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Abstract: Non-ionic microemulsions were investigated by viscoelastic measurements in 
the kHz region. We found that in some parts of the phase diagram our systems consisted of 
a dispersion of spherical oil doplets, stabilized by a non-ionic surfactant, in a continuous 
phase of almost pure water. Because of the simplicity of the system used it was relatively 
easy to interpret our measurements in terms of two rheological models developed by 
01droyd. Using these models, we could calculate the interracial tension between the 
continuous and the dispersed phase. In other parts of the phase diagram, however, our 
results indicate the presence of a fluctuating network of oil-swollen cylindrical micelles. 
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Introduction 

Although considerable research activity is devoted 
to microemulsions nowadays, their viscoelatic proper- 
ties are rarely mentioned. Nevertheless, rheological 
measurements may significantly increase the under- 
standing of these systems, since, up to date, they offer 
the only possibility of determining the interfacial 
tension between the dispersed and the continuous 
phase. This particular parameter is very important 
because it influences the stability and various other 
properties of these systems. 

According to a recent definition, a microemulsion 
should be a thermodynamically stable and optically 
translucent system [1]. Although this definition in- 
cludes no requirement about the mici'ostructure, it is 
often assumed that a microemulsion consists of small 
spherical doplets of one liquid dispersed in another 
one. For the time being, however, other possibilities, 
like rods, lamellae, or even bicontinuous structures, 
cannot be ruled out. We just know that the correlation 
length of the structure must be small compared to 
optical wavelengths so that these systems remain 
optically translucent. This, in its turn, implies that the 
interfacial area between the two liquids is very large. 
In view of the required thermodynamic stability this 
suggests that the interracial tension is very low. 

In this paper non-idnic microemulsions n-bexane/ 
water/polyoxyethylene (6.8) nonylphenol are investi- 
gated. It will appear that in a certain temperature and 
composition range these microemulsions contain al- 
most spherical droplets indeed. The viscoelasticity in 

this region is rather well described by two models 
developed by Oldroyd about thirty years ago [2, 3]. 
The measurements allow determi~nation of various 
properties of the interracial layer. 

In other temperature-composition regions, how- 
ever, an interpretation in terms of an individual- 
droplet system is not possible. The high values of the 
shear-storage modulus rather suggest the presence of 
some kind of fluctuating network, the rigidity of 
which strongly increases with temperature. 

Theory 

Linear Viscoelasticity [4] 

It is a well-known fact that purely viscous liquids 
behave according to Newton's law: 

r = (1) 

and purely elatic solids to Hooke's law: 

r =  GE, (2) 

in which r is the applied shear stress, e the shear, and 
the shear rate. For materials that behave linearly the 
viscosity r/and the shear modulus G are independent 
of k and e, respectively. The difference in behaviour is 
very clearly demonstrated in oscillatory measure- 
ments. For viscous materials there is a phase difference 
of 90 ~ between force and deformation, whereas for 
elastic materials force and deformation are always 
exactly in phase. 
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Many materials do not belong to one of these 
categories. They show a combination of viscous and 
elastic behaviour. For sufficiently low e or ~ they 
show linear viscoelastic behaviour. This means that 
they can be characterized by the complex viscosity/7*, 
defined as 

§ 
/7::" -- --7- (3) 

E 

or, alternatively, by the complex shear modulus G*, 
defined as 

§ 
G* - ~ (4) 

E 

as a function of angular frequency co. Furthermore, 

------ "t o e x p  (icot + ~)  (5) 

d --- eo exp (icot) (6) 

e -= icon, (7) 

in which ~ is the phase angle. 
G* and r/* are decomposed into their real and 

imaginary parts according to 

G* -~ G' (co) + iG" (co) (8) 

and 

~:." -= ~' (co) - it/' (co). (9) 

From equations (3) - (9) it follows: 

~ ' =  G"/co (lO) 

rf'= G'/co. (11) 

G'  (co) and G" (co) are the so-called dynamical mod- 
uli, or, more specifically, G'  (co) is called the storage 
modulus and G" (co) the loss modulus. The moduli G' 
and G" are interconnected by the mechanical analogue 
of the Kramers-Kronig relations, but for applying 
them one must know either G' or G" completely as a 
function of co [4, 5]. Usually, G' or G" can be 
determined in one and the same experiment, albeit in a 
limited frequency range only. 

From the principle of passivity general expressions 
for G' (co) and G" (co) have been derived. For a 
material that cannot maintain a strain at constant 

shear, neither be strained instantaneously, these expre- 
ssions read: 

~,  co2r~ (12) 
G' = cor[' = Gp l + ~ r ~  

p = l  

co5 

p=1 

(13) 

The quantities Gp and rp are the relaxation strengths 
and the relaxation times, respectively, and ~/~o is the 
infinite-frequency viscosity. 

