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Bit Rates in Audio Source Coding 
Raymond N .  J .  Veldhuis, Member, IEEE 

Abstract-Waveform coding of audio signals at low bit rates 
generally results in coding errors. In high-quality applications 
these must remain inaudible. The bit rate required to code au- 
dio signals without audible errors depends on both the signal’s 
power spectral density function and masking properties of the 
human ear. It is shown how rate distortion theory and psy- 
choacoustic models of hearing can be used to compute lower 
bounds to the bit rate of audio signals with inaudible distortion. 
Subband coding applications to magnetic recording and trans- 
mission are discussed in some detail. Performance bounds for 
this type of subband coding systems are derived. 

I. INTRODUCTION 
UDIO source coding has been receiving attention in A a number of ways. Many papers, e.g. ,  [1]-[5] have 

been published on this topic. Presently, two standardiza- 
tion activities for audio bit rate reduction are taking place. 
One is conducted by the International Standardization Or- 
ganization (ISO) [6]. The other is the European project 
EUREKA 147, aiming to define a broadcasting standard 
for digital audio. Some of the source coding methods de- 
scribed in the papers mentioned above have been submit- 
ted as standard proposals to I S 0  or EUREKA 147. Fi- 
nally, Philips has recently announced a digital compact 
cassette (DCC) player capable of recording source coded 
high-quality digital audio signals on a compact cassette 

The audio source coding methods described in the var- 
ious papers can be divided into the following categories: 
subband coding, e.g., [1]-[3], and transform coding, e.g., 
[4], [5] .  Although these papers describe different coding 
principles, they have three things in common. First, all 
papers discuss so-called waveform coders [8]. This means 
that in some sense they try to approximate the original 
input waveform and that the coding error is the conse- 
quence of additive quantization noise. Second, they all 
claim to achieve (near) compact disc quality at bit rates 
down to 96 kb/s.  For an input signal taken from compact 
disc, with a bit rate of 705.6 kb/s, this corresponds to a 
reduction factor of 7.35 achieved without loss of quality. 
Third, all coding methods described rely heavily on hu- 
man perception, more precisely on simultaneous mask- 
ing. This is the psychoacoustic phenomenon that a weak 
signal, e.g., quantization noise, is made inaudible 
(masked) by a stronger signal, e.g., a pure tone. The 
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masking signal is called the masker; the masked signal is 
called the target. In order to be masked, the target’s level 
must be below the so-called masking threshold. 

All papers mentioned above exploit masking in a 
roughly similar way. Based on an estimate of the signal’s 
short-time power spectral density (PSI) [9], an estimate is 
made of the masking threshold as a function of frequency. 
The signal is subsequently transformed, by either subband 
filters or an orthogonal transform, quantized, and coded. 
Quantization and coding of subband signals or transform 
coefficients reduce the bit rate, but also introduce coding 
errors. The coding systems try to keep these coding errors 
below the masking threshold at all frequencies in the au- 
dio band. Computation of the masking threshold is typi- 
cally done every 10-30 ms in order to track changes in 
the signal’s short-time PSD. 

The approach of the above papers to try to keep coding 
errors below the masking threshold at all frequencies 
seems to be based on an incorrect interpretation of the 
masking threshold. The masking thresholds used are 
mainly derived from the Zwicker-Feldtkeller curves pre- 
sented in [lo]. Those curves are only valid for one single 
tonal target. Masking may not occur when several, pos- 
sibly nontonal, targets are presented simultaneously at 
levels at which they are individually masked, which hap- 
pens when subband samples or transform coefficients are 
quantized. This is recognized in [4], where it is suggested 
that the masking threshold should be deconvolved. It is 
argued there that deconvolution is ill-conditioned and a 
suboptimal renormalization is proposed. The reason that 
in other papers excellent results are also obtained is prob- 
ably that the masking thresholds used are chosen on the 
conservative side. This paper presents an alternative for 
the deconvolution proposed in [4] that is not suboptimal 
nor ill-conditioned. 

It is investigated under which conditions well-defined 
multiple noise targets due to quantization are masked by 
a given audio signal. This leads to a constraint on the 
target levels, called the masking constraint. The masking 
constraint leaves freedom to choose target levels. Since 
the objective of audio source coding is to achieve a low 
bit rate, it seems sensible to choose them in such a way 
that they also minimize bit rate. Under the assumption 
that the audio signal is Gaussian and stationary, the rela- 
tion between given target levels and bit rate can be estab- 
lished via the rate distortion theory. Finding target levels 
that minimize bit rate under the masking constraint is 
called the audio coding optimization problem. 

The goal of this paper is to introduce and solve the au- 
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dio coding optimization problem. The resulting target lev- 
els are used to give estimates of lower bounds to the bit 
rates for audio signals. Next to that, they can also be used 
in audio source coding systems. This paper is a first at- 
tempt to formulate and solve the audio coding optimiza- 
tion problem. Therefore, results are not definite. They are 
based on simple psychoacoustic assumptions and derived 
for stationary Gaussian signals. More elaborate models 
can be and should be incorporated to improve estimates 
of bit rates. Nevertheless, this is a promising approach, 
since it inherently takes into account that multiple targets 
must be masked and thus in the end will ensure a higher 
coding quality and reliable bit rate estimates. The follow- 
ing paragraphs present a brief overview of this paper. 

Since masking plays an important role in audio coding 
systems, it is reviewed in Section 11. In the same section 
it is pointed out more clearly why masking thresholds as 
such cannot be used directly. The problem of masking 
multiple targets is approached by another psychoacousti- 
cal concept: the excitation pattern model, which can be 
seen as the underlying model of masking. It is explained 
in Section 111. This results in the formulation of the mask- 
ing constraint. 

