
Subtyping can have a Simple Semantics�

Herman Balsters � Maarten M� Fokkingay

University of Twente� Department of Computer Science

PO Box ���� NL ���� AE Enschede

The Netherlands

Abstract

Consider a �rst order typed language� with semantics �� �� for expressions and types�
Adding subtyping means that a partial order � on types is de�ned and that the typing rules
are extended to the e�ect that expression e has type � whenever e has type � and � � � �
We show how to adapt the semantics �� �� in a simple set�theoretic way� obtaining a semantics
�f g� that satis�es� in addition to some obvious requirements� also the property� �f�g� � �f�g��
whenever � � � �

� Introduction and results

The usefulness of a typing discipline in programming is widely known and recognized� compile�
time type checking may detect errors before they lead to calamitous results� it may facilitate
e�ciency improvements �such as the omission of run�time domain checks�� and it may guarantee
nice semantic properties �such as termination� or the existence of simple set�theoretic semantics��
A typing discipline means that in a program each constituent part is assigned	in some way or
another	an attribute �called type� and that certain relationships are required to hold between
the types assigned� if the program is to be considered well�formed and acceptable for evaluation�
Typing disciplines have been extensively studied
 see e�g� �Gries �
��
 introduction to Part IV��
�Fokkinga �
��� �
���� �Cardelli� Wegner �
���� �Hindley� Seldin �
��� and many others�

Subtyping is a feature of a typing discipline that may control the automatic insertion of
implicit operations
 it may also be used to model the inheritance relation in object�oriented
languages� �Cardelli �
���� Roughly said� we speak of subtyping when

� a partial order exists on types� and for types �� � with � � � there exists a ��conversion��
operation cv��� that behaves like a function mapping arguments of type � into results of
type �

� an expression e of type � is allowed to occur at a position where something of type � is
required� provided that � � � and that the operation cv��� is applied �implicitly� to the
value of e

Reynolds �Reynolds �
��� gives an excellent overview of various possibilities of typing and sub�
typing�

Our description of typing and subtyping� mentioned above� is of a syntactical nature� It goes
without saying that the question arises quickly whether types themselves have a meaning� i�e�

�This work was partly conducted within the PRISMA project� a joint e�ort with Philips Research Eindhoven�
partially supported by the Dutch �Stimulerings Projectteam Informaticaonderzoek Nederland �SPIN���

yCurrently at Centre for Mathematics and Computer Science� Amsterdam�

�



whether there exists a �mathematical� semantics for types �and subtyping�� Let us denote
the semantics of closed expressions e and types � by ��e�� and ��� ��� respectively� It would be nice if
the semantics ��� �� of type � is merely a set such that ��e�� � ��� �� whenever e has type � � However�
only for simple �so�called �rst order� non�recursive� types such a simple set�theoretic semantics
seems possible� Most often one �nds types interpreted as �domains� �continuous lattices or the
like� and sometimes a set�theoretic interpretation is proved to be impossible �Reynolds �
����
The semantics of subtyping is our prime concern in this paper�

We set out to construct� by simple set�theoretic means� a semantics for types �in the presence
of subtyping� such that

����� � ��� �� whenever � � �

This poses serious semantical problems� Consider for example the following situation�

� Assume that ���� � ���� � some non�empty set of functions that have domain ����� and
co�domain ��� ��

� Assume that ��int�� � ��real��

� Assume that int � real� so that� as motivated in Section ��
�real � �� � �int� ��

We then �nd that the desire ���real � ���� � ���int� ���� contradicts the following two observa�
tions�

� Functions f � ���real � ���� cannot belong to ���int � ���� because the domain of f di�ers
from ��int��

� The cardinality of ���real � ���� is strictly larger than that of ���int� ����

Several authors have attacked this problem� and have solved it by non�simple �Scottery� cate�
gorical� domain constructions for ��� ��
 �MacQueen et al �
���� �Cardelli �
���� �Bruce� Wegner
�
����

Our solution� on the contrary� is as simple as e�ective� and can be stated in a single line�
Given a semantics �� �� for the language without subtyping� we form a new semantics �f g� when
subtyping is added� by de�ning

�f�g� �
�
���

�����

For now we have� when � � � � that

�f�g� �
S
��������

�
S
��� ����� �transitivity of �� � � ��

� �f�g�

Note that we have used only elementary� primary school set�theoretic constructions in the
de�nition of �f g� for types� However� this still leaves us with the problem of de�ning �f g� for
expressions in such a way that