An equivalent description of linear viscoelasticity is 
provided by the complex compliance, J*, defined as 

J* - --~ (14) 
T 

and decomposed as 

j *  = j '  (co) - i f '  (co). (15) 

For materials for which equations (12) and (13) are 
valid the general expression for J '  and f '  read. 

J '(c0)= Jk 1 + c02t~ (16) 
k = l  

],,(co)_ 1 + ~ h tk (17) 
co~/0 1 + ~ t~  " 

k = l  

The quantities Jk and tk are the so-called retardation 
strengths and retardation times and r/0 is the zero- 
frequency viscosity. Because of equations (4) and (14) 
J * =  i/G*, so that the sets of ( re+l )  parameters 
occurring in the expressions for G' and G" and in 
those for J '  and f '  are interrelated. An important 
property is 

rp > tp (allp). (18) 

On the basis of certain assumptions about the molecu- 
lar or microstructure of a system predictions about 
these parameter sets can sometimes be derived. 

We will apply theories developed to describe the 
linear viscoelasticity of emulsions. Because G' and G" 
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or, equivalently,//' and//" are the quantities primarily 
measured, the prediction will, when feasible, be cast in 
the general forms (12) and (13). 

First model of Oldroyd [2] 

The mentioned moduli can be measured straightfor- 
wardly, but there is no general way to derive from 
them the microstructure of a system. By developing a 
mathematical model from an assumed structure it is, 
however, possible to correlate measured and calcu- 
lated moduli. In this way, one or more characteristic 
parameters of the system may be obtained. 

In 1953 Oldroyd calculated the linear viscoelasticity 
of an emulsion consisting of spheres (radius a, volume 
fraction 4~) of one liquid (viscosity//a) immersed in 
another liquid (viscosity //s); the interracial tension 
between the two liquids is y. His result for//* reads : 

1 + icot' 
/ / *=  //o 1 + i c o r '  (19) 

in which t '  is a retardation time and r is a relaxation 
time. 

Recasting result (19) in the form of expressions (12) 
and (13), one gets (with m = 1): 

r - -  t '  a~fl 
co//" = G ' =  //~ 1 + ~ 

t '  r - t '  car 
c0//' = G " =  //o-Tco + //------~---. 1 + ~ f l  .(21) 

Oldroyd succeeded in expressing the three quantities 
introduced in equation (19) into the system param- 
eters; he found: 

5 

//o = rL 1 +  //, + //a 

As t ' >  0, r >  0, and t ' / r<  1, it is obvious from 
equations (20) and (21) that q' as a function of 
frequency drops from a high level to a lower one, 
whereas //" shows a maximum [6]. This maximum 
occurs for 

1 y 
COma x - -  ~" - -  (27) 

T a//s 

There is a very simple physical interpretation of these 
results. At low frequencies the shear stresses are too 
weak to change noticeably the interface. Consequent- 
ly, the viscosity is modified only by the extra dissipa- 
tion due to the presence of spheres and the elasticity r/' 
is very small. At higher frequencies, however, the 
spheres deform as a consequence of the oscillating 
flow field, which results in an increase in the interfa- 
cial area. Because this is energetically unfavourable, 
energy is stored in the medium, which therefore 
shows elastic behaviour. At still higher frequencies the 
elasticity G ' =  co//" becomes constant, so that //" 
shows a maximum. The angular frequency at which 
this occurs is equal to the inverse of the relaxation 
time; it therefore depends on the radii of the spheres, 
the viscosity of the continuous phase, and the interfa- 
cial tension acting along the surface. 

(20) Second model of Oldroyd [3] 

In the first model it is assumed that the behaviour of 
the interface can be described by one single parameter, 
the interracial tension. The possibility of dissipation of 
energy in the interface is not allowed for. If the 
interface is - and it certainly is for microemulsions - 
an interfacial layer with a finite thickness, this might 
well be an oversimplification. 

In his second model, Oldroyd allowed the interface 
to display an elastic as well as a viscous response, both 

(22) on an area change and on a deformation. This can be 
formulated in the following rheological equation of 
state for the interfacial layer: 

t '  = A (B - 12 ,A ) (23) 
Y 

r = A (B + 
Y 

in which 

A ~ 16rL + 19r/a 
40 (//, + //a) 

B =  3 / / S + 2 / / a .  

_P = {y + (n + icocx)(tr_E)}l + 2(# + ico~)~. (28) 

(24) So, the relation between the surface-stress tensor _P 
and the surface-strain tensor E can be describe in 
terms of five parameters; the interracial tension y, the 
dynamic-area elasticity ~e with corresponding viscosity 
a, and the dynamic-shear elasticity/~ with correspond- 

(25) ing viscosity ~. In equation (28) tr _E signifies the trace 
and _E the traceless part of E. 

