
Acta Applicandae Mathematicae 16: 231-242, 1989. 231
© 1989 Kiuwer Academic Publishers. Printed in the Netherlands.

Lie Algebra Computations

P. K. H. G R A G E R T
Department of Applied Mathematics, University o[Twente, P.O. Box 217, 7500 AE Enschede,
The Netherlands

(Received: 26 July 1988)

Abstract. In the context of prolongation theory, introduced by Wahlquist and Estabrook, com-
putations of a lot of Jacobi identities in (infinite-dimensional) Lie algebras are necessary. These
computations can be done (automatically) using 'symbolic computations'. A package written in
REDUCE is demonstrated to give an idea of the chosen approach.

AMS subject classificadons (1980). 17B99, 35099, 58A15, 68C20.

Key words. Lie algebra computations, symbolic computations, REDUCE, prolongation theory.

1. Introduction

Lie algebras occur in different realizations, e.g., as matrices or as vector fields.
What will be described here is a different realization, suitable for symbolic
computations and, in a sense, very abstract. This is implemented in the symbolic
computation language REDUCE and will be demonstrated on a very special
subject, to be briefly recalled in the next section.

The text will include examples, imitating a computation session on a terminal,
to give the flavour of using the described Lie algebra package. To distinguish
input and output in the examples, input will be reproduced in italics, while the
answer of the system will be typed in the standard font and as capitals.

2. Prolongation in a Nutshell

One possibility of analyzing nonlinear evolution equations in one space dimen-
sion is the prolongation method, introduced by Wahlquist and Estabrook [1, 2].

The method can be briefly recalled as follows: A system of nonlinear differen-
tial equations is formulated as a closed exterior differential system of two forms.
The underlying manifold is extended (or prolonged) by new coordinates, the
prolongation variables. The exterior differential system is prolonged by special
1-forms in the prolongation variables. The condition on these added 1-forms is

232 P.K.H. GRAGERT

that the prolonged exterior differential system remains closed. This condition
results in an overdetermined system of differential equations which has to be
solved. Often, several integration steps are directly possible. Due to the prolon-
gation variables (together with some luck, depending on the evolution system
tackled), there remain conditions on the introduced functions which are all of
the commutator type.

This is the starting point of the work described in the next sections. Having
solved all the equations, one gets a number of 1-forms closely related to the
original evolution system. A further analysis of the 1-forms may give a nonlinear
superposition formula of solutions or a B~icklund transformation. For more
information, the reader is referred to [1, 2].

3. Equations of Commutator Type

Here it is assumed that the prolongation method applied to an evolution system is
already partially, solved which means that all the remaining differential equations
to be solved are of the commutator type. To solve these equations, one may
proceed as follows: All commutators are interpreted of being Lie products in
some base variables, thus turning the differential equations of the commutator
type into relations between Lie products. This means that one has to find and
compute a Lie algebra, containing all the relations emerging out of the prolon-
gation method. A representation of the Lie algebra (or of a homomorphic image
of the sometimes infinite-dimensional Lie algebra) in vector fields, delivers a set
of functions for solving the remaining set of differential equations of commutator
type; (see e.g., [7]).

Summarizing, the main problem is the computation of a Lie algebra, containing
the relations emerging out of the prolongation method.

4. Reason for Symbolic Computations

The point of view taken here is the following: The problem to be solved is the
computation of a Lie algebra, given a certain number of relations between some
of the Lie products and base variables of the Lie algebra. The only tool is the
evaluation of all essential Jacobi identities. By essential Jacobi identity is meant,
given a n-dimensional Lie algebra with basis xl x, , that it suffices to check
only Jacobi identities of x~, xj and Xk, where 0 < i < j < k ~< n holds. The number
of essential Jacobi identities is (~), a number which grows rapidly with increasing
n. Computation of one Jacobi identity contains taking six Lie products, which
may give a lot of (easy) algebraic manipulation.

Doing such computations by hand is, though easy, boring and error-prone.
Therefore, a computer package in R E D U C E has been written to do as many of

LIE ALGEBRA COMPUTATIONS 233

the computations as possible automatically. It only remains to check the input
data and (very often short) commands carefully.

