the initial state, Zy€ I' is the start symbol, and
FCQ is the set of accepting states. A configuration of P is a four-tuple (g, w, &, y) in
Q x Z* x I'* x 4*. If &g, a, Z) = (r, &, 2) we write (g, ax, Zy,y) — (r, x, ay, y2). In
the usual way the move i— is extended to —* and ¥~ The translation defined by P is the
set 7(P) = {(x,9) | (go » * Zo » &) P~ (¢, & ,) for some g €F and a € I™*}. The language
accepted by P is the set L(P) = {x| (v, y) e «(P)}. L(P) s said to be a deterministic
language.

2. Covers

In this section we try to formalize the idea of conversion of one parse to another parse,
as shown in Fig. 1. The following definition can be found in [1, p. 276] and also in a slightly
different form in [3].

DeFinITION 2.1. A cfg G’ = (N', Z, P', ") is said to right-cover a cfg G = (N, Z,
P, S)if
1. LG) =LG)
2. there is 2 homomorphism 4 such that
(i) if S’ =7 w, then S =} w, and
(i) for all , such that S =7 w, there exists =’ such that ' =7 wand k(n") = 7.
Note that in , «’, and k(=) the concatenation of productions is such that they appear
in the same order as they are applied in the rightmost derivation of .

A similar definition can be given for leftmost derivations. We make a few observations.
We note that it is possible to introduce “‘cover”-definitions for other types of derivations,

102 ANTON NITHOLT

and also for strings of productions used in a generation of w € L(G) that do not necessarily
correspond to a derivation in the usual sense. For example, the result of left-corner parsing
[12] is a string of productions such that in general the productions cannot be applied in
a derivation in the same order as they appear in that string.

ExampLE. Let G be a cfg with productions 1. E > E+ T,2. E—T,3. T — T *F,
4. T —F,5.F — (E), and 6. F — a, then the string 64362156424 is the left-corner parse
for sentence a x a + (a). The second observation is that in this definition right parses
are mapped on right parses, or in general, a parse of type & with respect to G’ is mapped
on a parse of type x with respect to G. It is, however, also possible to map a parse of type x
with respect to G’ on a parse of type y with respect to G. An example of this can be found
in [4], where a transformation of grammars is given such that left parses are mapped on
reversed right parses. These observations motivate our following definition. The notation
G'[x[y]G mean that G’ covers G such that x-parses with respect to G’ are mapped on
y-parses with respect to G. The sentence “w € L(G) and w is an x-parse of w with respect

2o G” is abrreviated to S =7

DeFiNiTioN 2.2. Let G’ = (N', Z, P’, §') and G = (N, Z, P, S) be cfg’s. G'[x[y]G if

I. L(G)=L(G),
2. there is a homomorphism / such that

(i) ifS' =7 w,then S =" w, and

(i) for all = such that S =7 w, there exists =’ such that $’ =] w and k(#') = .

3. ParsaBLE GRAMMARS

Although in the original papers not always formally presented that way, most of the
parsing methods for deterministic languages can be implemented by a deterministic
pushdown transducer. See for example [1], where it is shown that a k-predictive parsing
algorithm for LL(k) grammars and a shift-reduce parsing algorithm for LR(k) grammars
can be implemented by a dpdt (with an endmarker on the input). In [5, 7] the same is
done for the strict deterministic grammars.

This motivates us to consider grammars for which a parsing method exists that can be
implemented by a dpdt. The most general parsing method we can then consider is a dpdt
which acts as a parser, that is, given a cfg G, if w € L(G) then the dpdt with input e gives
a parse with respect to G as output and if @ ¢ L(G) then the dpdt halts and gives an error-
message. Moreover, we demand that in a final state of the dpdt no moves are possible.
Such a dpdt will be called a valid dpdt for G.

DermNITION 3.1. A cfg G is said to be a parsable grammar if there exists a valid dpdt
for G.

COVERING OF PARSABLE GRAMMARS 103

For each type of parse a subclass of the class of parsable grammars can be defined. For
instance the class of left-corner parsable grammars is the class of those grammars for which
there is a valid dpdt which gives a left-corner parse as output. In [1] the left-parsable and
reversed right-parsable grammars were already defined with the aid of a simple syntax
directed translation scheme. For more general types of parses this way of defining is more
restrictive than with the aid of a dpdt.

For examples showing this and also for examples of grammars belonging to other classes
the reader is referred to [11].