Introduction of four additional parameters in the 
(26) expression for //* appears to lead to one more 
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relaxation t ime and one more  re tardat ion t ime or, 
equivalently,  in the expression for  /7' and r/" of  the 
type  of equations (20) and (21), to one more  relaxation 
mechanism.  

Oldroyd's second model at higher concentrations [7] 

Although  O l d r o y d ' s  results contain terms of the 
order  4, z and higher,  O l d r o y d  himself demons t ra ted  
that  these terms cannot  be correct .  Deviat ions  f rom 
linearity in 4~ m a y  become serious above about  5%. 
When  reasonable values for  a ,  ~/d, t/,, and 7 are 
assumed,  however ,  the m a x i m u m  value of r/' comes 
out  to be on ly  a few percents  of  r/0. Measurements  
then become  rather  inaccurate. An  extension of Old -  
royd ' s  results to higher @values is needed if we wish 
to derive in format ion  about  interfacial proper t ies  f rom 
viscoelastic measurements .  

Such an extension was arrived at by  using a cell 
model  [7]. The  general result  f o r / / %  obtained with a 
symbol ic  compu te r  p rogram,  can be wri t ten as 

17"- ~, _ r ao + flo H + yo Hz 
~l, a~ +/3~H + y ~ H  2 '  

where  

H -  iarl, o~ 

The parameters  at0, a~,/30,/3d, 7o, and y~ are related to 
the parameters  of the previous sections. Because these 
relations are rather  complex,  the reader is referred to 
Appendix  I of reference [7]. 

O u r  measurements  of r/' and r/" will be analyzed on 
the basis of  equat ion (29). 

Experiments 

Materials 

The non-ionic surfactant polyoxyethylene (6.8) nonylphenol 
(NNP 7) was supplied to us by Servo Co., Delden, The Nether- 
lands. This material was for our purposes purified by extraction of 
polyethylene glycol with ethylacetate (Weibull method [8]). N- 
hexane was obtained from Baker Chemicals (p. a. grade) and was 
used as received, whereas the water was destilled three times. 

Phase diagram 

Bottles, about 40 ml each, were filled with oil, water, and 
surfactant in a series of selected compositions and sealed afterwards. 
They were kept in water-thermostats, the temperatures of which 
had values between 0 and 40 ~ and varied less than 0.1 centigrade. 

Usually, no observable changes took place any longer after 24 hours 
of standing, and a one-, two-, or three-phase system had formed. 

For reasons to be explained later we were especially interested in 
the temperature-composition boundaries of the one-phase mic- 
roemulsion region. By measuring, at a range of temperatures, the 
volumes of the ph~ises in the two-phase region and extrapolating the 
overall composition to zero-volume of the non-microemulsion 
phase, the boundary point at that composition could be determined 
rather accurately. 

Rheological measurements 

Oscillatory shear measurements were carried out in the frequen- 
cy range 3700-235000 Hz with a nickel tube [9, 10]. This instrument 
essentially consists of a circularly magnetized Ni-tube which is set 
in torsional vibration. Resonance of the tube occurs at a discrete set 
of frequencies in the range mentioned. The liquid surrounding the 
tube has a profound influence on these resonances. The resonance 
frequency shifts to lower values and, furthermore, the resonance 
curve is broader, both relative to air. From-the shift and the 
broadening the viscoelastic properties of the liquid can be obtained. 

Dynamic light scattering 

In the light-scattering apparatus we used a He-Ne laser of 
10 roW. The intensity of the scattered light (with a wavelength of 

(29) 632.8 nm) is detected with a photomultiplier, the output of which is 
coupled with a digital storage oscilloscope (Philips PM3310). This 
instrument measures the output of the photomultiplier at 256 
discrete equidistant time events. These data are transmitted to a 
DEC LSI-11/02 microcomputer system that evaluates the autocor- 
relation function. This function is stored in memory and the 

(30) oscilloscope performs another set of 256 measurements. The average 
of many correlations (usually 500) can be obtained in this way and 
the final autocorrelation function is plotted with a HP 7225 A 
plotter. 

Results and discussion 

Analysis of the surfactant 

Although  non- ionic  surfactants are usually con-  
sidered to fo rm one componen t ,  they  are in fact a 
mixture  of different chemical compounds .  The  surfac- 
tant  we  used, 

C9 H 19--~-O-(- -C H 2 - C  H 2-O-')U-m H 

is a mixture  of molecules wi th  different values for  m. 
The  manufac turer  stated an average value of 7 (there- 
fore N N P  7). 