�



� �feg� � �f�g� whenever expression e has type � � and

� �f g� is in a natural way related to �� ��

The �rst part is not hard to achieve� The second part poses some technical problems� we would
like to �de�ne� �f g� by certain equations � these equations� however� turn out to be ambiguous�
We can only succeed in showing that the ambiguity is not harmful by de�ning a minimal typing

�that is sound and complete with respect to the given typing�� de�ning a semantics based on
this minimal typing� and then proving that the desired equations do hold for those semantics�

The method described above� viz� constructing the required semantics �f g� from a given
semantics �� ��� is demonstrated by means of a simple language containing representatives for
quite a number of practical programming language constructs� One concept that we do not
take into account is �general� recursion
 as a consequence the given semantics �� �� can be kept
quite simple� �If one adds recursion� the semantics ��� ��� for types � � should be a complete partial
order �c�p�o�� or an even more complex structure� But even then our technique of de�ning
�f�g� �

S
��� ����� works� even though the resulting �f�g� is not a c�p�o� � and note that there is

also no need for it to be a c�p�o��� There are also various aspects of polymorphism� apart from
subtyping� that we do not take into account in this paper� One particular aspect of polymorphism
is type inference� according to which expressions can have many types� and that type instances
of these expressions belong to certain type schemes �e�g� a function like ��x� x� has many types�
all being instances of the type scheme �� ��� Only recently there have appeared several studies
of combining subtyping with type inference �cf� �Wand �
���� �Fuh� Mishra �
���� and �Stansifer
�
����� but these studies all address only the syntactic aspects� Further investigation is required
to determine whether our technique for a semantics of subtyping also applies in this case�

The remainder of this paper is organized as follows� In the next section we motivate and
formally treat a language without subtyping� Then� in Section �� we introduce subtyping and
give the semantics �f g� for types and express our intentions for the semantics �f g� for expressions�
�De�nition ������ In Section � we de�ne minimal typing� and de�ne �f g� for expressions and
show that it indeed satis�es our intentions�

� A language without subtyping

Our method of adapting a semantics �� �� for a base language without subtyping to a semantics
�f g� for subtyping� seems to be largely independent of the particular choice of the base language�
It would be nice if we could abstract away completely from the base language� However� in order
to provide formal proofs� we have to make some choice or another�

In the choice of the base language we have been lead by the overview of Reynolds �Reynolds
�
���� He discusses typing in general and does so by considering a language that has

� unrestricted abstraction �i�e� functions�

� records �or tuples� both with named and unnamed components�

� discriminated unions �or variants�

� lists �homogeneous� possibly in�nite�

� some basic data types� like integral and real numbers� truth values and so on

� the conditional �if then else� construct

�



� recursion

It turns out that not only functions give rise to semantical problems when subtyping is added �as
we have shown in the introduction�� but also records �as we will point out in Remark ����� Lists
pose no semantical problems� and neither do variants and the conditional construct� However�
these constructs do give rise to the notions of least upper bound �t� in the de�nition of minimal
typing� So� in order to o�er a su�ciently general treatment� we should take at least one of
these constructs into consideration� We choose to leave out lists� the de�nitions for lists being
the most straightforward� In order to save some space we only consider records with named
components
 records with named components are more interesting in the presence of subtyping
than those with unnamed components� since � as Reynolds has pointed out � records with named
components are better �t for allowing �eld�forgetting conversions of records and record types�
We do not treat full� unrestricted recursion
 it would complicate the semantics of the base
language considerably� so that the gain of a simple� set�theoretic adaptation to subtyping is of
lesser importance in this case�

In the remainder of this section we o�er a formal treatment of the syntax and semantics of
the base language�

��� Postulation Let B be a set �of basic types�� Let bool � B� As further examples one
might think of basic types int and real� We let � vary over B�

��� Postulation Let L be a totally ordered set �of labels�� We let a vary over L�

��� Remark We shall require� below� that a 	 a� in a record type ha � �� a� � �i� thus
enforcing a canonical form� In a concrete program representation� ha � �� a� � �i might also be
written as ha� � �� a � �i� Similarly for variant types�

��� Notational convention We abbreviate �ha� � ��� � � � � am � �mi� to �hai � �i �i � m�i��
That is to say� ��i � m�� is a post�x quali�cation� meaning �for all i from � to m�� The
predicate �i is some value between� and including� � and m� is not abbreviated to �i � m� but
to � � i � m� The abbreviation is also used in other contexts�

��� De�nition The set T �of types� is inductively de�ned as follows

�� � � T � whenever � � B

�� �� � �� � T � whenever �� � � T

�� hai � �i �i �m�i � T � whenever ai � L� �i � T �i � m� and a� 	 a� 	 � � � 	 am and m � �

�� �ai � �i �i � m�� � T � whenever ai � L� �i � T �i �m� and a� 	 a� 	 � � � 	 am and m � �

We let �� �� � vary over T �

�Clause � de�nes function types� � being the parameter type and � being the result type�
Clause � de�nes record types� the �elds being labelled by a�� � � � � am� Clause � de�nes disjoint
unions or variant types� the summands being tagged with labels a�� � � � � am� Even though al�
lowing m � � in clause � would not give problems in De�nitions ���� and ����� it would make
De�nition ���
 problematic and Theorem ���� as well� But allowing for m � �� however� would
invalidate Theorem ������ and Theorem ��� can not even be formulated anymore �because the
� mentioned in this theorem need not exist���

��� Postulation For each � � T let C� be a �possibly empty� set �of constants�� mutually
disjoint� We let c vary over C� � Cbool � ftrue� falseg�

�



As further examples of constants one might think of zero � Cint� succ � Cint�int�
null � Creal� add� � Creal�real� To get �interesting� programs� there should be a primitive
recursion construct primrec � Cint��int�int��int� All these constants get their meaning as�
signed in Postulation ����� Notice� by the way� that disjointness� here� means that there is no
overloading �one symbol having several types� and therefore several meanings�� One should not
confuse disjointness of C� and C� with disjointness of ����� and ��� �� �cf� Postulation ������

��	 Postulation For each � � T let X� be a set �of variables�� mutually disjoint� countably
in�nite and disjoint from the sets C� �� � T �� We let x vary over X� �

��
 Remark The postulation that variables are typed eliminates the need for introducing
a type assignment �that assigns a type to variables�� and therefore simpli�es the presentation
slightly�

��� De�nition The set E �of expressions� is de�ned inductively as follows

�� c � E� whenever � � T� c � C�

�� x � E� whenever � � T� x � X�

�� ��x�e� � E� whenever � � T� x � X�� e � E

�� e�e�� � E� whenever e� e� � E

�� �if e then e� else e��� � E� whenever e� e�� e�� � E

�� hai � ei �i � m�i � E� whenever ai � L� ei � E �i � m� and a� 	 a� 	 � � � 	 am and
m � �

�� e�a � E� whenever e � E� a � L

�� �a � e� � E� whenever e � E� a � L


� �case e of a� � e�� � � � � am � em� � E� whenever e� ei � E� ai � L �i � m� and
a� 	 a� 	 � � � 	 am and m � �

We let e vary over E�

�Clause � de�nes function expressions� with parameter x and body e� Clause � de�nes
function application� e being the function and e� the argument expression� Clause � de�nes
a record expression� clause � a record selection� Clause � de�nes the expression for injection

into some variant� e tagged with a as a member of some disjoint union� Clause 
 de�nes a
case�selection� variant value e is untagged and then subject to function ei if its tag was ai� All
the above�mentioned intended meanings of expressions are formalized in the semantics below�
in ���
��

���� De�nition The relation � on E � T �e � � is pronounced as� e is well�typed and has

type �� is de�ned inductively as follows

�� c � � � whenever c � C�

�� x � � � whenever x � X�

�� ��x�e� � �� � ��� whenever x � X�� e � �

�� e�e�� � � � whenever e � �� � ��� e� � �

�� �if e then e� else e��� � � � whenever e � bool� e� � �� e�� � �

�



�� hai � ei �i � m�i � hai � �i �i � m�i� whenever ei � �i �i � m�

�� e�a � � � whenever e � hai � �i �i � m�i� a � aj � � � �j for some j �� � j � m�

�� �a � e� � �ai � �i �i �m��� whenever a � aj� e � �j for some j �� � j � m�


� �case e of a� � e�� � � � � am � em� � � � whenever e � �ai � �i �i � m��� ei � ��i � �� �i � m�

As an example� it is easy to verify that� for x � Xint� ��x� succ�succ�x��� � �int� int�� and�
for x � Xreal� ��x� add��add��x��� � �real� real��

���� Lemma For any e � E� � � T � there is at most one way to derive e � � �
Proof Easy induction on the structure of e�

���� Remark It is not true that for any e � E there is at most one � � T for which e � � �
The ambiguity in the type of e is entirely due to clause � of ����� Lemma ���� shows that a type
derivation is not ambiguous� So we may formulate de�nitions by induction on the derivation of
a typing e � � as in ���
 below�

���� De�nition For � � T we de�ne E� � fe � E j e � �g�

	 	 	