In the inclusion diagram shown in Fig. 2, U stands for unambiguous, P for parsable,
LP for left parsable, and RP for reversed right-parsable grammars. An example of a
grammar which is parsable but which is not left or reversed right parsable is the cfg with
productions 1. § — ABc, 2. S — DB, 3.A—a 4. D—a, 5. B— bBa,and 6. B—b.
L(G) =L, VL,, where L, = {ab"a"c |n > 0}, and L, = {ab™tand | n = 0}. It can
easily be seen that a dpdt P can be constructed such that each sentence of L, has a parse
in {6531 | # > 0} and each sentence in L, has a parse in {65742 | n > 0} which are both
sets of reversed left parses. A cfg which is unambiguous byt which is not a parsable
grammar is the cfg with productions 1. S — AEc, 2. S—DB, 3 A—~>a 4. D—a,
5. E — bEe, 6. B— bBc, 7. E — bc, and 8. B — be. Examples of grammars which are
LL(k) or LR(k) but not left parsable, respectively reversed right parsable can be found in
[11.

U

|
LP/ \RP

|
! LR(¥)
e —

FIGURE 2

4, ON THE COVERING OF PARSABLE GRAMMARS

In this section we show that every parsable grammar is covered by a strict deterministic
grammar. If cfg G is a parsable grammar then there exists a valid dpdt for G. Without
loss of generality we may assume that L(G) is prefix-free since, instead of parsing w € L(G),
we can parse w | , where the endmarker | is a symbol not already in the alphabet of G.
The following lemma is now elementary.

Levmva 4.1, Let P =(Q,Z, I, 4,8, 4y, Zy,F) be a valid dpdt for a cfg G. Then
we can construct a valkid dpdt P’ for cfg G such that ~(P) = r(P’) and P’ accepts with
empty pushdown list in only one final state.

104 ANTON NIJHOLT

Proof. Note that in general there are some interpretations possible for a final state
of the dpdt P. For example, it is possible that the sequence of configurations

(o, w, 2y, €) = (g & o 94) [(P&, 3139,

exists where both ¢ and p are final states and hence according to Definition 1.4 both
(w, y,) and (=, y, y,) are elements of 7(P). This is not quite what we want and therefore
in conformity with what we consider to be a final state of a parsing algorithm, we have
demanded in the preceding section that in a final state of a valid dpdt for a cfg G no moves
are possible. Notice that L(G) is assumed to be prefix-free. Now construct a valid dpdt
P'=(QUO,Ufe} 5 I'U{Zogh 4,8, 4o, Zog, {4.}), where O, ={q' | g € F} and where
g, and the states ¢’ €0, are newly introduced states. Z, is a symbol not already in I" and
& is equal to 8 except for the following cases.

(a) Define 8(gq , €, Zoo) = (90> ZoZ0 » €)-
(b) For all g €F, for all corresponding ¢’ €0, and for all X € I' define §'(g, €, X) =
@€, 8@, 6 X) = (¢, €) and 5(¢', €, Zoo) = (% & €)-
It can easily be verified that P’ satisfies the desired condition. |

For convenience we repeat the construction of a strict deterministic grammar from a
dpdt as given by Harrison and Havel [6]. We let the productions follow by the output
of the dpdt which corresponds to these productions.

ConstructioN 4.1. Let P = (0,2, T, 4,8, ¢y, Z, , {g,}) be a valid dpdt for a cfg G
which accepts with empty pushdown list and which has only one final state. Then define
G’ = (N',Z, P', S') where

(1) N'={[pda]|p, g0, Ael}, S' = [goZs);

(2) P’ is defined as follows. Let 8(p, a, 4A) = (r, X; - X, y) with ae Z U {¢}.
Then if £ > 0 P’ contains the productions [pAg,] — a[rX,q,] - [gz—3 X2g:]/(¥) for all
SEQUENCES G; , §3 .-+, §i Of states in Q. If 2 = 0 then the production obtained is [p4r] —
al(y)-

In the sequel we assume that in a grammar obtained from this construction all useless
symbols and productions are removed. With this construction we obtain a strict deter-
ministic grammar G such that L(G’') = L(P). As can be seen in step (2) G’ simulates with
leftmost derivations the moves that can be done by the dpdt. Therefore we have the
following theorem.

THueoOREM 4.1. Let G be a parsable grammar with a valid dpdt which produces x-parses.
Then there exists a strict deterministic grammar G’ such that G'[l[x]G.

Proof. Let cfg G = (N, Z, P, S) be a parsable grammar for a valid dpdt and parses
of type x. This valid dpdt can be transformed to a valid dpdt P = (Q, X, I', 4, 8, g, ,
Z, , {g,}) which accepts with empty pushdown list in one final state. In this eight-tuple the
alphabet of output symbols 4 consists of the numbers of the productions of G. From P
we can construct a strict deterministic grammar G’ = (N’, Z, P', §’).