This average, r~, can be determined by  p ro ton  
N M R  spect roscopy.  In  the N M R  spec t rum the alipha- 
tic, the aromatic,  and the ethylene oxide hydrogen  
a toms give rise to signals at three distinct posit ions,  
centered at about  1, 7, and 4 ppm,  respectively [11]. 
The  spect rum of our  surfactant  is presented in figure 1 
and f rom the integrated signal we calculated r~ = 6.8, 
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Fig. 1. Proton NMR spectrum of polyoxyethylene (6.8) nonyl- 
phenol (NNP7) 
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Fig. 3. Cloud points of various polyoxyethylene (m) nonylphenols 
as a function of the average number of ethyleneoxide units per 
molecule (r~) 
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Fig. 2. HPLC curve of the polyoxyethylene (6.8) nonylphenol 
(NNP7). m: number of ethyleneoxide units per molecule; N: 
amount of surfactant with specified value of m 

in good agreement with the specifications of the 
supplier. 

Gradient elution HPLC was used for determining 
the distribution of the different compounds, according 
to Van der Maeden et al. [12]. The results of this 
techique are given in figure 2. Hence it can be 
concluded that molecules with values of m up to about 
twice the average are present in significant amounts. 

So, it seems rather doubtful whether it is possible to 
treat the surfactant as a pseudo-component. Neverthe- 
less, this is usually done and it seems to be justified 
judged from the measured cloud points of various 
samples of polydisperse surfactants with different 
values of r~ as given in figure 3. So, a mixture of 
different homologous surfactants still has one sharp 
cloud point, which is determined by the average 
ethylene-oxide content. If more than one macroscopic 
phase is present, however, the distribution of the 
surfactant in the separate phases is usually modified 
strongly [13, 14]. This was the main reason why we 
decided to restrict our experiments, for the time being, 

to microemulsions in the one-phase region, the com- 
position then being exactly known. 

Phase diagram 

The results concerning the phase behaviour of our 
systems are given in a form which resembles the 
presentation of Shinoda and Kuneida [15]. For a fixed 
surfactant concentration they gave the volumes of the 
different phases as a function of temperature and oil/ 
water composition. For waterrich systems they ob- 
served in a certain temperature range of one-phase 
system and for oil-rich systems the same. The former 
were oil-in-water (o/w) and the latter water-in-oil (w/ 
o) microemulsions. At intermediate compositions 
three-phase systems were observed in a certain tem- 
perature range. 

In this paper the investigations are restricted to one- 
phase oil-in-water microemulsions. The temperature 
traject of stability of these systems at the lower side is 
formed by the solubilization point and by the cloud 
point at the high temperature side. These points are 
given in figure 4 as a function of surfactant/oil ratio 
(by weight). The boundaries of the one-phase area are 
clearly given by two straight lines. From figure 4 it 
appears that the amount of water does not influence 
the range of stability of these systems in the indicated 
concentration range of the surfactant. 

This last point can be readily accounted for. As oil 
we have taken n-hexane and this was done with a 
special purpose. It was found that for solubilizing n- 
hexane around room temperature a surfactant was 
required with an extrapolated cloud point below the 
freezing point of water (NNP 7, see fig. 3). This 
means that in these microemulsions the continuous 
phase consists of almost pure water. Since microemul- 
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Fig. 4. Partial phase diagram for n-hexane/water/polyoxyethylene 
(6.8) nonylphenol microemulsions. The one-phase region is given as 
a function of ratio surfactant/oil (by weight) 

sions are usually assumed to be dilutable with their 
continuous phase, this explains the observation made 
from figure 4. 

Rheological measurements for systems of spheres 

There is much debate on the structure of micro- 
emulsions. Especially in the three-phase region the 
nature of these systems is not clear. In the one-phase 
region, on the other hand, it is usually assumed that 
they are dispersions of spherical droplets. Our results 
show, however, that even for these systems the 
structure can be quite complex. There is a variety of 
methods for determining whether a system consists of 
a dispersions of spheres. The results of them will be 
given subsequently, but first the final picture that 
emerges from them will be presented. The region of 
the phase diagram where spheres occur is represented 
as the shaded area in figure 5. As can be seen, this is 
only a minor part of the total diagram. 

The first indication for the occurrence of spheres we 
have obtained from the value of r/' at the lowest 
frequency. If at this frequency 0 c= 3700 Hz) the 
system shows no elastic effects (which will later be 
shown to be theoretically correct for spheres), this 
value can be equated to the stationary viscosity. There 
is a rather famous relation, first derived by Einstein, 
between the viscosity of a dispersion of hard spheres, 
r/, the volume fraction of the dispersed phase, q~, and 
the viscosity of the solvent, r/$ [16, 17]. It reads: 

// - 1 +  5 ~, 7 ~0. (31) 

40- 

30- 

20- 

10- 

(%) 

T 

I I I 

I 
0,5 1,0 1,5 

[NNP7] 
[n-hexane] 

Fig. 5. Partial phase diagram for n-hexane/water/polyoxyethylene 
(6.8) nonylphenol microemulsion (NNP7), with the sphere region 
(" :) and the region with unusually high elastic properties (= =) 

This equation is only valid at very low concentrations, 
because interparticle effects are not taken into ac- 
count. At the moment, there is no rigorous method 
developed to provide for this. Simha, however, pre- 
sented a semi-empirical approach based on a cell 
model [18, 19]. In this model each sphere is thought to 
be contained in a cell, and in a pure cell model the 
volume fraction of the sphere in this cell is the same as 
the overall volume fraction of spheres in the system. 
Solving the hydrodynamic equations, Simha derived: 

r/ _ 1 + 104~R3 (R7 - 1) 
r/$ 4(R l ~  1 ) - 2 5 ( R  7 +  R 3 ) + 4 2 R  5' 

(32) 
with 

_!  
R=fq~ 3 (33) 

In addition to the volume fraction 9, this expression 
contains a factor f. A value of 1 for this parameter 
means that the viscous behaviour of the system can be 
described by a pure cell model. Different values for f 
are often obtained and this is usually attributed to 
attractive forces between the particles. Thomas, by 
analysing many experimental results, concluded that a 
value of 1.111 is usually found [20]. 

From figure 6 it is clear that our results correspond 
quite well to f = 1 if the volume fraction of the 
dispersed phase is calculated from the volumed of the 
three components as 

Voil + V~f 
(p = Foil .~_ Vsur f q_ Vwater , (34)  
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Fig. 6. Dynamic viscosity r/' relative to the viscosity of water (r/w) 
at 3700 H z  as a function of the volume fraction of the dispersed 
phase 0P) for various concentration ratio's surfactant/oil. The solid 
line is calculated according to Simha's formula with f = I. Calcu- 
lated lines for other values of f a r e  given as broken lines 

We consider this a strong indication that the micro- 
emulsions under these circumstances are suspensions 
of spherical droplets. It is true, however, that the 
hydrodynamically effective volume fraction may ex- 
ceed a little bit a value of 4~ as given by equation (34) as 
a consequence of partial hydratation of the detergent 
layer. This effect is small, as wilI be discussed later on. 

It must be emphasized, however, that Einstein's and 
Simha's fomula were derived for a system of hard 
spheres. Taylor obtained a formula for the viscosity of 
a dispersion of liquid spheres into another liquid. His 
formula is [21]: 

5 

7, \ ~ls+ ~la ] 

This expression is clearly an extension of the one of 
Einstein. For n-hexane dispersed in water (without a 
surfactant) it reduces to approximately 

r/ _ 1 + 1.35 x 4~. (36) 
//, 

Apparently, this formula predicts substantially lower 
viscosities than predicted by equation (31). Our 
results in the low-volume-fraction region correspond 
better to Einstein's formula. To explain this, one must 
go back to the starting assumption of Taylor. He 
derived his formula by solving the hydrodynamic 
equations. But he had to assume some boundary 
conditions and by doing so he assumed that momen- 
tum transport between the dispersed and the continu- 
ous phase is not hindered by the interface. This means 
that the surfactant layer around the oil droplets is a 
rather stiff or viscous shell. 

The first indication for the existence of spheres 
stems from viscosity measurements, the second one 
comes from dynamic light scattering. With this tech- 
nique it is possible to determine the diffusion coeffi- 
cient of particles in a dispersion from the intensity 
autocorrelation function of the scattered light. One 
can derive [22]: 

g(2) (q, t) = 1 + exp ( -  2q2Dt), (37) 

with 

4:~n 0 
q - ~ sin 7 '  (38) 

where g(2) (q, t) is the normalized homodyne autocor- 
relation function, n is the refractive index of the 
continuous phase, 0 is the scattering angle, A is the 
wavelength of the laser light in vacuum, and D is the 
diffusion coefficient. 

If the particles are assumed to be spheres of uniform 
radius a, the Stokes-Einstein relation gives this par- 
ameter in terms of measurable quantities: 

kT  a - -  
6:rG D ' (39) 

in which k is Boltzmann's constant and T is the 
absolute temperature. But also for structures other 
than spheres the autocorrelation function can still be 
an exponential function, and by applying the Stokes- 
Einstein relation, one gets a value for the radius. So, 
without further knowledge about the system under 
consideration it is not clear whether this value is 
reliable. 