Section IV discusses waveform coding of digital audio 
signals. It is assumed that the audio signal can be modeled 
as Gaussian and stationary and that the signal and the cod- 
ing error can be characterized by their PSD's. The PSD 
of the coding error is called the error PSD. An expression 
for a lower bound to the bit rate in terms of the signal's 
PSD and the error PSD is presented. In Section V this 
expression is reformulated in terms of noise target levels. 
This leads to the audio coding optimization problem: tar- 
get levels must minimize bit rate under the masking con- 
straint. 

The computed masked error PSD or the masked target 
levels can be used in either subband or transform coders 
to allocate bits to quantizers. Section VI focuses on sub- 
band coding. Two special versions, subband coding for 
DCC and for the MUSICAM [ l ]  proposal, are discussed 
in more detail. Their basic coding scheme is given and 
estimates for bit rates achievable with this type of coding 
scheme are presented. Although a subjective performance 
evaluation of the two proposals is beyond the scope of this 
paper, some remarks on their performance are given. Sec- 
tion VI1 contains a discussion. It summarizes the paper 
and tries to indicate to what extent model assumptions are 
valid and which points need further attention. 

11. MASKING 

Simultaneous masking, further referred to as masking, 
is the phenomenon that a weak signal is made inaudible 
by a simultaneously occuring stronger signal. Masking is 
discussed in great detail in [lo]-[12]. In the next two 
paragraphs results from [ 1 1 1  are repeated to explain mask- 
ing. 

Consider a pure tone as the target. It is inaudible if its 
sound pressure level (SPL) [12] is below a threshold of 
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Fig. 1. Threshold in quiet (lower curve) and masking thresholds of nar- 
row-band noise maskers centered at 1 kHz at sound pressure levels L, = 
100 dB (upper curve) and L ,  = 60 dB (middle curve) for tonal targets. 

hearing, called the threshold in quiet. This threshold is a 
function of frequency. It is the bottom curve shown in 
Fig. 1.' In the presence of a second, stronger signal, the 
threshold of hearing differs from the threshold in quiet. It 
is raised for frequencies close to the frequency of the 
stronger signal. The new threshold is the masking thresh- 
old. Targets with levels below it are masked. The mask- 
ing threshold depends on the sound pressure level and the 
frequency of the masker. Fig. 1 shows masking thresh- 
olds of narrow-band noise maskers with a bandwidth of 
90 Hz, centered at 1 kHz, at sound pressure levels LN = 
100 dB and L, = 60 dB. Fig. 2 depicts masking thresh- 
olds of 1 kHz pure tone maskers at sound pressure levels 
Ls = 90 dB and Ls ='70 dB as a masker. Fig. 3 shows 
masking thresholds of narrow-band noise maskers cen- 
tered at frequencies f, = 250 Hz, f, = 1 kHz, and f, = 
4 kHz. 

Masking of a pure tone by another pure tone or by a 
narrow-band noise signal has been reviewed briefly to il- 
lustrate the masking effect. The masking thresholds of 
Figs. 1-3 may not be directly suited for use in coding 
systems for three reasons discussed in the following para- 
graphs. 

The first reason for. the unsuitability of the masking 
thresholds is that they describe masking of tonal targets. 
In a waveform coder the targets will mainly be noise tar- 
gets, due to quantization. Very little relevant information 
on masking of noise targets seems present in the litera- 
ture, e.g., [13]. First a definition of the noise target is 
required. As the ear seems to integrate over limited fre- 
quency regions called critical bands [12], it seems sensi- 
ble to define critical bands of noise as targets. The defi- 
nition of critical bands given in [12] is used here. 
According to this definition, critical bands below 500 Hz 
are 100 Hz wide, and above 500 Hz the critical bandwidth 
is approximately a third octave. Consecutive critical bands 
are numbered from 1 to N .  For audio signals sampled at 
a rate fs = 44.1 kHz, 26 critical bands have to be taken 
into account. The critical band scale is also used as a mea- 
sure of frequency, called critical band rate z .  The corre- 
sponding unit is the bark. Table I lists cutoff frequencies 
of critical bands. 

'Figs. 1 ,  2,  and 3 are derived from figures in [lo]. 
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Fig. 2 Masking thresholds of pure tones of 1 kHz at sound pressure 
levels Ls = 9 0  dB (upper curve) and Ls = 70 dB (middle curve) for tonal 
targets 
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Fig. 3. Masking thresholds of narrow-band noise signals centered at fre- 
quencies f, = 250 Hz (left-hand curve), f, = 1 kHz (middle curve), fm = 
4 kHz (right-hand curve) for tonal targets. 

A critical band noise target has a flat PSD within one 
critical band and a zero PSD outside. In fact, because of 
the integration one would expect the masking thresholds 
for critical band noise targets to be similar to those for 
tonal targets. Fig. 4 shows a masking threshold of a tonal 
masker of 400 Hz for critical band noise targets as a func- 
tion of the critical band number. It is the result of an in- 
formal experiment, with the author as subject. It confirms 
the expectation that masking thresholds for critical band 
noise targets are similar to those for tonal targets. Al- 
though further study of masking thresholds for critical 
band noise targets and tonal and noise maskers is needed, 
it is further assumed that the thresholds for tonal targets 
can be used instead. A second conclusion from the fact 
that the masking curves for tonal and critical band noise 
targets do not differ very much, is that the exact spectral 
shape of the noise target within the critical band is not 
important. This is convenient because the noise targets in 
this paper will be due to quantization noise, which cannot 
always be considered spectrally flat. 