5. Implementation of an Abstract Lie Algebra Package

Lie algebra computations in languages for symbolic computations are often
available in the form of matrices and operations with matrices or in the form of
vector fields for example, but for the purpose described in the foregoing section,
a special way with special advantages is chosen. The realization of the Lie
algebra is purely algebraic and the considerations are as follows:

(i) A linear space with its linear operations must be available, including input
and output facilities.

(ii) The Lie product must be available as an operation, even if not all structure
constants of the Lie algebra are known!

Consideration (ii) reveals the problem started from and justifies the adjective
'abstract'.

The following solution is chosen for consideration (i). Univariate polynomials
are chosen as objects for a linear space. This choice has a number of advantages:

(1) In REDUCE polynomials are sparsely stored, which means that only
nonzero coefficients are stored.

(2) Addition of polynomials is already available and is fast in execution time.
(3) Multiplication by constants is already available and is fast in execution

time.
(4) Input as well output of polynomials is already given by REDUCE.
(5) The coefficients (coordinates) may be computed by the system function

COEFF.

There is one small disadvantage: a linear polynomial is output without exponent
one.

Consideration (ii) is solved by using the ALGEBRAIC OPERATOR concept
of REDUCE and a new function, which actually computes a Lie product. That
means an identifier, declared ALGEBRAIC OPERATOR, may have any num-
ber of parameters and is used to represent Lie products. Such an expression
either stands for itself or may get explicitly a value.

EXAMPLE: ALGEBRAIC OPERATOR
*algebraic operator lie;
*lie(l, 2);
LIE(l, 2)

*lie(I,3): = x + a*x ~3 + 4"1ie(1,2) + b*lie(z);
LIE(I,2): = X + A*X 3 + 4*LIE(I,2) + B'LIE(Z)

234 P.K.H. GRAGERT

Thus, one can work like this: choose a name for the Lie product and declare this
name ALGEBRAIC OPERATOR, take LIE, for example. Then a Lie product-
able of, say, n basis elements is represented by LIE(i, j); LIE(i, j) representing
the Lie product of the ith base element with the]th base element, 1 <~ i ~< n and
1 ~< j ~< n. Naturally, the antisymmetry of the Lie product will be used, i.e., only
Lie(i, j)'s will be used with 1 <~ i < j < - n.

T.his choice guarantees a unique representation of Lie products. By this
convention, the REDUCE system will successfully simplify expressions contain-
ing abstract Lie products.

Furthermore, fixing the polynomial variable to be, for example, X, one can
represent any Lie algebra element, also if not all structure constants are known,
by a sum of a polynomial in X and a sum of terms, where each term contains
exactly one factor with LIE(. . .) linearly!

A basis of the Lie algebra, say xi, is isomorphically mapped onto a polynomial
by xi (- -) X~; i = l n.

The last step is writing a function which multiplies two Lie algebra elements of
any form using the more-or-less 'filled' productable LIE(/,]). In the package
described, this Lie product function is called BLHK (bilinear haak, meaning
bilinear bracket (Dutch: haak, English: bracket)). To get unique representations
of products of products, the necessary care is taken in writing BLHK and some
other underlying functions to get unique representations of the Lie algebra
elements, helping to simplify expressions as much as possible!

Besides BLHK, a function is added to compute the essential Jacobi identities.
This function is called TESTJAC, which will be shortened to TJ by a DEFINE-
statement: DEFINE TJ = TESTJAC; The package must be initialized to a given
dimension, because ARRAY's are used to compute coefficients of a polynomial,
by calling the function INIBLHK appropriate.