This knowledge can be obtained from data about 
the surfactant that we found in the literature. It is a 
well-known fact that surface-active compounds at flat 
water/air surfaces from a monomolecular layer [23]. 
At very low values of the surface tension all surfactant 
molecules occupy the same area. For polyoxyethylene 
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(m) nonylphenols this area is known as a function of 
rn [24, 25]: 

As~ = lSVm-, (40) 

in which A is obtained in/~l 2. If m = 6.8, this formula 
yields : 

ANN 1, = 47 A 2. 

As mentioned earlier, we have chosen this surfactant 
because it is almost insoluble in both water and n- 
hexane at room temperature. This implies that in these 
microemulsions all surfactant molecules are located at 
the interface. If we assume further that the system 
contains spheres of uniform radius, we can calculate 
the total interracial area if the amount of surfactant is 
known [26]. If the amount of oil is also known, this 
gives for the radius of spheres: 

3M~rf goil (41) 
a = 1000 N A ~3oil gsu~'A~u~ " 

where Msu ~ is the molecular weight of the surfactant, 
N A is Avogadro's number, 0oil is the density of n- 
hexane, gsurf is the weight fraction of surfactant, goil is 
the weight fraction of n-hexane, and As~ is the 
molecular area of the surfactant. 

This formula gives the radius of the spheres as a 
function of, among other parameters, the weight ratio 
surfactant-to-oil. We have determined the hydrody- 
namic radius of these particles by dynamic light 
scattering in the sphere region at surfactant-to-oit 
ratios of 1.0 and 1.2. As can be seen from table 1, we 
found values for a of 120 and 100 ~l, respectively. 
These values were obtained for q5 = 0.1 just above the 
solubulization temperature at that composition and 
were calculated with equation (39). For q$ we used the 
viscosity of water at that particular temperature. If one 
takes into account that approximately one third of the 

Table 1. Interracial parameters and radius of the spheres 

I II III 

gsu,4/ goil 1.0 1.2 1.0 1.2 1.0 1.2 
y [mN/m]  0.06 0.08 0.06 0.08 0.06 0.08 
S 7.0 7.0 7.0 7.0 7.0 7.0 
Z 25.0 25.0 25.0 25.0 25.0 25.0 
2M + 3K 0 0 0.45 0.45 >> 1 >> 1 
F 1.05 1.06 1.03 1.04 1.05 t.06 
a 0 [A] 120 100 120 100 120 100 

a) obtained by dynamic light scattering. 

surfactants molecule is situated in the oil phase (so that 
the actual weight fraction of the oil is increased by a 
third of the surfactantweight fraction), equation (41) 
yields with M = 519 a t  g~,.4/goil = 1.0 and 1.2, respec- 
tively : 

a = 105 .~l and a = 85 ill. 

This is the distance from the centre of the sphere to 
that part of the interfacial layer where the hy- 
drophobic and hydrophilic parts of the surfactant are 
attached to each other. To be able to compare the 
calculated with the measured hydrodynamic radius 
one has to take into account the conformation of the 
polyethyleneoxide chains in the water phase. Informa- 
tion about this can be obtained from the simple 
formula (40). If these chains would lay along the 
interface, Asu ~ would be a linear function of rn, and if 
the chains were oriented perpendicular to the surface, 
Asu ~ would be independent of m. Obviously, neither 
of these possibilities does apply. In fact, equation (40) 
can be explained if the polyethyleneoxide chains form 
coils that partly occupy the surface. This means that 
the microemulsion droplets for gsuJgoil = 1.0 look 
like the graphical presentation as given in figure 7. As 
the real radius of the spheres is about 10 to 20 .~l larger 
than the one calculated with equation (41), the agree- 
ment between this radius and the hydrodynamic 
radius obtained from dynamic light scattering is rather 
good. This is the second indication that in the shaded 
area in figure 5 these microemulsions contain spherical 
oil droplets. 

~r 
Fig. 7. Model of the dispersed phase in the sphere region (drawn to 
scale) 
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(by weight). Temperature: 23.0 ~ Solid lines- fitted to experimen- 
tal results with Oldroyd's second model 

The third and last indication for the existence of 
spheres comes from the viscoelastic measurements 
themselves. Both models of Oldroyd take the exist- 
ence of spheres as a starting point and both predict 
that r/" as a function of frequency shows (at least) one 
maximum. For values usually assumed to be correct 
for a and y in microemulsions this maximum must 
occur in the kHz range. As an example we have 
presented some of our measurements in figure 8 and 
hence it can be concluded that the maximum in r/' and 
the drop in q' do occur in the required frequency 
range.  