The second reason for the unsuitability of the masking 
thresholds is that they describe masking by only one mas- 
ker. Audio signals consist of many maskers. What is re- 
quired is an addition law for masking thresholds. Results 
on addition of masking thresholds are given in, e.g., [14], 
[ 151. Two principles are commonly used in coding to ob- 
tain a total masking threshold from individual ones. The 
most conservative one is to define the total masking 
threshold at a certain frequency as the maximum of all 
individual masking thresholds and the threshold in quiet 

TABLE I 
CRITICAL BAND FREQUENCIES, TAKEN FROM [14]' 

Rate A f  fi f u  

[Hzl [Hzl WI [Barks] 

- - 100 1 

3 100 200 300 
100 300 400 4 
110 400 510 5 
120 510 630 6 

7 140 630 770 
8 150 770 920 

10 190 1080 1270 
1 1  210 1270 1480 
12 240 1480 1720 

14 320 2000 2320 
15 3 80 2320 2700 

450 2700 3150 16 
17 550 3150 3700 
18 700 3700 4400 
19 900 4400 5300 
20 1100 5300 6400 
21 1300 6400 7700 
22 1800 7700 9500 

24 3500 12000 15500 
25 6550 15500 19500 
26 6550 19500 24600 

'Reprinted with permission from Academic Press. 
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Fig. 4. Masking thresholds LT of critical band noise targets with a 400 Hz 

masker at various sound pressure levels Ls. 

at that frequency [3]. The other approach is to assume that 
masking is additive, so that the @tal masking threshold is 
obtained as the sum of the individual thresholds and the 
threshold in quiet [2], [4]. Before the individual masking 
thresholds can be computed, the maskers in the signal 
have to be identified. Usually this is done by analyzing an 
estimate of the signal's short-time PSD. As a crude esti- 
mate, signal powers in subbands can be used, as is done 
in [Z]. More elaborate estimates based on a discrete Fou- 
rier transform are also used [l]. In a transform coder the 
estimate can be derived from the transform coefficients 

The third reason for the unsuitability of the masking 
thresholds is that they describe masking for only one tar- 
get. The result of a simple experiment suffices to dem- 

r41. 
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onstrate that these masking thresholds are not correct for 
multiple targets, although it is often assumed otherwise 
[1]-[3]. In the experiment the masker was presented to- 
gether with all targets in critical bands 3 to 12. The targets 
were presented at levels at which they are individually 
masked. It was found in that case that the noise was not 
masked. The levels of the targets had to be reduced by 9 
dB to reobtain masking. 

The first two problems have been overcome by, respec- 
tively, defining the proper targets and by assuming an ad- 
dition law for masking thresholds. The problem of mask- 
ing multiple critical band noise targets is further tackled 
in Section 111. 

111. MASKING MULTIPLE TARGETS 

To deal with the problem of masking multiple targets, 
the concept of the excitation pattern is used. The excita- 
tion pattern model [ 161, [ 171, [ 121, [ 181 explains discrim- 
ination between sounds by the ear and can be seen as the 
basis of masking. 

According to [12], discrimination is based upon 
changes in patterns of neural activity. Neurons are orga- 
nized in such a way that groups of neurons correspond to 
frequency regions. Excitation with a pure tone in one crit- 
ical band will activate neurons corresponding to that par- 
ticular critical band, but it will also activate neurons cor- 
responding to frequency regions outside of it. The 
response to the excitation as a function of critical band 
rate can be described by an excitation pattern. This has a 
shape similar to that of a masking threshold [16]. The 
excitation pattern is usually presented as an excitation 
level on a decibel scale and as a function of critical band 
rate. It is maximal in the critical band where the excitation 
takes place. The excitation level in that critical band is, 
by definition [ 161, equal to the sound pressure level of the 
exciting signal. 

Maskers and targets together determine the excitation 
pattern. According to [16], detection of a target occurs if 
in any critical band the excitation pattern of masker and 
target together differs more than 1 dB from the excitation 
pattern of masker alone. According to [17], detection of 
a target occurs if these differences summed over all criti- 
cal bands are greater than a certain threshold. In this paper 
the approach of [16] is followed, but the results can be 
adapted to the approach of [17]. The excitation pattern 
model explains the outcome of the experiment of the last 
paragraph of Section 11: the excitation pattern of a single 
target and masker differs less than 1 dB from the masker's 
excitation pattern, whereas the excitation pattern of mul- 
tiple targets and masker differs more. This also gives a 
clue as to how to compute the target levels in order to 
obtain complete masking. They must be chosen such that 
they do not change the excitation pattern by more than 1 
dB in any critical band. The idea of this section is to de- 
velop an expression for the change in the excitation pat- 
tern due to critical band noise targets. Then this change 

is limited to 1 dB resulting in the masking cqnstraint on 
the target levels. 

The following expression gives a mathemqtjcal model 
for the excitation pattern used throughout this paper 

u 2  [ j]filj-ll , i < j ,  

e(a2[j l ,  i , j )  = u 2 [ j l ,  I = j ,  (1) r u 2  [jlalJ-'l , i > j .  

In this expression e(a2 [ j ] ,  i, j )  is the excitation in critical 
band i ,  1 I i I N ,  caused by a signal with power a 2 [ j l  
in critical band j, 1 I j I N .  The CY and f i  define the 
slopes of the excitation pattern. The slope towards higher 
critical bands usually depends on the excitation level. For 
excitation levels in the area of 80 dB, CY = 0.15, corre- 
sponding to a slope of 8 dB /bark and for excitation levels 
around 50 dB, CY = 0.25, corresponding to 6 dB/bark. 
The slope towards lower critical bands is constant and 
well-approximated by f i  = 0.003, corresponding to 25 
dB/bark. Plotted on a decibel scale excitation patterns 
according to (1) resemble the masking thresholds of Fig. 
1. The difference is an upward shift in level. 