Now we turn to the semantics of types and expressions�

���� Postulation For � � B let ����� be a non�empty set� Let ��bool�� � ftt� ffg with tt 
� ff �
�We do not require disjointness of the ������ For example� one could postulate ��int�� � Z� ��real�� �
R� with� as usual� Z � R� However� it is also possible to postulate ��int�� � h�j�ihdigiti� and
��real�� � h�j�ihdigiti�h�ihdigiti�� so that ��int�� and ��real�� are disjoint��

���� De�nition For each � � T a set ��� �� is de�ned by induction on the structure of � as
follows

�� ����� has been postulated in ����

�� ���� � ���� � ����� � ��� �� � the set of all total functions from ����� to ��� ��

�� ��hai � �i �i � m�i�� � the set of total functions with domain fa�� � � � � amg that map ai into
���i�� for all i � m� We shall denote such a function f by its �graph� f�a�� d��� � � � � �am� dm�g�
or f�ai� di� j i � mg� meaning that f�ai� � di �i � m�

�� ���ai � �i �i � m���� � f�ai� di� j � � i � m � di � ���i��g

We let d vary over any ��� ���

���� De�nition U �
S
��T ��� ��� the universe in which the semantics of both types and

expressions shall �nd their place� both with and without subtyping�

���	 Postulation For each � � T� c � C� let ��c�� be some member of ��� ���
Let ��true�� � tt� ��false�� � ff �

�Here the semantics ��zero��� ��succ��� ��null��� ��add���� ��primrec�� have to be chosen in such a
way that we get the intended respective meanings of these constants��

���
 De�nition An assignment A is a family of functions A� � X� � ��� ��� �� � T �� For
assignment A� � � T� x � X� � d � ��� �� we de�ne the assignment A�x 
� d� for all � � T� y � X�

by

�



�A�x 
� d����y� � A��y� � if � 
� � or y 
� x
� d � if � � � and y � x

���� De�nition Let A be an assignment� Functions �� ���A � E� � U are de�ned by induction
on the derivation of their typing as follows

�� ��c���A � ��c�� as postulated in ����� whenever c � C�

�� ��x���A � A� �x�� whenever x � X�

�� ����x�e������
A � �d � ������ ��e���A�x��d�� whenever x � X�� e � � �

�On the right hand side we have used � as a notation on the meta�level for functions��

�� ��e�e�����A � f�d�� where f � ��e�����
A � d � ��e����A� whenever e � �� � ��� e� � �

��

��if e then e� else e���� � ��e����A � if ��e��boolA � tt
� ��e�����A � if ��e��boolA � ff

whenever e � bool� e� � �� e�� � �

�� ��hai � ei �i � m�i��
hai��i �i�m�i
A � f�ai� ��ei��

�i
A� j i � mg� whenever ei � �i �i � m�

�� ��e�a���A � f�a�� where f � ��e��
hai ��i �i�m�i
A � whenever e � hai � �i �i � m�i� a � aj� � � �j

for some j� � � j � m

�� ���a � e���
�ai ��i �i�m��
A � �a� ��e��

�j
A �� whenever a � aj � e � �j for some j� � � j � m


�

��case e of a� � e�� � � � � am � em���A � ��e�����A �d� � if a � a�

�
�
� ��em���mA �d� � if a � am

�where �a� d� � ��e��
�ai��i �i�m��
A �� whenever e � �ai � �i �i � m��� ei � ��i � �� �i � m��

���� Theorem For each � � T� e � E� � ��e���A � ��� ���
Proof Easy induction on the derivation of e � � �

���� Remark It is now standard practice to show that ��e���A � ��e���A� if A and A� coincide
on the free variables of e� Therefore� for closed e one may set ��e��� � ��e���A for any A�

� Adding subtyping

We speak of subtyping when there exists a partial order on types� and the typing rules are
extended to the e�ect that

an expression e that has type � may occur at a position where a supertype � of � is required�

or in other words

�



e � � whenever e � � and � � ��

This� however� is only a syntactic consequence of subtyping� Semantically the discipline of
subtyping may be used

� to control the automatic insertion of �xed �conversion� functions cv��� at appropriate
places

� to model the inheritance relation in �abstract� object�oriented languages
�cf� �Cardelli �
����

� to re�ect syntactically �axiomatically� some semantic facts like ��int�� � ��real���

It happens that the �rst of these uses also covers the second and the third� by simply
choosing some conversion functions to be the identity function� Reynolds �Reynolds �
��� gives
a thorough syntactic treatment of subtyping with special attention to the �rst use above �but
discusses the semantics only informally�� and we shall follow him closely� We urge the reader to
consult �Reynolds �
��� for more information�

��� Postulation Let �B be a relation on B �B and let� for each �� �� � B with
� �B ��� cv���� be a function in ����� � ������� such that the following properties hold true