We now come to the central theme of this paper, the 
interpretation of the viscoelastic measurements in 
terms of the models of Oldroyd. The first model, 
however, cannot explain all measurements. Neverthe- 
less, it predicts very well the transition in the proper 
range. But this model has the great advantage that it 
contains only one adjustable parameter, the interfacial 
tension y, provided that the radius of the spheres and 
the viscosity of the continuous phase are independent- 
ly determined (the former was obtained by dynamic 
light scattering and the latter followed from the 
composition of the continuous phase and was derived 
from the phase diagram). As already stated, Oldroyd's 
second model contains four additional parameters to 
account for the viscous and elastic properties of the 
interface. They can be made dimensionless by the 
interracial tension, the radius of spheres, and the 
viscosity of the continuous phase: 

M -  /~ (42) 
Y 

K - (43) 
Y 

Z -  ~ (44) 
a~/s 

~7 
S - (45) 

arls 

With these additional parameters the model predicts, 
in general, two transitions. We have observed only 
one. From the values of ~/' at 3700Hz we can 
conclude that at this frequency the systems behave as a 
dispersion of hard spheres. (This means that /7" 
(3700) = 0. For 4~ < 0.2 this is correct. For higher 
values of q~, however, one observes that the r/' curve 
has shifted to lower frequencies as a consequence of 
hydrodynamic interaction, so that these systems show 
some elasticity at the mentioned frequency. For these 
high @ values the elastic effects vanish at lower 
frequencies, as can be seen from the fitted upper curve 
in fig. 8.) A transition at lower frequencies than the 
range covered by the nickel tube can be rules out, as 
under stationary conditions (as determined by dy- 
namic light scattering) the results are still constant 
with a sphere model. This means that our results can 
be interpreted in three different ways: 
I. It can be shown [28] that one of the transitions 

vanish if 

M = 0 and K =  0, 

which means that the interface shows no elastic 
effects and, consequently, behaves as a two- 
dimensional Newtonian liquid. 

II. Both transitions occur at the same frequency, 
which implies that/~ and x are on the order of y, 
or 

M and/or K ~  1. 

III. One of the transitions occurs at very high fre- 
quencies. This would mean that the elastic prop- 
erties of the interface are very strong, or 

M and/or K>> 1. 

By fitting the parameters of Oldroyd's second model, 
using equation (29), which is also valid at higher 
concentrations, we obtained three sets of values for 
the parameters. They are given in table 1. The most 
important point that can be observed from it is that all 
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three interpretations yield the same value for the 
interracial tension y. 

In table 1 F is the factor with which the volume 
fraction of the dispersed phase has to be multiplied in 
order to obtain a good fit. This parameter, therefore, 
gives an indication about the amount of water that is 
hydrated by the polyethyleneoxide chains. It must be 
emphasized, however, that f (from Simha's formula) 
and F cannot be determined independently from the 
results presented here. We have chosen f = 1.0 and 
have fitted F with the results and values obtained for 
F >  1.0. This parameter has to be in that range, for 
hydration is a necessity for the thermodynamic stabili- 
ty of non-lonic microemulsions. 

The solid lines in figure 8 have been calculated with 
the values for the parameters obtained in interpreta- 
tion I. The other interpretations yield similar lines. 
From this figure two conclusions can be drawn: 
i) At low frequencies r/' is predicted very well by the 

model. With increasing frequency r/' drops to 
lower values, but this effect is less abrupt than the 
model requires. A possible explanation is that the 
spheres are not of uniform size. 

ii) As :a function of frequency r/' shows the expected 
maximum. It is too broad, however, again indicat- 
ing a distribution of spheres of different size. 
Furthermore, the measured and the theoretical 
concentration dependence of r/" do not correspond 
very well with each other. This can be explained by 
the fact that with the present equipment it is 
impossible to measure r/" as accurately as r/'. For 
this reason, only the values for r/' were used in the 
fitting procedure. 

Finally, we focus our attention on the theoretically 
and practically most important parameter of all, the 
interracial tension y. At first sight, the values we found 
for this parameter (see table 1) may seem somewhat 
high compared to the often mentioned value of 
10 -3 mN/m. But one must take into account that this 
last value refers to the interracial tension between flat 
water/m.e, or oil/m.e, interfaces. And as already 
stated, we restricted our investigations to macroscopic 
one-phase systems. This can be illustrated by referring 
to the work of Saito and Shinoda [27]. 

They have measured the interfacial tension between 
macroscopic phases in two- and three-phase non-ionic 
microemulsions (slightly different from our system). 
It is not clear from the onset whether their y may be 
equated to ours, but, nevertheless, they are of the same 
order of magnitude. These authors measured values 
ranging from 0.2 to 0.001 mN/m. 

The latter value is that for three-phase systems. The 
closer to this region, the lower the interracial tension. 