Before going on, the reader is kindly requested to follow the REDUCE
session, demonstrating the features of the abstract Lie algebra package. Please
pay attention to how the default values (LIE, X) of the Lie productable and the
polynomial variable are changed, demonstrating the flexibility of the package,
and to the functions PRINTTAFEL, printing the productable, and
LIE!@REVAL, which reorders arguments of an abstract product, according to
the adopted order preference. An example of basic Lie algebra computations is
as follows:

*fload blhk, opcoef; comment loading o f the package;
EXECUTE: INIBLKH(MAXIMAL DIMENSION); *iniblhk 4;
D!@LIE = 4
THE ARRAYS: A!@K1, A!@K2 and !@JANAX ARE INITIALIZED
INIBLHK END

* off msg; define q = t e s t j a c ;

*blhk(x,x'3);
LIE(l,3)

LIE ALGEBRA COMPUTATIONS

*blhk(x~3,x);
- L I E (l , 3)

~blhk(a *lie(1,3) + x,x~2 + lie(d));
L I E (l , 2) - L I E (L I E (D) , 1) + L I E (L I E (1 , 3) , 2) * A +

L I E (L I E (1 , 3) , L I E (D)) * A

*lie(I,4): -- b*x ~2;
L I E (l , 4) : = x2*B

*tj(2,3,4):

L I E (L I E (3 , 4) , 2) - L I E (L I E (2 , 4) , 3) + LIE(LIE(2,3) ,4)

*tj(I,3,4);

- L IE(2 ,S)*B + LIE(LIEO,4) , 1) + LIE(LIE(I ,3) ,4)

*lie(I,3): = x ~4;
L I E (l , 3) : = X 4

*t j(1,3,4);
LIE(2 ,3)*B + L I E (L I E (3 , 4) , 1)

*lie(l ,2): = O,
L I E (l , 2) : = 0

"Iie(3,4): = x ~3;
LIE(3 ,4) : = x 3

*tj(1,3,4);
- L IE(2 ,3)*B - X 4

"1ie(2,3) := - x ~4/b;
LIE(2 ,3) : = (- x4)/B

*tj(I,2,3);
LIE(2 ,4) + X 2

~1ie(2,4) : = - x ^2;
LIE(2 ,4) : = - X 2

*for i : = 1:2 do for J : = i + i :3 do for k : = j + 1:4 do
write i, " "; j, " ",k, " ": tj(i,j,k) ;
1 2 3 0
1 2 4 0
1 3 4 0
2 3 4 0
* c o m m e n t all 4 Jacobi identities are zero.t;

*printtMel 45
L I E (l , 2) : = 0;
L I E (l , 2) : = X 4

235

236 P.K.H. GRAGERT

LIE(l ,4) := X2*B;
LIE(2,3) := (- xa)/B;
LIE(2,4) := - X2;
LIE(3,4) := X3;

*comment Lie algebra; if B is not zero! Implicitly assumed!;
*lisp !@lie : ='newlie;
NEWLIE

*blhk(x ̂ 5,x^2);
D E C L A R E NEWLIE OPERATOR? (Y/N)
?y

- NEWLIE(2,4)

*lisp !@lievar : ='y;
Y

*blhk(x,x + x ^2);
***** COM!@LIE: X IS NOT AN A L G E B R A ELEMENT
*comment error message, ff one tries to compute Lie products with expres-
sions not to be considered lie algebra elements;

*blhk(y,y + y^2);
NEWLIE(1,2)

*!@liereval newlie (1,newlie(1,2)) ;
-NEWLIE(NEWLIE(1,2) , I)

6. Automatic Evaluation of Jacobi Identities

Before programming some useful functions for helping, finding, and constructing
a Lie algebra, which contains the Lie relations resulting from the prolongation
approach, the Lie relations will be analyzed in theory and will give all available
computational possibilities.

First, some notations are introduced: Let L be an n-dimensional Lie algebra
over a field K. Let xi, i = 1 n, be a basis of L. The Lie product [xi, xj] will
be written as LIE(i, j), to relate this analysis to the already-introduced R E D U C E
package for Lie algebras. The Jacobi identity

[[x,, xj], x~] + [[xj, x~], x, i]+[[xk, x,i], xj] = o

will be written as J(i, j, k) = 0, or, equivalently as

LIE(LIE(i , j), k) + LIE(LIE(j, k), i) - LIE(LIE(i , k), j),

omitting '=0 ' . This is the notation used in REDUCE. The following index sets
are used:

LIE ALGEBRA COMPUTATIONS

t={1 , . . . , n},
EP = {p = (i, i)I i , / c I, i < j }
E T = { w = (i , j , k)li, j, kE I, i < j < k}

essential index pairs
essential index triples.

237

By this notation, J may be regarded as a function on ET into L, LIE(p), p E EP,
may be regarded as the productable of an anticommuting algebra, which will be a
Lie algebra, if J(w) = 0 for all w e ET.

Any J(w) = J(i, j, k), w ~ ET, will be called an essential Jacobi identity. The
Lie relations from the prolongation approach, in general, look like

R/: E d{X' + E fl~LIE(p) = 0.

After (algebraically) solving each relation Ri for a (not yet solved) LIE(p3, the
result is, so to speak, a Lie algebra productable, which is incomplete: Some of the
products [xi, xj] = LIE(i, /) may not be known, some may be known, and all
others are partly known, because they are related to not-yet-known essential Lie
products. (Reminder: The products LIE(p), p ~ EP, are called essential.) Thus,
the problem to be solved may be stated as follows: given an incomplete
productable of an anticommuting algebra, fill in all unknown (essential) products,
such that the result becomes a Lie algebra. Solving this problem now means:
check all J(w), w ~ ET, whether the values are the zero-element of the algebra or
not. If any J(w) is not (yet) zero, one gets a condition on the (yet) unknown
products LIE(p).

Now the different possibilities of a J(w) have to be discussed, giving all
computational possibilities for solving the above-stated problem.

The most general form of a J(w) looks like

J(w)= ~, d~X'+ ~, flpLiE(p)+ ~ 7qk LIE(LIE(q), k))=O,
i~IX(w) p~lP(w) qk~lT(w)

where the following sets are introduced

IX(w) c I
IP(w) c EP for any w ~ ET.
IT(w) = (pklp EP, k e I)

These index sets will change while solving the problem.
If J(w) = 0 holds, the three index sets IX(w), IP(w) and IT(w) are empty sets,

the goal of the problem!
At an intermediate stage of the solving process for a fixed w e ET, four

different cases can be recognized.

(Case 1) IX(w)=IP(w)=IT(w)=O. This means, that the Jacobi identity
already holds for xl, xj, Xk ; ((i, j, k) = w), and nothing has to be done.

(Case 2) IX(w):~ 0, IP(w)= IT(w)= 0. This means, that there exists a linear

238 1'. K. H. GRAGERT

relation between the base elements xi. This is a contradiction and may only be
solved by reducing the dimension of the Lie algebra L by at least one.

(Case 3) I P (w) ~ l , IT(w)=O. This means, there exists a linear relation
between (yet) unknown Lie products, therefore solve J(w)= 0 algebraically for
any LIE(p), p ~ IP(w).

(Case IT(w)~¢ . This means, that J(w) contains a term involving a Lie
product with one factor a (not yet) known Lie product. Such a Lie product will be
called nested Lie product. This case needs special attention.

(Case 1) and (Case 3) are suitable for automatic calculations and indeed a
function LOSOP (solve in dutch) is written to carry out these calculations. Some
intelligence is built into the constituent functions of LOSOP, namely to check
only the J(w)'s which have not been checked earlier in the computational process
and which will not belong to (Case 4). If (Case 2) is encountered, the automatic
process is stopped, because an assumption is violated. To adjust the state of the
system in (Case 2) is sometimes easy and sometimes difficult. The information,
the linear dependency, is in itself valuable information. One should feed in this
information at an appropriate (earlier) point into the computations and resume
the solving process.

If LOSOP reaches its normal end, either a Lie algebra is found or the
productable is still incomplete which means all not (yet) checked Jacobi identities
J(w) are of (Case 4).

In the latter case, one may check the consequences of three different ap-
proaches to break the tie: (a) artificially introduce a linear dependence; (b)
artificially introduce a value for an unknown Lie product - zero or a linear
expression of the basis with or without parameters (to be determined). (c)
artificially introduce a new basis variable for an unknown Lie product extending
the dimension of the Lie algebra by 1.

All three methods (a), (b) and (c) have been used successsfully on different
problems, although it must be said, that up to now, there is no theory which
guarantees a finite-dimensional nontrivial solution.

Example using LOSOP for 2 given Lie relations:

LIE(l,2) - LIE(2,3) = 0
LIE(l,3) - X"2 = 0

Compute a Lie algebra, containing these relations. There are infinite many
solutions, here the most general 4 dimensional Lie algebra will be computed.

*fload blhk, opcoef, jana, losop; comment load the package!;
EXECUTE: INIBLKH(MAXIMAL DIMENSION);
TO TAKE OWN DECISIONS IN JACOBIANA, EXECUTE:
!@JANADECIDE :-- 2;

LIE ALGEBRA COMPUTATIONS 239

*iniblhk 6;
D !@LIE = 6
THE ARRAYS: A!@K1, A!@K2 AND !@JANAX ARE INITIALIZED

INIBLHK END

*lie(I,2) :-~ 1ie(2,3)$

*lie(I,3): = x ^2S
*define tj = testjac;

*t j(1,2,3);
LIE(LIE(2,3),3) + LIE(LIE(2,3), 1)

comment $ suppresses output!;

*comment (case 4), e.g. introduce a new variablet.;
*1ie(2,3) := x^4
*losop;
1 ,PART
1 2 3 comment essential triple;
- LIE(3,4) - LIE(l,4) comment J(1,2,3);
SUCCESS WITH LIE(l,4) comment j(1,2,3) = 0 solved for LIE(l,4)
LOSOP END

*comment all other J(w) are of (case 4) type, therefore look for them by

hand;
*q(1,2,4);
LIE(LIE(3,4),2 + LIE(LIE(2,4),1) comment two different nested Lie

products, nasty, look for another;

"6(1,3,4);
Lie(2,4) + LIE(LIE(3,4),3) + LIE(3,4), 1)

*comment (case 4) easy one, introduce a linear combination for 1ie(3,4),
using the helpfunction EL;

*Lie(3,4) := el(4,a);

LIE(3,4) := X4*A4 + X3*A3 + XZ*A2 + X 'A1

*losop; comment automatic check of J(w)'s;
1. PART
1 3 4 comment essential triple;
LIE(2,4) + X2*(A1 - A3) comment J(1,3,4);

SUCCESS WITH LIE(2,4)
LIE(2,4);

comment relation solved for

240

2. P A R T
1 2 4
2*X4*(A1 - A3) + X2*A4*(A1 - A3)

A I * A 4 := A3*A4

A1 := A3
2 3 4

0
LOSOP END

P.K.H. GRAGERT

comment second automatic loop of LOSOP;
comment essential triple;
comment .1(1,2,4);
comment condition on paramaters
comment condition on parameters;
comment essential triple

comment J(2,3,4) = 0 holds already;

*comment condition al *a4 = a3*a4 became superfluous;

*printtafel 4; comment show the solution!;
LIE(l ,2) := X4;

LIE(l ,3) := X2;
LIE(l ,4) := - X4*A4 - X3*A3 - XE*A2 - X ' A 3 ;

LIE(2,3) := X4;

LIE(2,4) := 0;
LIE(3,4) := X4*A 4 + X3*A3 + A2*A2 + X ' A 3 ;

*comment a three parameter solution, the most general 4 dimensional one!;

7. Application o! the Lie Algebra Package to the Prolongation
Approach ot the Korteweg-de Vries Differential Equation

The prolongation of the Korteweg--de Vries differential equation (KdV) is
discussed in the literature [1, 4, 7], and will not be repeated here. The success of
van Eck in explicitly describing the infinite-dimensional Lie algebra of the KdV,
was dependent on the results computed by the package described in the forego-

ing sections. The idea here is to summarize the computational process to'find the
crucial value sof Ix4, xs], necessary in the proof of van Eck [4]. The Lie relations
for the KdV of the prolongation approach are the following:

LIE(l ,3) = LIE(2,3) = LIE(l ,4) = LIE(2,6) = 0
LIE(l ,2) + x 7= 0; LIE(l ,7) - x s = 0; LIE(2,7) - x 6 = 0;