��B� �B is a partial order


LUBB� if two basic types have a common �B� upper bound� then they have a �B� least upper
bound


GLBB� if two basic types have a common �B� lower bound� then they have a �B� greatest
lower bound


IDB� cv��� � identity� � ����� � �����


TRB� cv������ � cv���� � cv����� � for � � �� � ���� where the operation � denotes function
composition� �f � g��x� � f�g�x���

As an example� whether ��int�� � ��real�� actually holds or not� one may choose int � real� provided
that cvint�real is de�ned as some function from ��int�� to ��real�� satisfying the requirements listed
above�

��� Remark Cardelli �Cardelli �
��� models the inheritance relationship in object�oriented
languages by means of subtyping� and then chooses �B to be the identity on basic types� This
simpli�cation does not simplify the theorems or proofs in an essential way�

��� Remark Another special case of the postulation above is the requirement that for
� �B �� it holds that ����� � ������� In this case we can de�ne the conversion functions cv���� as
identities� and we can prove �IDB� and �TRB�� Again we have chosen the more general case
above� because it does not complicate the forthcoming de�nitions and proofs�

��� De�nition We de�ne a relation � on T � T and� simultaneously� for each pair �� � � T
with � � � � a function cv��� � ����� � ��� ��� by induction as follows

�� if � �B �� then�

� � � ��

� cv���� is postulated in ���

�



�� let � � ��� � ��� and � � ��� � ���
 if �� � �� and �� � �� then�

� � � �

� cv��� �f� � cv����� � f � cv����� for f � ���� � ����

�Note the monotonicity of � in the result part and the anti�monotonicity in the parameter
part��

�� let � � hai � �i �i � m�i and � � haji � �ji �i � n�i
 if j�� � � � � jn is a �not necessarily
contiguous� sub�sequence of �� � � � �m and �ji � �ji �i � n� then�

� � � �

� cv��� �f�ai� di� j i � m g� � f�aji � cv�ji��ji �dji�� j i � n g

�� let � � �aji � �ji �i � n�� and � � �ai � �i �i � m��
 if j�� � � � � jn is a �not necessarily
contiguous� sub�sequence of �� � � � �m and �ji � �ji �i � n� then�

� � � �

� cv��� ��aji � d�� � �aji � cv�ji��ji �d���

��� Remark

�� In �Reynolds �
��� a di�erent de�nition is given of subtyping for record and variant types�
This is done by splitting clauses � and � in De�nition ��� in both cases into two separate
sub�clauses� For example� in the case of record types� clause � is replaced by

�a� � � hai � �i �i � m�i� � � hai � �i �i � m�i� �i � �i �i � m� � � � �

�b� � � hai � �i �i � m�i� � � haji � �ji �i � n�i � � � �

This alternative� as such� however� leads to the invalidness of the desired conclusion that
� constitutes a partial order �cf� Lemma ����� because transitivity of � can not be proved
anymore� without explicitly adding an extra clause to such a de�nition that any com�

bination of the clauses mentioned also generates a pair of types belonging to the sub�
type relation �but this is just what the property of transitivity amounts to�� In such an
alternative de�nition the steps are just too small to imply transitivity� �For example�
ha � int� b � booli � ha � reali can not be proved by either appealing to clause �a or
appealing to clause �b� given that int � real� but it can be proved by appealing to our
clause � in De�nition �����

�� Any of the clauses �except for the �rst� in the preceding de�nition may be omitted without
invalidating the lemmas and theorems to come� Actually� it is the very existence of a
�natural� conversion function cv � ����� � ��� �� that allows� but does not force� to add the
de�nitions � � � and cv��� � cv� Here �natural� can be made precise� the addition of
the clauses � � � and cv��� � cv should not invalidate the next lemma�

��� Lemma �cf� �Reynolds �
���� The relation � and functions cv��� �for � � �� satisfy
the following properties


�� � is a partial order on T � T


LUB� if two types have a common ��upper bound� then they have a ��least upper bound


GLB� if two types have a common ��lower bound� then they have a ��greatest lower bound







ID� cv��� � identity� � ��� �� � ��� ��


TR� cv��� � cv��� � cv��� � for � � � � � �

Proof

Case 
�� It is easily veri�ed that any of the de�ning clauses for � preserves the re�exivity� anti
symmetry� and transitivity �of the initial partial order �B�

Case 
LUB� GLB� First we constructively de�ne partial operations t�u � T � T 
� T that
will yield the required least and greatest bounds�

� For �� �� � B that have a �B�upper bound� we de�ne � t �� to be the �B�lub that
exists on account of postulation ���
 analogously� for �� �� � B that have a �B�lower
bound we de�ne � u �� to be the �B�glb that exists on account of ���

� For � � ��� � ���� � � ��� � ��� for which �� t ��� �� u ��� �� t ��� �� u �� exist�
we de�ne

� t � � ��� u ��� � ��� t ���
� u � � ��� t ��� � ��� u ���

� For � � hai � �i �i � m�i� � � hbj � �j �j � n�i we de�ne � t �� � u � as follows� Let
c�� � � � � cp be the ordered sequence of labels �of minimal length� containing exactly
all ai �i � m� and bj �j � n�� Furthermore let d�� � � � � dq be the �not necessarily
contiguous� sub�sequence �of maximal length� of c�� � � � � cp that is a sub�sequence of
both a�� � � � � am and b�� � � � � bn� Then

� t � � hdl � �l �l � q�i� where �l � �i t �j� with i� j such that ai � dl � bj

� u � � hck � �k �k � p�i� where

�k �

���
��

�i � if ck � ai �� fb�� � � � � bng
�i u �j � if ai � ck � bj
�j � if ck � bj �� fa�� � � � � amg

where it is assumed that all the �i t �j and �i u �j occurring in the formulas above
exist�

� For � � �ai � �i �i � m��� � � �bj � �j �j � n�� we de�ne � t �� � u � as follows� Let
c�� � � � � cp and d�� � � � � dq be ordered sequences of labels as constructed above� then

� t � � �ck � �k �k � p��� where

�k �

���
��

�i � if ck � ai �� fb�� � � � � bng
�i t �j � if ai � ck � bj
�j � if ck � bj �� fa�� � � � � amg

� u � � �dl � �l �l � q��� where �l � �i u �j� with i� j such that ai � dl � bj�

It is furthermore assumed that all the �i t �j and �i u �j occurring in the formulas
above exist�

Now it is easy to prove� for arbitrary �� �� � �

� � � � � � � �� �� � � � t � �exists�� � �
� � � � � � � �� � � � u � �exists�� � �� �

by induction on the derivation of � � � and using the following fact�

for arbitrary � and � �

��



� � � implies

either � � and � are both basic types and � �B �

or� � � ��� � ���� � � ��� � ��� and �� � �� and �� � ��

or� � � hai � �i �i � m�i� � � haji � �ji �i � n�i and j�� � � � � jn is a sub�sequence of
�� � � � �m and �ji � �ji �i � n�

or� � � �aji � �ji �i � n��� � � �ai � �i �i � m�� and j�� � � � � jn is a sub�sequence of
�� � � � �m and �ji � �ji �i � n�

This fact can be proved by induction on the derivation of � � � �

Case 
ID� TR� These cases are easily proved by induction on the derivation of the subtype
relation� in case �TR� using again the above fact�

��	 Remark None of the properties �LUB�� �GLB�� �ID� or �TR� is used in the present
section� the de�nition of the syntax and semantics of the language with subtyping� Properties
�LUB� and �GLB�� as well as the operations t and u� are needed to de�ne a minimal typing
and to prove the soundness and completeness� in ��� and ��� below� Properties �ID� and �TR�
are then used to complete the proof of the well�formedness of the semantics� in ����

��
 Remark It was the main intention of this paper to show that subtyping should � some�
how� imply set inclusion
 however� for the semantics for types de�ned thus far this is not yet
the case � i�e�� � � � does not imply ����� � ��� ��� for arbitrary types �� � � For example� take
� � ha � int� b � reali and � � ha � inti �the reader can easily verify that in this case � � � holds�
but not ����� � ��� ���� Also we can take �cf� Section �� � � �real � int� and � � �int � int�
to yield a contradiction for the statement � � � � ����� � ��� ��� This motivates to de�ne a new
semantics� written �f g��

��� De�nition For � � T we de�ne

�f�g� �
�
���

�����

���� Theorem For �� � � T � � � � � �f�g� � �f�g��
Proof

�f�g� �
S
��������

�
S
��� ����� �by transitivity of � and � � ��

� �f�g� �

���� De�nition A new relation � on E � T is de�ned inductively as follows

�� � �� as for the old relation � in De�nition ����

��� e � � � whenever e � � and � � � �

���� Remark The new relation � is an extension of the old relation� Note that due to clause
�� an expression may have several types �e � � and e � � for distinct �� �� and that a typing
e � � may have several derivations�

���� De�nition Let A be an assignment� Functions �f g��A � E� � U are de�ned by
induction on the derivation of the argument s type

��



�� � �� as for the functions �� ���A � E� � U in De�nition ���
 �replacing �� �� by �f g��

��� �feg��A � cv��� ��feg��A� whenever e � � and � � � �

���� Remark For given e and � there may exist several distinct derivations of e � � and
therefore we have to show that this syntactic ambiguity does not lead to semantic ambiguity�

In principle� we cannot claim that De�nition ���� de�nes functions �f g��A but only relations
��f g��A � � � ��
 we are faced with the problem to prove directly that the relations are functions�
i�e�

�feg��A � d � �feg��A � d� � d � d�

Another problem is that functions �f�x�eg����
A become �in principle� nondeterministic and� com�

pared to De�nition ���
� the structure of the universe changes drastically� We are faced with
some serious technical problems here� The next section is devoted to their solution�

� Minimal typing

In this section we give another system for the language with subtyping� that in view of Theorem
��� is called a system with minimal typing � Minimal typing turns out to be sound and complete
with respect to the typing in Section �� A minimal type of an expression can be derived in at
most one way� ensuring that we can safely base a de�nition of a semantics �� ���A on the derivation
of an expression s minimal type� like in De�nition ���
� In terms of �� ���A we can express the
unique solution of the equations for �f g��A in De�nition �����

��� De�nition A partial operation t � T � T 
� T is de�ned as follows� For �� � � T that
have a common ��upper bound�
� t � � the ��least upper bound �that exists on account of �LUB� in Lemma �����

��� De�nition The relation �� on E � T �e �� � is pronounced as � is the minimal type of e�
is de�ned inductively as follows

�� c �� � � whenever c � C�

�� x �� � � whenever x � X�

�� ��x�e� �� �� � ��� whenever x � X�� e �� �

�� e�e�� �� � � whenever e �� �� � ��� e� �� �� and �� � �

�� �if e then e� else e��� �� � � whenever e �� �� � � bool� e� �� ��� e�� �� ��� and � � �� t ��� �and
exists�

�� hai � ei �i � m�i �� hai � �i �i � m�i� whenever ei �� �i �i �m�

�� e�a �� � � whenever e �� hai � �i �i � m�i� a � aj � � � �j for some j� � � j � m

�� �a � e� �� �a � � �� whenever e �� �


� �case e of a� � e�� � � � � am � em� �� � � whenever e �� �� � � �ai � �i �i � m���
ei �� ��i � �i� �i � m�� � � �� t � � � t �m �and exists�

We say that e is minimally typable if e �� � for some � � T �

�Notice� in advance� that� by Theorem ������ every typable expression has a minimal type��

��



��� Lemma For any e � E there is at most one � � T such that e �� � and there is at most
one derivation of e �� � �

Proof Easy by induction on the structure of e�

��� De�nition Let A be an assignment� A partial function �� ���A � E 
� U is de�ned� for
minimally typable expressions� as follows by induction on the derivation of the minimal type of
its argument

�� ��c���A � ��c�� as postulated in ����� whenever c � C�

�� ��x���A � A� �x�� whenever x � X�

�� ���x�e���A � �d � ��������e���A�x��d�� whenever x � X�� e �� �

�� ��e�e�����A � f�cv�����d��� where f � ��e���A� d � ��e����A � whenever e �� �� � ��� e� �� �� and
�� � �

��

��if e then e� else e�����A � cv���� ���e����A� � if d � tt
� cv����� ���e�����A� � if d � ff

�where d � cv��bool���e��
�
A�� � whenever e �� �� � � bool� e� �� ��� e�� �� ���� � � �� t ��� �and

exists�

�� ��hai � ei �i � m�i���A � f�ai� ��ei��
�
A� j i � mg� whenever ei �� �i �i � m�

�� ��e�a���A � f�a�� where f � ��e���A � whenever e �� hai � �i �i � m�i� a � aj
for some j� � � j � m

�� ���a � e����A � �a� ��e���A� � whenever e �� �


�

��case e of a� � e�� � � � � am � em���A � cv���� ���e����A�d�� � if a � a�

�
�
� cv�m�� ���em���A�d�� � if a � am

�where �a� d� � cv���ai ��i �i�m�����e��
�
A�� � whenever e �� �� � � �ai � �i �i � m���

ei �� ��i � �i� �i � m�� � � �� t � � � t �m �and exists��

��� Theorem For e � E� � � T �

e �� � � ��e���A � ��� ��

Proof Easy induction on the derivation of e �� � �

��� Corollary For e � E� � � T �

e �� � � ��e���A � �f�g��

Thus we have succeeded in designing semantics �� ���A and �f g� such that

� � � � � �f�g� � �f�g�� and

� e �� � � ��e���A � �f�g�

��



However� the well�formedness of De�nition ���� has yet to be shown�

��	 Theorem �Reynolds ��
��

�� �soundness� e �� � � e � �

�� �completeness� e � � � e �� �� for some � � T

�� �minimality� e � � � e �� � � � � �

Proof

�� Easy induction on the derivation of e �� �� using the fact that if � � � t � exists� then � � �
and � � � �from �LUB���

���� These are proved simultaneously� i�e�

e � � � e �� � � for some � � �

by induction on some �any�� derivation of e � � using property �LUB� and transitivity of
��

��
 Theorem De�nition ���� de�nes functions �f g��A � E� � �f�g� given by

�feg��A � cv��� ���e���A�

where � is the existent and unique type such that e �� � and � � � �by Theorem �����
Proof It is rather simple to show by straightforward reasoning �no induction required� that

the functions cv��� � �� ���A �where � is the minimal type of the argument � E� � satisfy each of
the equations in De�nition ����� Here properties �ID� and �TR� of Lemma ��� are used� On the
other hand� for any function �f g��A satisfying equations ���� of ����� it easily follows by induction
on the structure of e that �feg��A � cv��� ���e���A�� for all e � E� � where � is the minimal type of e�
Here again properties �ID� and �TR� are of importance�

��� Remark In retrospect� the results achieved in this paper can be summarized in a nut
shell by the following equation

�feg��A � ��e���A � ����� �
�
���

����� � �f�g� � �f�g�

for e �� � � � �

Acknowledgement We thank Jan Kuper for fruitful discussions�

REFERENCES

�Bruce� Wegner ��
	�
Bruce� K� and Wegner� P�� �An Algebraic Model of Subtype and Inheritance�
 in� Pro�
ceedings of the Workshop on Database Programming Languages
 Rosco�� France� �
���
pp���� �����

�Cardelli ��
��
Cardelli� L�� �A Semantics of Multiple Inheritance�
 in� �Semantics of Data Types� �eds�
Kahn� MacQueen and Plotkin�� Lecture Notes in Computer Science ���� Springer Verlag
�
��� pp� ������

��



�Cardelli� Wegner ��
��
Cardelli� L� and Wegner� P�� �On understanding types� data abstractions and polymor�
phism�� Comp� Surveys ��� pp� �������� �
���

�Fokkinga ��
��
Fokkinga� M�M�� �On the notion of strong typing�
 in� Algorithmic Languages �eds� de
Bakker� van Vliet�� North Holland� Amsterdam� �
��� pp� ��������

�Fokkinga ��
	�
Fokkinga� M�M�� �Programming Language Concepts � the Lambda Calculus Approach�

in� Essays on Concepts� Formalisms� and Tools �eds� Asveld� Nijholt�� CWI Tract ���
CWI� Amsterdam� �
��� pp� ��
�����

�Fuh� Mishra ��

�
Fuh� Y�C�� Mishra� P�� �Type Inference with Subtypes�
 in� Proceedings �nd European
Symposium on Programming �ESOP ��� �ed� H� Ganzinger�� Lecture Notes in Computer
Science ���� �
��� pp�
������

�Gries ��	
�
Gries� D�� �Programming Methodology� a collection of articles by members if IFIP WG
����� Springer Verlag� �
���

�Hindley� Seldin ��
��
Hindley� J�R� Seldin� J�P�� �Introduction to Combinators and Lambda Calculus�� London
Mathematical Society Student Texts �� Cambridge University Press� Cambridge �U�K���
�
���

�MacQueen et al ��
��
MacQueen� D�B�� Seti� R�� Plotkin� G�D�� �An Ideal Model for Recursive Polymorphic
Types�
 in� Conference record of the ��th annual ACM Symposium on Principles of Pro�
gramming Languages ���th POPL�� ACM� �
��� pp� ��������

�Reynolds ��
��
Reynolds� J�C�� �Polymorphism is not Set�Theoretic�
 in� Semantics of Data Types �eds�
Kahn� MacQueen� Plotkin�� Lecture Notes in Computer Science ���� Springer Verlag �
���
pp� ��������

�Reynolds ��
��
Reynolds� J�C�� �Three Approaches to Type Structure�
 in �Mathematical Foundations of
Software Development��eds� Ehrig e�a��� Lecture Notes in Computer Science ���� Springer
Verlag �
��� pp� 
������

�Stansifer ��

�
Stansifer� R�� �Type Inference with Subtypes�
 in� Conference Record of the ��th Annual
ACM Symposium on Principles of Programming Languages �POPL ���� �
��� pp����
��

�Wand ��
	�
Wand� M�� �Complete Type Inference for Simple Objects�
 in� Proceedings �nd Annual
Symposium on Logic in Computer Science �LICS ���� �
��� pp� ������

��


