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Waveguide Coherent Anti-Stokes Raman Spectroscopy (CARS) can be 
used to measure Raman-active vibrations in thin-layer dielectric wave- 
guides. In waveguide CARS experiments, background-free spectra can 
be obtained when asymmetric mode combinations are applied. The de- 
gree of suppression depends on the waveguide parameters and the wave- 
lengths used. A new method using scanning pump and Stokes beams in 
waveguide CARS experiments is presented, which allows the possibility 
of maintaining full background suppression conditions over large spec- 
tral intervals. A small controlled change in the tuning conditions results 
in a heterodyning of the signal with a small amount of background, 
thereby enhancing the small resonant signals. Several simulations for 
dielectric waveguides are given. 

Index Headings: Background suppression; Nonlinear spectroscopy; Ra- 
man spectroscopy; Wavegnides. 

INTRODUCTION 

The combination of Raman spectroscopic techniques 
with integrated waveguide optics yields a useful tool for 
the determination and identification of structure and 
orientation in thin films. 1,2 Like Spontaneous Raman 
Spectroscopy, Surface (Waveguide) Coherent Raman 
Spectroscopy (CARS or CSRS) can be used to probe 
Raman-active vibrations in thin-layer waveguide struc- 
tures2 Due to the large electrical field strengths present 
in optical waveguides, strong nonlinear optical effects 
are induced, and intense CARS signals are expected. 4 
Surface CARS enables direct, nondestructive measure- 
ment of dielectric film characteristics and has been ap- 
plied successfully to films based on polymer materials. ~ 
It has been shown that low concentrations of additives 
in polymer films based on PMMA can be measured by 
surface CARS. 5 CARS spectroscopy in condensed matter 
is often hampered by the presence of a strong nonlinear 
nonresonant background, which interferes with the Ra- 
man vibrations, yielding complicated spectra. Although 
background suppression techniques like polarization- 
sensitive CARS have excellent suppression qualities when 
applied in bulk media, 6,7 they are not applicable in wave- 
guide structures due to the discrete polarization orien- 
tations of the guided modes. In surface CARS spectros- 
copy, however, the background can be fully eliminated 
by applying the appropriate mode combinations for pump 
and Stokes fields and selecting the correct CARS signal 
mode. 4 The background suppression results from a de- 
structive interference effect between the different signal 
contributions inside the film, substrate, and cladding. If 
background contributions of film and substrate are fully 
suppressed, very high sensitivities can be achieved2 ,7 With 
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this suppression technique, spectra of thin films com- 
posed of a few monomolecular overlayers have been mea- 
s h r e d ,  s - 1 2  

Although in principle full background suppression is 
possible, the optimum suppression occurs only at one 
spectral shift. Due to the spectral dependence of the 
mode structures and refractive indices, good background 
suppression is limited to only a narrow spectral range• 
In this article we discuss a technique to increase the 
spectral range where full background suppression is pos- 
sible. The technique is based on the fact that a change 
in the pump wavelength (while the shift is kept constant) 
results in a change in the position of the suppression 
minimum. Therefore each spectral shift has its own op- 
t imum pump (and Stokes) wavelength, where full back- 
ground suppression is possible. The organization of the 
article is the following• In the theoretical section the 
nonlinear waveguide theory is given, followed by an ex- 
perimental section where spectra of a polystyrene di- 
electric waveguide are presented. The suppression meth- 
od is explained, and results of calculations on dielectric 
waveguides are presented and discussed. 

THEORY 

The theory of dielectric optical waveguides is discussed 
in detail by Marcuse. I3 In Fig. 1 the geometry of a three- 
layer waveguide structure is shown. Waveguide struc- 
tures can only contain a limited number of guided waves, 
with two distinct polarization condit ions--TM modes 
which are polarized perpendicular to the y-direction, and 
TE modes which are polarized parallel to the y-direction. 
The electric field for the TE polarized wave with fre- 
quency wp can be expressed as: 

~kp = 1/2~ye(J(~pt-~x))fpk(Z)a~(x) + c.c• (1) 

where o~p denotes the frequency, ~ denotes the propa- 
gation vector of the mode,/~(z) denotes the electric field 
distribution function, a~(x) denotes the amplitude dis- 
tribution function, c.c. denotes the complex conjugate, 
and k enumerates the different modes. 

The electric field distribution/~(z) for the different 
modes as well as the propagation vec tor /~  can be cal- 
culated by solving an n-media dispersion relation for the 
electromagnetic waves propagating in isotropic layers, 14 
or by the matrix method given by Ghatak et  al. 15 

The theory of third-order nonlinear processes in thin- 
layer waveguides has been given by several authors• 16,17 
For third-order nonlinear optmal processes such as CARS, 

• " 3) the signal is generated by a nonlinear polarization 
given by: TM 
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Fro. 1. Three-layer dielectric waveguide, consisting of cladding, film, and substrate. The electrical field distributions for the two lowest-order 
TE polarized guided waves are shown (TE0, TEl). The definitions of the coordinate-axis are given in the inset. The nonresonant X (~) distribution 
and the projection of the generated CARS polarization on the; CARS mode are indicated as well. 

with 

P(a) = ~(3)(wCAaS; 60probe, Wpump, - -0 - )S tokes )  : 

Epump" Ep,obe" Estoko~ (2) 

60CARS = 09prob e + 0-~pump - -  00Stokes- (3) 

In degenerate  CARS,  60pump and %,obe are equal, and 
the polarizat ion P(a) reduces to: 

P(~) = ~(~)(oo~; OOp, 60p, - - ( , S O s ) : E p . E p . E ~  (4) 

with 

~c = 2% - ~ (5) 

and where the subscript  c denotes  the CARS field, p the 
pump,  and s the Stokes field. 

I f  the waveguide consists of isotropic layers, the ~(~) 
tensor  consists of only 21 nonzero elements,  of which 
three  are independent :  

X(~) = ~(~) + ~(~) + ~(~) (6) 1111 ~1221 AA212 A.1122" 

I f  one assumes only T E  polarized waves for the pump 
~nd Stokes fields, the th i rd-order  induced polarization 
p(3) (z, x) present  in the medium is given by: 

k 2 l P(3)(z, x) ;~(3)(z) : {~o,p(z)} {Eo,,(z)}* 

k 2 l * e -J(2.6kp -.6~)x • {ap(x)} {as(x)} 

with 

~0%(z) = 1/2~yeJ('~.t)f~(z) 

E~,,(z) = 1/2~yei(',~)fi(z). 

(7) 

(8) 

(9) 

If  phase matching is assumed (e.g., fly = 2flhv - ~ ) ,  and 
/~y is a possible guided wave solution for a mode with 
f requency we, the induced p(s) generates a mode which 
propagates  along the waveguide. Solving the problem of 
finding the intensi ty  in guided modes needs the appli- 
cation of coupled mode theory.  For  T E  modes the ex- 

pression for the ampl i tude  dependence  on x for the mth  
CARS mode is given by: t  

(aT) = - ' l W e ~ ' "  P(3)(z, x)-{E~.c(Z)}* dz. (10) 
4 J _ ~  

Subst i tu t ion  of the induced polarizat ion P(3)(z, x), yields: 

~x J~ ~ ' (aT) = --~-e-J(2~-~,-~)x{a~(x)}2{a~(x)}*Fhtm (11) 

where F ~tm, the overlap integral, is given by: 

Fh,m = f / ~  X (3)(z) :Eoh,p(z)E0h,p(z){E~,~(z)} * 

{E~,c(Z)}* dz. (12) 

For  an induced polarizat ion p(3) between x = 0 and x = 
L, the expression of the ampl i tude  a7 of the genera ted  
mode m can be found by integrat ing from x = 0 to x = L: 

• fo 
_ JW (a k ]2~r F ~*Fmm e-J(2~-0~-~)" dx. (13) a T =  4 "  pzl - -s"  

Solving the integral gives: 

j~ 
m - - _ _  k 2 l * k lm  " --1 --jAI3L ac - 4 (ap) {a~} F (jA~) {e + 1] (14) 

with 

Aft = 2/3~v - fl~ - /~y, the phase mismatch.  (15) 

With the expression for the ampli tude of the mth  CARS 
mode, it is s t ra ightforward to find :~he power :P of t ha t  
specific mode. The  electrical fields Ev k are normalized in 
such a way tha t  l a] 2 gives the guided wave power per 
me te r  wavefront  (in the y-direction) in units  of W/m. 
When  all waves have a width H we find: 

t See Ref. 16. According to our calculations, the electric field E should 
be replaced by its complex conjugate, E*. 
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Fro. 2. Waveguide CARS spectrum of polystyrene. (a) TE000 mode 
combination. (b) TM000 mode combination. The layer thickness is 1.0 
.m. (c) CARS spectrum of bulk polystyrene material. 

la~12 H = _P~,; lai l2 H = _P~,; {a2 (L ) I2  H = .Py. (16) 

Combining Eqs. 14 and 16, the CARS signal power Py 
is now given by: 

( ) co" L ~pk 2 I AflL 
:P7 = 16 H ( ~ )  :p~lFk~l~sinc2 ~ " (17) 

For the TM modes exactly the same expression is found 
for the CARS signal power :P?, with F k~ also given by 
Eq. 12. 

EXPERIMENTAL 

The second harmonic of a Nd:YAG laser (Quanta-Ray 
DCR-2, operated at 10 Hz, pulse duration 8 ns), was used 
for the pump beam at 532 nm. Part  of the second har- 
monic was used to pump a Quanta-Ray PDL-2 dye laser 
(Rhodamine 6G), which provided the tunable Stokes 
beam. Polarization directions of the beams were adjusted 
by Glan-Taylor polarizers. The generated CARS signal 
was analyzed by a Glan-Taylor polarizer and collected 
by a spherical mirror. The signal was focused onto the 
entrance slit of a double monochromator (UV-VIS 200 
ram, Jobin-Yvon) and detected by a photomultiplier 
(RCA 9973B). The computer and electronics were inter- 

faced by an IEEE bus. The CARS signals were digitized 
in an 8-channel 12-bit ADC and stored on floppy disk 
for later analysis. The spectra were measured in a scan- 
ning mode with the pump frequency fixed and Stokes 
frequency tunable. Spectra were recorded over an inter- 
val of 950 to 1050 cm -1 in 100 points with 80 pulses 
averaged per point. All spectra shown were corrected for 
laser intensity variations. 

Polystyrene was dissolved in toluene, and spin-coated 
on an optical crown glass substrate. The thickness was 
determined interferometrically, with a surface profiler, 
and determined to be 1.2 tLm. Two SF-6 coupling prisms 
(separated by 1 cm) were used to couple the pump and 
Stokes beams in, and the CARS signal out, of the poly- 
styrene waveguide. Pump and Stokes beams were ap- 
plied under a small angle (1-2 degrees) to ensure phase 
matching. The effective overlap length was thereby re- 
duced to 2 mm, with beam widths in the order of 0.5 
mm. Figure 2a and 2b show the waveguide CARS spectra 
of polystyrene for different polarization conditions. Fig- 
ure 2a shows the results for all fields in the TEO mode. 
Figure 2b gives the results for all fields in the TMO mode. 
For a comparison, the bulk spectrum of a thin polysty- 
rene sample is given in Fig. 2c. 

WAVEGUIDE BACKGROUND SUPPRESSION 

In the expression for the CARS signal intensity, the 
factor F h~m contains the different mode distributions for 
pump, Stokes, and CARS fields as well as the third-order 
nonlinear susceptibilities of each layer. The nonlinear 
susceptibility ~(8) can be written as: 

= ~NR + ~R, (18) 

where the superscript (3) is dropped and where ~NR is 
the nonresonant term, containing all nonresonant con- 
tributions, whereas ~R contains all Raman vibrational 
resonances. CARS spectroscopy is often hampered by 
the presence of the nonlinear background, which inter- 
feres with the Raman lines. Due to the discrete polar- 
ization direction of the guided modes (TE or TM), po- 
larization techniques 6,7 fail to reduce this background. 
Only pulse sequenced techniques is might give a reason- 
able reduction of the background. However, waveguide 
CARS provides a new method to suppress the back- 
ground. The nature of the F him term can be expressed as 
a projection of the induced polarization term {/~(z)p 
{/~(z)}* on the mode distribution function {f2(z)}* 
weighted by ~(3)(z), which can be taken as constant across 
a single layer. In case the Raman resonant vibrations are 
not taken into account (far away from any resonances), 
the above expression can be rewritten as: 

f 0oo NR k 2 l * * F ~  = X,u {/p(z)} {L(z)} {fern(z)} dz 

foh "NR{~h/Z)}2~t~Z~} * J~m~Z~* dz "~- A . f i  I p  k [ I s  k ! ~ l c  ~. t ] 

f h  °°  NR k 2 l * * + Xc, {fp(z)} {L(z)} {L=(z)} dz (19) 

where the subscript "cl" indicates cladding, "fi" the 
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Fro. 3A. Wavegu ide  s t ruc tu re  as used  in the  s imula t ions .  The  non-  
r e s o n a n t  suscept ib i l i ty  of  each layer is indicated.  

guiding film layer, and "su" the substrate. Full back- 
ground suppression is obtained whenever the F ~  term 
is equal to zero. When all modes (pump, Stokes, and 
CARS) are chosen in the TEO mode, the mode combi- 
nation is depicted by TE000 (TE-pSC, with p the pump, 
S the Stokes, and C the CARS mode number). With the 
selection of an asymmetric mode combination for the 
pump, Stokes, and CARS mode (e.g., TE001, TEl01,  
TE l l0 ,  or TE010), the separate contributions from sub- 
strate, film, and cladding can cancel, as is depicted in 
Fig. 1 for the TE001 mode combination. Since the mode 
distribution functions f~, [~, a n d / ~  strongly depend on 
the frequency of the pump, Stokes, and CARS fields 
(given by the pump wavelength and spectral shift), the 

suppression is expected to change whenever one of these 
parameters is changed. The region of full suppression is 
therefore limited to a narrow spectral interval. A possible 
way to increase the spectral interval is to change the 
pump wavelength for different shifts. The three wave- 
lengths are tuned for each spectral point to a position 
where the nonresonant background contribution is zero 
again. In the following section this method is demon- 
strated for a simple dielectric waveguide. 

RESULTS 

Simulations were performed on an air/polystyrene/glass 
waveguide. The structure of this waveguide is given in 
Fig. 3A. The dispersion of the refractive indices of the 
film layer and the substrate is indicated in Fig. 3B and 
is taken into account in the calculations. The nonreso- 
nant third-order susceptibility ~ is assumed to be zero 
in air and has a value which is equal in the film and 
substrate. A computer program was developed to per- 
form the simulations. After setting the parameters of the 
waveguide structure (number of layers, refractive indi- 
ces, dispersion, and layer thickness), one selects the pump 
wavelength. With these parameters and the selected 
CARS shift, which determines both Stokes and CARS 
wavelength, all possible modes (both TE and TM) of this 
configuration can be calculated. For all mode combina- 
tions, the contribution to the CARS signal can be eval- 
uated for each layer. The program has the possibility of 
determining the CARS signal dependence on several pa- 
rameters, such as layer thickness, refractive index of each 
layer, pump wavelength, and spectral shift (CARS spec- 
trum). 
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FIG. 4. Dependence of the nonresonant  CARS contributions in the 
TE000 mode combination from the waveguide as a function of film 
layer thickness. The spectral shift  was set to 1000 cm -~ and pump  
wavelength was set to 532 nm. 

In Fig. 4 the dependence of the nonresonant CARS 
contribution from the waveguide as a function of layer 

thickness is given. In the calculations the factor r__n]~/[2 
L - ]  

(p~)2ip~ slnc ~--~--j in Eq. 17 was set to 1, and calcu- 

lations were done with a pump wavelength of 532 nm 
and a spectral shift of 1000 cm -1. All fields (pump, Stokes, 
and CARS) were chosen in the TE mode. The TE000 
CARS signal dependence on the thickness, depicted in 
Fig. 4, resembles the results given in Ref. 4. The gen- 
eration of signal in the TE000 mode shows a maximum 
at a film thickness of 0.42 ttm. Due to the asymmetric 
waveguide configuration, no modes are possible below 
0.25 #m. For thin film layers, the energy is distributed 
over all three layers, thereby exhibiting no pronounced 
maximum in the electric field distribution, resulting in 
a low nonlinear scattering. For thick film layers, however, 
the energy is fully guided by the film, but due to the 
large film thickness, no pronounced maximum in the 
electric field distribution is seen, which again gives a 
small nonlinear scattering. Since for each thickness the 
electrical fields are normalized in such a way that  the 
guided power per meter wavefront is equal to 1 W, the 
maximum in Fig. 4 results from an optimum between 
the film thickness and the energy content in the film 
layer. The sharper the electrical fields are peaked, the 
more efficient is the generation of CARS signals. 