COVERING OF PARSABLE GRAMMARS 105

Now G'[1/x]G, where the cover-homomorphism % is defined as follows. Every produc-
tion of G’ which is obtained in Construction 4.1 from 8§(p, a, 4) = (r, X, - X3, %),
where a € X' U {¢} and k& == 0, is mapped on y (note that y € 4%).

Now it is straightforward to show S’ =7 w iff (g, %, Zy, €) ¥ (¢, , €, €, A(=")), and
therefore we have

(a) if S' =7 w then (¢, ®, Zy,€) = (¢s » & ¢ h(n")) and since P is a valid dpdt
for G we have S =" 1w;

(b) if S =7 w in G then, since P is a valid dpdt for G we have (g, , w, Z, , €)
(gs , & €, m) and hence S’ =7 w, where h(z") = o.

According to Definition 2.2 we conclude G'[l/x]G. |

However this result is not quite satisfactory since if a sentence is parsed with a strict
deterministic parsing method the result is a reversed right parse while in this theorem we
used a left parse. The next theorem gives a better result; 7 is used to denote reversed
right parses.

Tueorem 4.2. Let G be a parsable grammar with a valid dpdt which produces x-parses.
Then there exisis a strict deterministic grammar G' such that G'[7[x]G.

Proof. Our starting point is again a valid dpdt for G which is transformed to a valid
dpdt P = (Q, Z, I, 4,8, gy, Zy,{g.}) for G which accepts with empty pushdown list
and in only one final state. Let ¢ be the total number of three-tuples for which 8 is defined,
then let L = {1, 2,..., #}. The elements of L are used as labels, From P we construct a new
valid dpdt P’ = (Q, Z, ' V{K; |i€L}, 4, &, gy, Z,, {g.}) where {K; | ieL}n T = &
and &' is defined as follows. Suppose we have in Pfor 2 > Oand ae J' U {¢}

L ¥pad)=(rX " Xp,)) (type-0 step)
then define in P’
i. 8(pad)=(rKX X, ¢ (type-1 step)
and
1. 8(reK)=(r¢59). (type-2 step)

Note that we placed the output y in i”. This will be motivated later. If we have in P for
ae2 VU

j' 8(pa A) n (r! € z) (type—3 Step)
then define in P’
o ¥(pa 4)=(r¢2). (type-4 step)

Notice that the final state of P is reached with an application of a type-3 step, with
r = ¢, , which remains unaltered. Therefore P’ has the same properties as P (i.e.,, P’
accepts with empty pushdown list and in only one final state) and 7(P’) = =(P). Conver-
sion of P’ to a cfg yields again a strict deterministic grammar. Now consider two gram-

106 ANTON NIJHOLT

mars, G, obtained from P and G, obtained from P’. If for G, 1 is a production obtained
from a type-0 step, that is

L. [pAg] — a[rX,q] - [gr1 Xagq)/(3)

(1 is a type-0 production), then for G, there are productions 1’ and 1" obtained from a
type-1 step and a type-2 step, respectively, where

I'. [pAg] — alrKa]lrX;¢1] = [gx-1X:q1/(€)
and

. [fKir] — €/(¥)

(where I’ is a type-1 production and 1" is a type-2 production). If for G, n is a production
obtained from a type-3 step, that is

n. [pAr] — €/(2)

(n is a type-3 production), then for G, there is a production n’ obtained from a type-4
step, where

n'. [pAr] — ¢/(3)

(n’ is a type-4 production).

Notice that each occurrence of a subtree only consisting of a type-0 production I
in a parse tree with respect to G, has a corresponding occurrence of a subtree only con-
sisting of 1" and 1” in the parse tree with respect to G, .

The occurrences of 1’ and 1" in such a corresponding subtree are said to be connected.
Instead of saying that such subtrees correspond we will also say that in such a case 1
corresponds with 1’ and 1” or simply with 1”. Now consider a reversed right parse =, with
respect to G, of a sentence w, in which we have occurrences of productions ', 1", m’,
and m” (type-1 and type-2 productions). That is = can be written as one of the two forms

a m=-1"m m 1

']

b. w= 1" 1 -m"--m -

where 1" and I' are connected and m" and m’ are connected. For I’ = m’ a form
=+ 17 =+ m” «--1" -~ m’ -+~ cannot exist for connected occurrences of I’ and 1”. The situation
I' = m’ will not lead to problems as can be seen in what follows.

In a left parse of @ with respect to G, both forms a and b change to

c. mp=-rlome

where 1 corresponds to the occurrences of 1’ and 1” displayed above in a and b, and m
corresponds to the occurrences of m’ and m" displayed above in a and b. Notice that 1
and m in c appear in the same order as 1" and m” in both a and b, which will make it
possible to us to define a cover-homomorphism.

In the same way as we did above for type-0, type-I, and type-2 productions we can
consider type-3 and type-4 productions or combinations, and the following claim can be
easily verified.

COVERING OF PARSABLE GRAMMARS 107

Claim. The order of type-2 and type-4 productions in a reversed right parse of a
sentence z with respect to G, is the same as the order of the corresponding type-0 and
type-3 productions in the left parse with respect to G .

Our intentions will be clear. We want to map reversed right parses with respect to G,
on the x-parses with respect to G and we make use of cfg G, since we know that G,[I/x]G.
There remains a small problem. In general we do not have G,[7/l] G, since a type-2
production can correspond to more than one type-0 production. However, for a given
type-2 production each of the corresponding type-0 productions is obtained from the
same type-0 step, which means that for the cover-homomorphism of G,[l/x]G each of
these productions is mapped on the output, say y, given in this step. Therefore we can
immediately define a homomorphism A such that G,[f/x]G, and where % is defined as
h(1") = 3, H(l') = € and A(n") = =z, where 1", I, n’, ¥, and = are as given before. Let G’
be G, , then the proof is complete. [

Notice that with the cover-homomorphism of Theorem 4.2 we have both G,[l/x]G and
G,[7/x]G. This is not difficult to understand since the productions which support the
cover appear in both left and reversed right parses in the same order.

Up to this point we have been concerned with context-free grammars G such that
L(G) is prefix-free. In the following corollary which concludes this section we consider
both prefix-free and non-prefix-free languages. The first part of this corollary is in fact
Theorem 4.2. For the proof of the second part we need the definition of an LR(1) grammar
as presented in Section 1. :

CoroLLARY 4.1. Let G be a parsable grammar with a valid dpdt which produces
x-parses. Then
() if L(G) is prefix-free, there exists a strict deterministic grammar G' such that
G'l7lx]G;
(i) otherwise there exists an LR(1) grammar G’ such that G'[7/x]G.

Proof of the second part. Suppose G = (N, Z, P, S) is an x-parsable grammar and
L(G) is not necessarily prefix-free. Define cfg G, = (NU {S;}, ZU {1}, PU{S, > S 1},
S;}, where S, is not already in N and S; — S_| is a production with label 0. Clearly G,
is x-parsable and there exists a strict deterministic grammar G, = (N,, Z,, Py, Sy),
where 2, = ZU {1}, such that G,[7/x] G, with cover-homomorphism k. G, has
type-1 productions (see the proof of Theorem 4.2) with | on the right-hand side. These
productions are of the form 4 — | B,B, " B,, n >0 and 4, B, , B, ..., B,e N,.
Let O be the subset of P, which contains only such productions.

Define R = {A — BB, --* B, | A— | B,B, *** B, € O}, where each production in R
has the same label as the corresponding production in Q, and let R’ be the complement of
Q in P,. Define G' = (N', 2", P', §'), where N'=N,, 2’ =2, PP=RUR, and
8" = 8, . Clearly L(G’) = L(G) (necessarily we have for a production 4 — | BB, -
B, € Q that BB, --* B, ¢)and G'[f/x]G with a cover-homomorphism 4’ which is defined

R(p)=c¢ for each p € P’ such that k(p) = 0,
R (p) = h(p) otherwise.

108 ANTON NIJHOLT

We prove G’ is an LR(1) grammar. Suppose G is not LR(1), then there exist y, o, o,
B, B e(N'"U ZV*; w, o, x€XZ'* A, A" € N’ such that
(1) 8%, adw =, afw = yw
and
2 S5%,dA%=.dfx=yw
and
() 1:w=1:wand (4B |afl) # (4 —F, | «f .

We prove that this contradicts the property that G, is strict deterministic and hence an
LR(0) grammar. Notice that the only difference between G’ and G, is in the productions
in R and Q. For (1) and (2) we have corresponding derivations (1') and (2') in Gy, that is,
if in (1) or (2) a production of R is used then in (1) and (2') the corresponding production
of O is used and otherwise the same productions are used.

We distinguish between two cases.

Case 1. Assume 1:w = ¢, then w =o' = € and C' is ambiguous. The corre-
sponding derivations for (1) and (2) can be written as
(Ic) Sl’ é_' y: and (21) S.I' g’r 7!

where
y' = | s, With 33y, = 7, if 2 production of R is used in (1),
¥ =y, if no production of R is used in (1),
y" = vys | ¥a, with y5v, = 7, if a production of R is used in (2),
3" = w, if no production of R is used in (2).