The frequency resolution of the excitation pattern in (1) 
is restricted to one critical band. Refinements, based on a 
more precise spectral analysis of the signal, would result 
in a more accurate computation of the excitation pattern. 
However, this would lead to a more complicated analysis, 
which is beyond the scope of this paper. 

In order to be able to compare excitation patterns of 
multiple maskers and targets, a rule of addition is needed 
to compute a total excitation patterq from individual ones. 
Because of the relation between masking and excitation 
patterns, it is assumed that the rules of addition for mask- 
ing thresholds also apply for excitation patterns. The rule 
of addition used here is the modified power law discussed 
in [ 151. According to this rule, the sum es of two excita- 
tions in a critical band eA and eB i s  given by 

es = (e5 + e$)l/p (2) 

where p ,  0 < p < 1, is the power law constant. The 
choice p = 1 results in the pure addition of excitation 
patterns. In experiments described in [15] p is fitted to 
data resulting in values in the range 0.1-0.5. 

The excitation in critical band i i s  given by 

e[i] = ((e,[il)p + (e,[i]>~) ' /p (3) 
where e,,,[i] is the total excitation pattern in critical band 
i of the maskers and e, [i] is the total excitation pattern in 
critical band i of the critical band noise targets. According 
to the addition rule in [ 151, the excitation of the maskers 
is given by 

N 

e,[il = ( e e [ i ~ > ~  + C ( e ( d [ j l ,  i , j ) ) p  (4) ( I =  I 

where U:[ j] is the signal power in critical band j and ee[i] 
is the excitation in quiet. The excitation in quiet is simply 
a level-shifted version of the threshold in quiet. The ex- 

m 
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citation of the targets is given by 

where af [ j] is the, yet unknown, target level in critical 
band j .  

According to the detection rules of [16], masking oc- 
curs if 

i = ] ,  , N  (6) 
or, equivalently, 

(e,[i l)~ < ( I O P / ’ ~  - l>(e,[il>~, i = I ,  * * * 9 N .  

(7) 
The choicep 5 0.48 leads to a ratio e,[i]/e,[i] of -20 
dB, roughly corresponding to the masking at the top of a 
masking threshold as depicted in Fig. 1. 

The signal powers within critical bands a i [ j ]  can be 
derived from an estimate of the signal’s short-time PSD. 
Therefore, the right-hand side of (7) can be computed by 
substituting the a i [  j] into (4). Let m denote a vector de- 
rived from the right-hand side of (7), with elements 

m, = ( 1 0 ~ ’ ’ ~  - ~ > ( e , [ i l > ~ ,  i = 1 ,  , N .  (8) 
It is more complicated to set up a manageable left-hand 

side involving the a: [i]. First it is assumed that the ex- 
citation patterns of the targets have shapes independent of 
their levels. This can be justified since all targets will be 
relatively weak signals due to quantization noise. Fur- 
thermore, let t denote a vector derived from the powers 
of critical band targets [ j ]  with elements 

6 = (a:[jl)P, j = 1, - , N (9) 
and define elements of the N X N matrix E by 

pIJ - ’ IP  , i < j ,  

e,,] = 1, i = j ,  (10) I a\ J - I I P  , i > j  

where a and /3 are the same constants as in (1). The left- 
hand side of (7) can now be written in a matrix form 

and (7) can be reformulated as 

The I sign must be interpreted componentwise. Equa- 
tion (12) is the masking constraint on the elements of t ,  
or via (9) on the U: [ j ] .  All multiple critical band noise 
targets with levels satisfying it are masked. This still 

leaves freedom to choose target levels in many ways and 
thus, in coding systems, to allocate bits to quantizers in 
many ways. Therefore, in Section IV an additional re- 
quirement on target levels to minimize the bit rate is for- 
mulated. Together with the masking constraint (12) this 
defines the audio coding optimization problem. 

In [4] it is mentioned that the masking threshold must 
be deconvolved in order to obtain masked noise levels and 
that this is an ill-conditioned process, leading to possibly 
negative power values. Therefore, a suboptimal solution 
is proposed. In terms of this paper, this deconvolution 
problem is the problem of solving (12) with equality. In- 
deed, the matrix E may be ill-conditioned or m may not 
be an image of a vector with only positive elements, in 
which case strange results can be expected. In this paper 
these problems are evaded by regarding (12) as con- 
straints to an optimization problem. 

IV. WAVEFORM CODING OF AUDIO SIGNALS 
The sampling ratefs of a digital audio signal should be 

high enough to ensure an audio bandwidth wide enough 
for HiFi quality. In this paper it is 44.1 kHz. Although in 
practice the audio samples are 16-bit integers, they are 
assumed to be a real number for convenience of analysis. 

Let the digital audio signal be denoted by s[i], i = - 00, 
, + 03. It is assumed to be a random process that is 

at least wide-sense locally stationary [19], such that a 
meaningful estimate of a short-time PSD can be made. It 
is also assumed that s [ i ]  is a zero-mean Gaussian process. 

The coding error ~ [ i ]  is defined by 

. . .  

The output of the decoder is s^[i], i = -03, * . * , +a. 

~ [ i ]  = i [ i ]  - s[i], i = -03, . - * , +03. (13) 

The coding error is characterized by its PSD, called the 
error PSD S,,(exp( j e ) ) ,  -a 5 0 5 a. The signal’s PSD 
is denoted by S,,(exp( je)), -T I 0 I T .  The definition 
of PSD used in this paper is the one for discrete-time sig- 
aals. It gives the sample power per unit of normalized 
frequency. The continuous-time PSD, giving the power 
per unit of frequency after D/A conversion, can easily be 
derived from it. For the error PSD, for instance, it is given 
by 

(0 ,  otherwise. 

The bit rate R needed to code a signal with PSD 
S,,(exp( je)), resulting in an error PSD S,,(exp( jd)), 
satisfies 

(15) 

This bound can be derived using results presented in [20]. 
Two observations can be made from (15). First, from the 

- -  I 
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max operator it follows that frequency regions where the 
error PSD is greater than the signal's PSD do not contrib- 
ute to the rate. In a good coding system, data describing 
the signal in these frequency regions are not transmitted. 
Second, the bit rate is determined by the desired signal- 
to-noise ratio as a function of frequency. The bound (15) 
illustrates that it is of importance to have an accurate es- 
timate of the masked error PSD because it directly influ- 
ences the bit rate. 

The integral (15) is a bound that may be difficult to 
reach. A coding system using scalar quantizers, as is usu- 
ally the case in audio source coding, cannot perform bet- 
ter than about 0.25 b above the bound (15) [21], [22]. A 
coder that tries to approach this bound more closely than 
that has to make use of vector quantizers [22]. Moreover, 
(15) is derived for stationary signals. This is an unrealistic 
assumption. In a practical application the encoder and de- 
coder will try to adapt to changes in the signal's PSD. 
This increases the bit rate, because the encoder must in- 
form the decoder about these changes by transmitting side 
information. For instance, in the MUSICAM system the 
side information consists of scale factors and bit-alloca- 
tion information for the block-companding quantizers [8], 
and requires up to 0.20 b /sample. 

The above paragraph explains that bit rates achieved in 
practice may be higher than (15). However, there is also 
an argument from which it follows that sometimes they 
may be lower. This is because (15) is based on the as- 
sumption that the audio signal is Gaussian. This assump- 
tion is not always true, particularly not when the music 
signal consists of pure tones. In these cases a substantially 
lower bit rate can be obtained. In fact, it is shown in E211 
that with respect to the mean-squared error criterion, non- 
Gaussian stochastic processes have a rate distortion func- 
tion that lies below that of a Gaussian process. This im- 
plies that for non-Gaussian music signals and a given er- 
ror PSD S,,(exp( $)), the achievable minimum bit rate is 
less than predicted by (1 5 ) .  

In spite of the fact that for non-Gaussian signals the 
minimum achievable bit rates may be lower than (1 5), this 
expression will be used in the remainder of this paper. 
The reasons are that even though it may not be completely 
correct, at least it gives some indication about bit rates 
required. Also, it may be assumed that at least sometimes 
music can be modeled correctly as Gaussian. 

Figs. 5 and 6 show estimates of lower bounds to the bit 
rate as a function of time for two fragments of about 10 s 
of tubular bells and a symphony orchestra, respectively. 
The error PSD was fixed as S,,(exp(je)) = 1 / 12, cor- 
responding to the white quantization noise present in 
compact disc signals. The reason to give these examples 
is to demonstrate that coding at the desired bit rates of 2- 
4 b/sample is impossible if the required CD quality is 
defined as a mean-squared error equal to the quantization 
error of compact disc signals. The signal's short-time PSD 
was repeatedly estimated by a 1152 point discrete Fourier 
transform. The integral (15) was approximated by a dis- 
crete sum over the 577 frequency samples at which the 
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Fig. 5 .  Lower bound to the bit rate in bits per sample for a fragment of 
10 s of tubular bells. Coded with a flat error PSD S,,(exp(jO)) = 1/12.  
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Fig. 6 .  Lower bound to the bit rate in bits per sample for a fragment of 
10 s of symphony orchestra. Coded with a flat error PSD S,,(exp( $3)) = 

1/12.  

short-time PSD was estimated. The curves give lower 
bounds for bit rates, expressed in bits per sample, of co- 
decs coding at compact disc quality without exploiting 
masking. The bit rate is mostly above the desired range 
of 2-4 b /sample. 

The bit rate required for the fragment of tubular bells 
is generally low. Only during and shortly after a beat on 
the instrument is it substantially higher. This occurs three 
times in Fig. 5. The reason for the increased bit rate dur- 
ing and after a beat is that then the signal has many spec- 
tral components and a large part of the signal's PSD will 
be greater than the error PSD. Most of these components 
die out after the beat. The symphony orchestra has a filled 
PSD for most of the time and requires a much more con- 
stant bit rate. 

Graphs of estimates of bounds such as Figs. 5 and 6 ,  
and those presented later must be interpreted carefully, 
even if the signal is Gaussian. There are actually two rea- 
sons why in that case the bounds cannot easily be reached. 
The first one is the necessity of transmitting side forma- 
tion as has already been mentioned. The second is that the 
bounds have been computed by cutting the signal into 
blocks. Each block is assumed to be a segment of a real- 
ization of a stationary stochastic Gaussian process. From 
this block an estimate of the bit rate for the entire process 
is made. To actually reach that bit rate, it may be neces- 
sary to quantize and code blocks larger than the one used 
to make the bit-rate estimate. 

In the following section (15) will be expressed in terms 

1 1  



92 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. IO. NO. I .  JANUARY 1992 

of target levels and combined with the masking constraint 
(12), thus leading to the audio coding optimization prob- 
lem. 

V. AUDIO CODING OPTIMIZATION PROBLEM 
The target PSD of critical band noise targets T(exp( j d ) )  

is given by 

where ti is defined in (9), AA, &, and f,,; are the band- 
width and the lower and upper cutoff frequencies of crit- 
ical band i, respectively; see Table I .  Define the fraction 
wi of signal bandwidth, f , / 2  occupied by critical band i 
by 

(17) 
2Afi 

’ f , .  
w. = - 

On substitution of (16) and (17) into (15) and after ignor- 
ing the max operator, it follows that optimal ti have to be 
chosen such that 

- ST log, (T(exp(j0))) dd 
a 0 2  

1 
2 i = l  

= -- i w;log2 (5) 
is minimized under the constraints (12). Instead of mini- 
mizing (1 8) it also suffices to minimize the objective func- 
tion 

N 

Q(t) = - wi ln(ti) (19) 
i =  I 

under the constraints (12) 

Et I m. 