In Fig. 5 the CARS signal as a function of film layer 

thickness is given for different mode combinations. When 
examining the symmetric mode combinations in Fig. 5 
[TEklm with (1 + m) even], we see that  curves similar 
to those for the TE000 mode combination are obtained. 
The calculations were also done with the same param- 
eters as in Fig. 4, a pump wavelength of 532 nm and a 
spectral shift of 1000 cm -1. The asymmetric mode com- 
binations [TEklm with (1 ÷ m) odd], however, show 
totally different behavior• Some of these mode combi- 
nations have sharp minima where no nonresonant CARS 
signal is expected (e.g., for the TE001 and TEl01 mode 
combination), while other mode combinations (e.g., 
TE010 and TEl l0)  show no minima in this range. The 
sharp minima are the result of a destructive interference 
between an equal contribution of the film layer and the 
cladding, which differ only in sign. For the asymmetric 
mode combinations which have no background suppres- 
sion minimum, the two contributions from substrate and 
film do not cancel each other, independent of the layer 
thickness. When one is using a waveguide with a specific 
thickness and specific mode combination in a back- 
ground-free regime, changes due to thin layers on top of 
this waveguide can be monitored. H Due to the spectral 
dependence of refractive indices and mode distribution 
functions, the suppression thickness strongly depends on 
the spectral shift. In Fig. 5 two curves are shown for a 
shift of 1200 cm-L For the TE001 mode combination a 
strong shift in the optimum thickness can be seen, where- 
as for the TEl01 mode combination no minima are pres- 
ent. Due to this dependence, the ability to use the back- 
ground suppression technique is limited to small spectral 
intervals. A waveguide with a thickness designed for op- 
timum suppression conditions at 1000 cm -1 for a specific 
mode combination will therefore not work at other spec- 
tral shifts. 

A possible way to overcome this problem is found in 
the tunability of the suppression minimum with the pump 
wavelength. This dependence was calculated and is given 
in Fig. 6. The calculations were done for a TEl01 mode 
combination and film thickness of 1.0 ttm. The Stokes 
and CARS wavelengths were calculated with the use of 
the applied pump wavelength and spectral shift. The 
curves shown in Fig. 6 are normal nonresonant CARS 
spectra. Three different pump wavelengths have been 
chosen, each having its own spectral shift where full 
background suppression is obtained. With an increase in 
the pump wavelength, the suppression minimum shifts 
towards the smaller wavenumbers. With the ability to 
tune the point of background suppression by changing 
the pump wavelength, it is now possible to select the 
pump wavelength for each spectral point in such a way 
that  no background is measured along the whole spectral 
range. The pump tuning curves depend on waveguide 
configuration as well as mode combination. With these 
curves both Stokes and CARS signal frequencies can be 
calculated from pump wavelength and spectral shift, 
thereby taking into account the spectral shift depen- 
dence of the optimum pump wavelength. 

The optimum pump tuning curves for two-mode com- 
binations have been calculated and are given in Fig. 7. 
Due to the steep dependence of the optimum pump wave- 
length for the TE001 mode combination as given in Fig. 
7A, large pump changes are needed for maintaining the 
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FIG. 5. Thickness dependence of the nonresonant CARS signal for different mode combinations. The solid line indicates a spectral shift of 1000 
cm ~; the dashed line gives the results for the TE001 and TEl01 mode combination at 1200 cm -1. 

o p t i m u m  conditions.  Though  possible in principle,  in 
prac t ice  this app roach  resul ts  in serious exper imenta l  
problems.  Coupling angles need large ad jus tmen t s  dur- 
ing the  spect ra l  scan, with possible changes in the in- 
coupling efficiencies. In case the  exci ta t ion wavelengths  
app roach  electronic resonance conditions,  large disper-  
sion effects due to noncons tan t  CARS exci ta t ion profiles 
are expected.  T h e  bes t  case for the p u m p  tuning curve 
is a curve which needs min imal  p u m p  tuning dur ing spec- 
t ral  scan. For  the  T E l 0 1  mode  combinat ion ,  a degenera te  
s i tuat ion is observed in Fig. 7B. For  one spectra l  shift, 
two possible p u m p  wavelengths  are possible. T h e  uppe r  
pa r t  of the  curve shows the  best  tuning propert ies .  In 
this region, small  p u m p  tuning ranges can be used to 
cover a large spectra l  in terval  (e.g., with a waveguide 
th ickness  of 1.1 gm),  and  a 50-nm p u m p  detuning  range 
covers a lmos t  400 cm -1 (800-1200 cm- t ) .  