It is sufficient to consider the following three cases.

a. The case 9’ = 3" = y contradicts G, is unambiguous.

b. Lety =y | yeandy” = y = yy, . Then, with v € L(y,), we have that both ©
and v_| in L(G,) which is impossible.

c. Lety =y | y,and y" =y, | ;. Necessarily we have again both 7, % ¢
and y; & . If y; = y, then one can easily verify, by considering the different ways |
can be introduced, that G, is ambiguous. Moreover, if y; 7 y, then, if v € L(y), we have
both v € L(y,) and v € L(y,) which leads again to the false conclusion that G, is ambiguous.

Case 2. Assume 1 : w € Z, then the corresponding derivations for G, are
(1’) S'%, cdw| =, 0fw| =ywl,

and
(22) S'%5,'A'x| =, of'x] —yw'l,

@) S'%5,44') >, '] =y’].

COVERING OF PARSABLE GRAMMARS 109

Since l ;1w =1:w"and (4 —B,| B |) 5% (4" — B, | B’ |) we have both the existence
of (1') and (2a') and of (1°) and (2b") contradict the fact that G, is LR(0).
This completes the proof that G’ isLR(1). |

5. ConcLusIONs

The importance of Theorem 4.2 is that every cfg for which a parsing method exists
that can be implemented by a dpdt is covered by a strict deterministic grammar. Since the
cover is such that reversed right parses of the strict deterministic grammar are considered
parsing the strict deterministic grammar is as good as parsing the original grammar. For
x = 7 we see that every reversed right parsable grammar is right-covered (see Definition
2.1) by a strict deterministic grammar. According to the inclusion diagram of Section 3
and our assumption of prefix-free languages we can conclude that every LR(k) grammar is
right-covered by a strict deterministic grammar. According to the remark following
Definition 1.2 we can conclude that every LR(k) grammar is right-covered by an LR(0)
grammar (or without the assumption of prefix-free languages by an LR(1) grammar).

ACENOWLEDGMENTS

I am grateful to Professor L. A. M. Verbeek for some helpful comments. I also acknowledge the
referee for his useful remarks.

REFERENCES

1. A. V. Ago anp J. D. UrLman, “The Theory of Parsing, Translation and Compiling,” Vals. 1
and 2, Prentice-Hall, Englewood Cliffs, N. J., 1972 and 1973.

2. M. M. GeLLer AND M. A. HarrisoN, On LR(k) grammars and languages, manuscript, 19735.

3. J. Gray ano M. A. HarrisoN, On the covering and reduction problems for context-free
grammars, J. Assoc. Comput. Mach. 19 (1972), 675-698.

4. M. Hammer, A new grammatical transformation into LL(k) form, in “Conf. Record of the
6th Ann. ACM Sympos. on Theory of Computing, 1974,” pp. 266-275.

5. M. A. HarrisoN, On covers and precedence analysis, in “Lecture Notes in Computer Science 1,
G.I 3. Jahrestagung, 8-10 Okt. 1973,” pp. 2-17.

6. M. A. HarrisoN anp I. M. Havew, Strict deterministic grammars, J. Comput. System Sei. T
(1973), 237-277.

7. M. A. Harrison anD 1. M. HaveL, On the parsing of deterministic languages, . dssoc. Comput.
Mach. 21 (1974), 525-548.

8. M. D. Micgunas, On the complete covering problem for LR(k) grammars, J. Assoc. Comput.
Mach. 23 (1976), 17-30.

9. M. D. Mickunas, R. L. LancasTer, anp V. B. SCHNEIDER, Transforming L.R(k) grammars to
LR(1), SLR(1), and (1,1) bounded right-context grammars, J. Assoc. Comput. Mach. 23 (1976),
511-533.

110 ANTON NIJHOLT

10. M. D. Mickunas AND V. B, ScHNEIDER, On the ability to cover LR(k) grammars with LR(1),
SLR(1) and (1,1) bounded-context grammars, in ““14th Ann. Sympos. on Sw. and Aut. Theory,
IEEE 1973,” pp. 109-121. i

11. A. NijHOLT, “On the Covering of Parsable Grammars, TW-Memorandum No. 96, 1975,”
Twente University of Technology.

12. D. J. ROSENKRANTZ AND P. M. LEwis, Deterministic left corner parsing, in ““11th Ann, Sympos.
on Sw. and Aut. Theory, IEEE 1970,” pp. 139-152.

Printed by the St Catherine Press Ltd., Tempelhof 37, Bruges, Belgium