2 . 0  . I I 

q'/rIw I 

3,0 ~ c ~  

2,0 

1.0 l 

10 4 10 ~ 

f (sec-' 
Fig. 9. Dynamic viscosities r/' and r/' (relative to the viscos,ty of 
water) as a function of frequency (f). Volume fraction ~ = 0.231. 
Ratio surfactant/oih 1.2 (by weight). Both viscosities increase with 
temperature. Measurements were carried out at 18.27, 18.76, I9.21, 
19.75, 20.48, 21.35, 22.43, and 23.83 ~ 

And this is exactly the trend we found, for the system 
with gsur#goil = 1.0 is closer to the three-phase region 
than the system with the other composition. 

Rheological measurements for systems with a more 
complicated microstructure 

With rising temperature the dynamic viscosities 
show a large increase, which means that a complex 
structure develops under these circumstances. This is 
illustrated in figure 9 for a microemulsion with gs,J  
goil = 1.2 and ~p = 0.231. The viscosities in this figure 
are expressed relative to the viscosity of water of the 
same temperature, which means that the ordinary 
temperature dependence of the viscosity of the con- 
tinuous phase is eliminated. So, figure 9 is a direct 
manifestation of a changing structure in the system. 

At rather low temperatures (only slightly above the 
solubilization temperature) we recognize the pattern 
indicative for spheres. By referring to figure 8 it can be 
seen that because of a different interfacial tension and 
a different radius for the spheres the maximum for r/' 
occurs at a higher frequency. 

By increasing the temperature it is obvious from 
figure 9 that both viscosities attain higher values. 
Especially the change in the elastic effect (r/") is quite 
remarkable. In the sphere region the system shows no 
elastic properties at the lowest frequency, whereas 
with rising temperature there is a dramatic increase of 
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7/". This means that new and larger relaxation times of 
the system emerge, indicating the formation of larger 
structures under these circumstances. These results 
are, however, not unique for this system. Measure- 
ments on cyclohexane/NNP 7/water microemulsions 
show qualitatively the same trend as a function of 
temperature [28]. 

The effect of temperature on the rheological prop- 
erties (and, therefore, on the microstructure) is pre- 
sented in a different way in figure 10, where//'/r/, at 
f = 3700 Hz is given as a function of temperature. At 
gsus/goil = 1.0 it is clear that immediately above the 
solubilization temperature (T~) the dynamic viscosity 
increases. As at T~ /7' (3700) corresponds very well 
with Simha's formula (see fig. 6), we conclude that 
only at this temperature there is a system of spheres. 
From the graphs for g~u,~/goil = 1.2 it follows that 
there is quite a temperature traject along which 
rheological properties are constant. As// '  in this range 
~s consistent with Simha's formula, the oil in this 
temperature range is dispersed as spherical droplets in 
water. 

At the lowest concentration, see figure 10, at the 
right, the temperature traject where spheres are pre- 
sent is more than two centigrades, whereas at the 
highest volume fraction this traject is reduced to about 
one centigrade. This means that there is a weak 
concentration dependence of the temperature where 
the structure of the system changes. 

Thus, we have demonstrated some drastic effects. 
But, unfortunately, it is not possible to derive the 
structure of a system from theological measurements 
alone. We can only conclude from them at this 
moment that the length scale of the structure increases 
with rising temperature. Similar phenomena for sur- 

factant solutions have been known a long time. These 
effects are often attributed to a transition from spheri- 
cal micelles to rods or cylinders [29]. Also viscoelastic 
properties of these systems are mentioned, mostly in 
connection with results of other techniques, such as 
NMR, dynamic light scattering, electric birefringence, 
and others [30, 31]. 

However, the transition from spheres to cylinders 
alone is not able to account for these strong elastic 
effects. It is absolutely necessary to take strong 
interactions between these cylinders into account. 
With such advanced rheological theories as put for- 
ward by Doi and Edwards it should be possible to 
account for these effects [32, 33]. At the moment, 
further investigations are carried out on this subject; 
our attention is especially focussed on the transition 
from spheres to non-spherical structure. 

Conclusions 

About the measurements mentioned so far we may 
state that the theological models of Oldroyd apply 
reasonably well to our non-ionic microemulsions in 
the sphere region. The most important parameter that 
can be obtained in this way is the interfacial tension 
between the continuous and the dispersed phase. The 
values for this parameter we obtained are in the same 
order of magnitude and show the same trend as the 
values for the interfacial tension between macroscopic 
phases reported by Saito and Shinoda. 

Furthermore, other properties of the interfacial 
layer may be obtained in this way. There are, how- 
ever, three different interpretations of our measure- 
ments, all yielding the same value for the interracial 
tension. But the other properties of the interface may 
range from purely viscous to highly elastic. 

Increasing the temperature of our microemulsions 
usually results in systems with very strong elastic 
effects. They show resemblance to viscoelastic surfac- 
rant solutions; so, it seems likely that a fluctuating 
network of oil-swollen micelles develops under these 
conditions. 
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