LIE(3,4) + x 8 = 0; LIE(2,4) + x 9 = 0; LIE(l ,5) - x 9 = 0;
LIE(l ,6) + x 7 - x 8 = 0

These relations are the input to the package. Calling LOSOP gives:

w J(w)
1. part 1 2 7 L I E (2 , 5) - x 8 + x 7

1 2 6 LIE(6,7) + L I E (2 , 8) - x6
1 2 3 LIE(a,7)
1 3 4 LIE(l ,8)
1 2 4 LIE(4,7) + LIE(l ,9)
2 3 4 -LIE(6 ,7) - LIE(3,9) + x6

LIE ALGEBRA COMPUTATIONS

2. part 1 3 7 LIE(3,5)
1 2 5 LIE(5,7)+LIE(2,9)+x5
2 3 7 LIE(3,6)

3. part 1 3 6 LIE(3,8)
1 3 5 -LIE(6,7)+x6
2 3 6 0
2 3 5 0

4. part 1 6 7 -LIE(7,8) - LIE(5,6) - x8 + x7
1 3 8 0
1 2 8 LIE(5 ,6)+x8-x7
2 6 7 0
2 3 8 0
3 6 7 0

5. part 1 7 8 LIE(5,8)
1 5 6 -L IE(6 ,9) -LIE(5 ,7) -x5
2 7 8 LIE(6,8)
2 5 6 0
3 7 8 0
3 5 6 0

6. part 1 6 8 0
1 5 8 -LIE(8,9)
2 6 8 0
2 5 8 0
3 6 8 0
3 5 8 0
5 6 8 0
6 7 8 0

7. part 3 8 9 0

LOSOP END

241

Thirty-four Jacobi identities were checked and evaluated automatically! Now
extending the dimension up to 18, more than 100 Jacobi identities have to be
evaluated to give an inconsistency, which gives here the valuable information,
after introducing x 9 and x 1° for LIE(I,5), respectively LIE(5,7), that LIE(5,10)
must be - x 9. Hereafter, expanding the dimension again up to 12, delivers the
crucial relation LIE(4,8)= 0. For this step again more than 50 Jacobi identities
were evaluated automatically. These computational steps are omitted, because
the way of working should already be understood.

8. Some Concluding Remarks

The Lie algebra package is written in R E D U C E 2, although R E D U C E 3.3 is
now sold. Because there are some essential differences between these releases, all

242 P.K.H. GRAGERT

the wri t ten funct ions of the package have to be adjusted; this work will be

finished soon.

O the r funct ions have also been developed , e.g., the compu ta t i on of the Killing

fo rm of a Lie algebra, the compu ta t i on of the solvable radical of a Lie algebra,

and a base t ransformat ion of a Lie algebra, even if no t all the s t ructure constants
are known, and it is interesting in the discussed field of application. T o implement

such funct ions means more or less using l inear a lgebra but, nevertheless, it is

worthwhi le using these tools in the appropr ia te c i rcumstances .

References

1. Wahlquist, H. D. and Estabroook, F. B.: Prolongation structures of nonlinear evolution equations
I, J. Math. Phys. 16 (1975), 1-7.

2. Estabroook, F. B. and Wahlquist, H. D.: Prolongation structures of nonlinear evolution equations
II, J. Math. Phys. 18 (1976), 1293-1297.

3. van Eck, H. N.: Lie groups in prolongation theory, PhD thesis, University of Twente, The
Netherlands.

4. van Eck, H. N.: The explicit form of the lie algebra of Wahlquist and Estabrook, a presentation
problem, Proc. Kon. Ned. Akad. Wetensch., Ser. A 116 (1983), 165-172.

5. van Eck, H. N., Gragert, P. K. H., and Martini, R.: The explicit structure of the nonlinear
Schr6dinger prolongation algebra.

6. Shadwick, W. F.: The KdV Prolongation Algebra. J. Math. Phys. 21 (1980).
7. Gragert, P. K. H.: Symbolic computations in prolongation theory, PhD thesis, University of

Twente, The Netherlands, 1981.