This is the mathematical formulation of the audio coding 
optimization problem. Solving it yields target levels that 
are masked and at the same time minimize bit rate. It is a 
nonlinear optimization problem that can be solved with 
commercially available mathematical libraries. The opti- 
mal a:[i] and the optimal error PSD can then be com- 
puted according to (16). The resolution of the error PSD 
is limited to critical bands. It can be further improved by 
defining narrower noise targets. However, since both the 
computation of the total masking threshold as well as the 
computation of the target levels already have a strong 
smoothing effect, it is questionable whether this improve- 
ment would be really substantial. Also, since what is ob- 
tained is a stepwise approximation of the error PSD, it 
can be smoothed by a suitable operator. The above pro- 
cedure for estimating masked error PSD’s or masked tar- 
get levels can be used in two ways: to derive performance 

’d-b, , -,- 1 [b’s’ LL> , 1 

5 lo 0 -  
0 

t [sec] - 
Fig. 7 .  Lower bound to the bit rate in bits per sample for a fragment of 

10 s of tubular bells. Coded with full exploitation o f  masking. 

Fig. 8.  Lower bound to the bit rate in bits per sample for a fragment of 
10 s of symphony orchestra. Coded with full exploitation of masking. 

bounds for audio coding or to compute masked noise lev- 
els in coding systems. Both are briefly discussed below. 

The procedure to estimate performance bounds is sim- 
ilar to the one followed to derive Figs. 5 and 6 ,  only now, 
instead of choosing SJexp(j6)) = 1/12, the optimal 
masked error PSD is derived by solving the audio coding 
optimization problem. Figs. 7 and 8 show estimates of 
lower bounds to the bit rates obtained by minimizing (19) 
under constraint (12) for the same two fragments as used 
before. The excitation pattern model used is a simple ver- 
sion of ( 1 )  with (Y = 0.25, p = 0.003, andp  = 0.48. The 
results show that the use of masking is fruitful since both 
estimates are substantially lower than the ones shown in 
Figs. 5 and 6. In addition to remarks on bounds previ- 
ously made, it must be said that the results are as good as 
the excitation pattern model used to derive them, which 
is just a simple one. More accurate models, including 
more accurate computation of excitation patterns and bet- 
ter addition rules will yield more accurate bounds. Never- 
theless, the results clearly show the improvement ob- 
tained by exploiting masking and they at least suggest that 
more can be achieved than the not really transparent qual- 
ity at 2 b/sample of present systems. 

It is interesting to illustrate how target levels can de- 
pend on the signal’s spectral behavior. Therefore, as a 
further illustration estimates of the signal levels in critical 
bands U $ [  j] and of target levels U: [ j ]  obtained from 1152 
samples of the fragments of tubular bells and symphony 
orchestra have been plotted in Figs. 9 and 10, respec- 
tively. The levels are plotted on a decibel scale. The ref- 
erence is the noise level of compact disc signals, which 
is equal to 1 / 12. These figures clearly illustrate the dif- 
ferent spectral characteristics of both fragments. Most of 
the power of the fragment of tubular bells is concentrated 
in a small number of critical bands, whereas the power of 
the fragment of symphony orchestra is more equally dis- 
tributed over the critical bands. The target levels in the 
fragment of tubular bells are much closer to or even above 
the signal levels than is the case for the fragment of sym- 
phony orchestra. This explains that the required bit rate 
for the fragment of tubular bells is much smaller. 



I F  I 

VELDHUIS: BIT RATES IN AUDIO SOURCE CODING 93 

10 20 25 
- 2 0 4 ,  , , ,  , , ' ' ,  , ' ,  ' I  , ' ,  , , , , ' 1 

j [bark] - 
Fig. 9. Signal levels U;[ j ] ,  0 ,  and target levels U : [  j ] ,  c), estimated from 

1152 samples of tubular cells. 
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Fig. 10. Signal levels o H [ j ] ,  0 ,  and target levels o : [ j ] ,  0, estimated 
from 1152 samples of symphony orchestra. 

The above procedure for estimating masked error PSDs 
or masked target levels can also be used in a practical 
application. Before this is discussed in a little more detail, 
its usefulness must be established. There are three possi- 
ble objections. First, remember that vector quantizers are 
required to approximate the bit rate predicted by (15) any 
closer than 0.25 b/sample. Practical audio coding sys- 
tems, with the exception of low rate speech coders, do 
not often contain vector quantizers, but merely use scalar, 
uniform quantizers. Moreover, they have to adapt to 
changes in signal statistics. Therefore, the bit rate may 
come out higher than predicted by (15). Second, for non- 
Gaussian signals the bound may be substantially lower 
than that. Third, in practical situations it is seldom of in- 
terest to code at a bit rate that is varying. In the transmis- 
sion and recording applications discussed here, a fixed bit 
rate is required. 

With respect to the first two objections, it can be said 
that for a very large class of uniformly quantized signals, 
the quantization errors variance decreases exponentially 
with the number of bits. Essentially, this is the rule of 
thumb that signal-to-noise ratio decreases 6 dB/b. This 
implies that if scalar uniform quantizers are used and in 

the case of non-Gaussian signals, it still makes sense to 
minimize (1 8), although ( 1  5) does not accurately predict 
the achievable bit rate. With respect to the often required 
fixed bit rate, there are two solutions. The first is to code 
at a varying bit rate and use a buffer to make it fixed. This 
is not often done in music nor in speech coding and will 
not be considered here. The second solution is still to 
compute the optimal masked error PSD, but to use it as a 
spectral error-weighting function. This implies that the 
coding error will have a PSD with the shape of the optimal 
masked error PSD, but it will be scaled upward or down- 
ward, when the required bit rate is, respectively, greater 
or less than the fixed bit rate. This approach is followed 
in the adaptive bit-allocation procedure described in [2]. 

The practical coding procedure is outlined as follows. 
The first step is to obtain, e.g., via an estimate of the 
signal's short-time PSD, estimates of the excitation levels 
e,[i] in critical bands. These are used in (8) to obtain the 
right-hand side of the masking constraint (12). The next 
step is to solve the audio coding optimization problem 
(19). In a forthcoming paper an efficient solution to it will 
be presented. From the computed masked target levels a 
masked error PSD can be computed by (16). Either the 
masked error PSD or the masked target levels can be used 
to compute the number of bits needed to quantize subband 
signals or transform coefficients. An audio coding scheme 
computing the masked error PSD and using it in combi- 
nation with an adaptive bit allocation method will be pre- 
sented in a forthcoming paper. 

The following section describes how masking is ap- 
plied in subband coding. The example given is the basis 
for MUSICAM as well as DCC. Lower bounds to the bit 
rates achievable with these systems are given and com- 
pared .to the results of this section. 

VI. APPLICATION TO SUBBAND CODING 
In a subband coder, a filterbank splits the audio signal 

into a number of adjacent frequency bands called sub- 
bands. The sampling rate of the subbands is reduced to a 
fraction of the input sample rate, in such a way that the 
sample rate of each subband is twice its bandwidth. Sub- 
band signals are quantized and coded. By means of an- 
other filterbank, the decoder merges the quantized sub- 
band signals into a reconstruction of the input signal. In 
this manner, after reconstruction the quantization errors 
remain in the subband in which they were introduced. 
Careful design of the filterbanks can guarantee a perfect 
[23] or almost perfect reconstruction of the input signal if 
quantization is omitted. A good overview of design meth- 
ods for filterbanks is given in [24]. 

In subband coding proposals DCC and MUSICAM fil- 
terbanks, based on proposals in [25], [26], are used to 
split the audio signal into 32 equally spaced subbands. 
Fig. 11 gives a simplified basic scheme. The boxes LP, 
BP, and HP are lowpass, bandpass, and highpass filters, 
respectively. In the encoder they are followed by deci- 
mators. In the decoder they are preceded by interpolators 
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Fig. 1 1 .  Basic scheme of DCC and MUSICAM subband coder 

[24]. In the discussion that follows the filters are assumed 
to be ideal bandpass filters. 

The boxes Q denote quantizers. Quantization is adap- 
tive in two ways. In the first place, it is adaptive to the 
local signal level. Before quantization, which is uniform 
[8], the subband signals are divided into blocks of 12 
samples which are scaled in such a way that the samples 
are in the range [ - 1, 11. The scale factors are coded and 
transmitted as side information. This method of quanti- 
zation is known as block-companding or gain-adaptive 
quantization [8]. In the source decoder, the quantized 
samples are multiplied by the scale factors in order to ob- 
tain replicas of the subband samples. In the second place 
quantization is adaptive since the numbers of quantization 
levels are chosen in such a way that an attempt is made 
to keep the quantization noise masked. In principle, the 
numbers of quantization levels are recomputed for every 
group of 32 blocks of 12 subband samples, called an al- 
location window. It corresponds to approximately 8 ms. 
The numbers of quantization levels are transmitted as side 
information. 

The boxes C and D in Fig. 11 perform additional en- 
coding and decoding of quantized samples, scale factors, 
and allocation information. 

Differences between DCC and MUSICAM mainly con- 
cern the way the allocation information is computed and 
the boxes C and D. The bit rate for DCC is 192 kb/s.  
For MUSICAM it is either 128, 96, or 64 kb/s. There- 
fore, more accurate computation of masking thresholds 
and more effective coding of quantized samples, scale 
factors, and allocation information are required. Only 
computation of masking thresholds is discussed in the fol- 
lowing paragraphs. First the ideal procedure of computing 
the masked noise power in each subband is discussed, then 
the practical solutions of DCC and MUSICAM are treated 
in some detail. 

Ideally, the procedure would be as follows. Quantizers 
are assumed to produce an uncorrelated quantization error 
which has a flat PSD within the subband it is introduced 
in. The quantization noise power is assumed to be given 

A2 *; = - 
12 

where A is the quantization step size. These assumptions 
are justified if the number of quantization levels is large 
enough, if A is sufficiently small, and if quantizer over- 
load distortion is negligible [8]. Overload distortion does 
not occur, since block-companding quantizers are used. 
For a small number of quantization levels the error may 
become correlated, but (20) remains a useful approxima- 
tion of the quantization error variance. 

The number of subbands is further denoted by K.  Start- 
ing from the masked error PSD S,,(exp(jO)), the masked 
noise power ai[i] in subband i can be taken as 

min Uexp(jO)). (2 1) 
1 
K ( i - l ) ( x / K ) s e < i ) ( x / K )  

a:[i] = - 

Once the masked noise power in each subband is known, 
quantizers can be adapted in such a way that the power of 
the quantization noise is just below it. If the number of 
quantization levels in subband i and the scale factor are 
denoted by Zi and pi, respectively, then the quantization 
step size is given by 

2Pi 
A = T .  