The  feasibil i ty of background  suppress ion in the  ap-  
pl icat ion of th in  overlayers  was s tudied by the  sys tem 
shown in Fig. 8, which consists of a th in  overlayer  on top  
of a waveguide subs t ra te  combinat ion.  T h e  crown glass 
subs t ra te  has a refract ive index as given in Fig. 3B. T h e  
film layer has the same proper t ies  (refractive index and  
dispersion) as the  polys tyrene  layer given in Fig. 3B. T h e  
refract ive index of the  overlayer  is set  at  1.4 and  assumed  
to be wavelength  independent .  The  nonresonan t  and res- 
onan t  cont r ibut ions  of each layer are depic ted  in Fig. 8. 
T h e  overlayer  th ickness  was chosen to be 20 n m  and the  
film thickness  to be 1.0 gm. For  the  overlayer  a s t rong 
Raman-ac t i ve  resonance was assumed  to be posi t ioned 
a t  900 cm -1 with an ampl i tude  five t imes larger t han  the 
nonresonan t  contr ibut ion.  For  this configurat ion the  op- 
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t imum pump conditions were calculated, and the tuning 
curves are given in Fig. 9 together with the Stokes and 
CARS curves. With these tuning conditions a CARS 
spectrum was calculated and is given in Fig. 10a. A back- 
ground-free spectrum which exhibits a peak at 900 cm -1 
was obtained. In the case where the system is optimized 
for only one specific spectral shift (e.g., at 900 cm -1) and 
the pump wavelength is not changed during the scan, 
the result is given by Fig. 10b. The same resonance at 
900 cm -1 can be seen, but a large background comes up 
at 875 cm -1 and 925 cm-L The suppression method also 
enables heterodyning experiments. In order to measure 
a heterodyned spectrum, a controlled amount of back- 
ground must be mixed with the resonant signal. In case 
the complete optimum wavelength combination is shift- 
ed by +8 nm, a small amount of background is mixed 

620.0  

E 
600.0  

O3 

On 
c 580.0  
© 

© 
> 
0 

560.0  

E 

E 
~ 540 .0  

© 

Fro. 9. 
layer. 

520.0  

Stokes 

' I ' I ' I ' I 

800 850 900 950 1000 

Wavenumber (cm-1) 
TEl01 Optimum pump tuning curves for waveguide with over- 

A P P L I E D  S P E C T R O S C O P Y  7 2 9  



6 E - O  16- 

© 
- I - -"  
C 

4 E - O  16- Lf) 

<( 
(._) 

1 E - 0 1 5 ]  

8 E - O  16 

, cl) \ , 
. /  

2 E - 0 1 6 -  ', \ ,, '• 

x 

" fl I 
\ \  J 

OE+O00 , ~ , 

/ 
/ 

/ 
t 

,/ 

,/ 

/ b) 
/ /  

800  850  900  950  1000  

Wevenumber ( c m - 1 )  
FIG. 10. TEl01 CARS spectra calculated under different conditions: 
(a) with optimum pump tuning; (b) without optimum pump tuning 
(pump optimized at 900 cm-1); (c) hetetodyned spectrum with opti- 
mum pump tuning; (d) heterodyned spectrum without optimum pump 
tuning. 

with the resonant  signal and a typical he te rodyned spec- 
t rum is obtained, as is given in Fig. 10c. In case no pump 
tuning is applied and the pump is shifted by + 8  nm, a 
spect rum as given by Fig. 10d is measured. With  this 
pump wavelength, the nonresonant  suppression is now 
optimized around 845 cm -1, where no background is 
measured.  However, a round 900 cm -1 a strong n o n c o n -  
s t a n t  background interferes with the vibrational line, 
yielding a complex spect rum with only a small feature 
of the 900-cm -~ vibration. 

C O N C L U S I O N S  

Waveguide CARS can be successfully applied to thin- 
layer dielectric films; however the large background con- 
t r ibut ion from the waveguide itself dominates  the spec- 
t rum,  and small surface effects due to thin layers on top 
of the guiding s t ructure  cannot  be monitored.  

The  suppression of strong nonresonant  CARS signals 
from waveguide structures is based on the destructive 
interference between different contr ibut ions from sep- 
arate layers. By proper  choice of the mode combination,  

op t imum waveguide configuration and wavelength con- 
ditions the contr ibut ions can be made to cancel. This 
background-free  si tuation is limited to a narrow spectral 
interval due to the spectral dependence of refractive in- 
dices and mode distr ibution functions. We have pre- 
sented a new method  to increase this spectral interval 
by applying a tunable pump and Stokes source. With  
these two tunable  sources, the op t imum suppression sit- 
uat ion can be mainta ined  over a larger spectral interval. 

For  a dielectric waveguide we have demons t ra ted  these 
possibilities and showed a large increase. The  method  
also allows the possibility of heterodyning the resonant  
signal with a small amoun t  of nonresonant  signal, there- 
by increasing the resonant /nonresonant  interference 
term. This heterodyning effect gives good results only 
when combined with op t imum pump tuning. 
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