The quantization noise power in that subband is masked 
if 

from which the correct Z j  can be computed. Unfortunately, 
this would lead to a varying bit rate 

K 

R = log2 (li) + R, (23) 
i =  I 

where R, is the bit rate required for side information. As 
has already been remarked in Section V, a varying bit rate 
is undesirable. A solution is to use the optimal error PSD 
as a weighting function. In [2] this is done by minimizing 
the sum of the so-called noise-to-mask ratios 

under the constraint of a fixed bit rate. 
It is interesting to know the theoretically achievable bit 

rate of a subband coder. Assume that subband signals are 
zero-mean Gaussian, with a variance a;[i], given by 

In a subband coder, no use is made of knowledge about 
the short-time PSD within the subband. Therefore, to es- 
timate a bound to the bit rate, it is assumed that each sub- 
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band is an uncorrelated Gaussian source. This means that 
the total bit rate satisfies [21] 

R L - C max ( 0, - A logz ( Z i ; ; ; ) )  - b/sample. (26) 
Ki=I  

Figs. 12 and 13 show estimates for the bounds (26) for 
the two fragments of Section IV. The bounds are about 
0.5 b/sample higher than the bounds presented in Figs. 
7 and 8, and are often around 2 b/sample. Considering 
again that realistically achievable bit rates may be some- 
what above this bound, it becomes questionable whether 
transparent quality can be achieved with a such a subband 
coder at bit rates below 96 kb/s. Even transparent quality 
at 96 kb/s  could be difficult to achieve. If more subbands 
are used, (26) starts to approximate the integral (15), so 
it can be expected that in that case the bound will de- 
crease. This also illustrates that the loss of 0.5 b/sample 
is due to the loss of spectral resolution, reflected in the 
assumption that each subband is considered as an inde- 
pendent Gaussian source. If the spectral structure within 
a subband can be better exploited, e .g . ,  by adding 
ADPCM coding [8], the bound will decrease further. 

After this general discussion on subband coding and the 
bit rates that it can achieve, the computation of masked 
noise powers ai[i] in DCC recorders and MUSICAM is 
discussed in greater detail. 

In a MUSICAM coder a total masking threshold is 
computed from an estimate of the signal’s short-time PSD, 
computed by means of a discrete Fourier transform on the 
input samples. This computation is repeated every 24 ms. 
The optimization step in which an optimal masked error 
PSD is computed under the masking constraint is omitted. 
Instead the masked noise powers are taken as the mini- 
mum value of the masking threshold within the subband. 
In DCC recorders a similar approach to compute the 
masking threshold is followed, but because of the higher 
bit rate (192 kb/s) it suffices to estimate the short-time 
PSD directly from the subband signals. 

In both cases, after computation of the masked noise 
powers a:[i], bits are allocated to the quantizers by the 
adaptive bit-allocation algorithm of [2], that minimizes 
the sum of the noise-to-mask ratios (24). 

A full subjective performance evaluation of DCC and 
MUSICAM is beyond the scope of this paper, as its main 
topic is the audio coding optimization problem rather than 
DCC or MUSICAM. A few remarks, however, can be 
made. 

DCC has been extensively evaluated within Philips. 
The result of these tests was that for most fragments the 
subjects could not distinguish between coded and origi- 
nal. For some fragments some subjects could hear differ- 
ences. The quality of those fragments was still judged as 
near CD. 

MUSICAM has been evaluated with other codes in two 
extensive I S 0  listening tests at bit rates 128, 96, and 64 
kb/s (sampling ratef, = 48 kHz) and was always ranked 
in first or second place. At 128 kb/s  original and coded 

Fig. 12. Lower bound to the bit rate in bits per sample for a fragment of 
10 s of tubular bells in a 32 band subband coder. 

Fig. 13. Lower bound to the bit rate in  bits per sample for a fragment of 
10 s of symphony orchestra in a 32 band subband coder. 

fragments were hardly or not distinguishable. Slight deg- 
radations were sometimes audible at 96 kb/s. This is in 
correspondence to the results of Fig. 13, which show that 
a bit rate greater than 2 b/sample sometimes is required. 
The quality at 64 kb/s was not always good, but accord- 
ing to the results presented here this could not be ex- 
pected. 

VII. DISCUSSION 
Psychoacoustic results such as masking and excitation 

pattern models have been combined with results from rate 
distortion theory to formulate the audio coding optimiza- 
tion problem. The solution of the audio optimization 
problem is a masked error spectrum, prescribing how 
quantization noise must be distributed over the audio 
spectrum in order to obtain a minimal bit rate and an in- 
audible coding error. This result cannot only be used to 
estimate performance bounds, but can also be directly ap- 
plied in audio coding systems. Examples of subband cod- 
ing systems and performance bounds for their bit rates 
have been given. 

With respect to the psychoacoustic results that are used, 
it must be remarked that some assumptions had to be made 
about additivity of excitation patterns. The assumptions 
seem reasonable, but need further verification. It has also 
been remarked that the bounds produced are as good as 
the excitation pattern models used to derive them. This 
calls for more research on suitable psychoacoustic models 
for coding. It has been indicated at some points that more 
accurate excitation pattern models can be incorporated. 

With respect to the use of the rate distortion theory, it 
must be noted that all results are derived for Gaussian 
signals and that the bounds shown are only valid if signals 
are Gaussian. However, this does not make the derivation 
useless because at least sometimes the Gaussian assump- 
tion will be realistic. In Section V it has been argued that 
the Gaussian assumption is not very restrictive for the use 
of the results in coding schemes. 

There is a limitation to the results presented here. The 
excitation pattern models used are for stationary targets 

1- 
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and maskers. Transient behavior, masking shortly before, 
during, and after transients in audio signals, has not been 
discussed. It would be very interesting, but also compli- 
cated, to extend the results into this direction, especially 
since some of the defects heard when signals are coded at 
bit rates below 96 kb/s seem to be caused by poor coding 
at transients. 

From the estimates of performance bounds shown, it 
can be concluded that coding at CD quality without ex- 
ploiting masking is impossible, but that the use of mask- 
ing is so beneficial that bit rates in the area of 2 b/sample 
seem feasible. 
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