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Abstract .  The  calculation of the vector representat ion of resonators  in the  coupling and 

loss eigenstate spaces is presented.  The  coupling and loss eigenstates are located in a 

Cartesian coordinate system, together  with the vector representat ion of resonators.  The 

convenience of this representat ion is illustrated by calculations of the coupling factor and 

the  loss factor in an octant  of space in which resonators  are positioned. 
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(i, j e lement  of the) matrix c, the elastic stiffness matrix at constant  

dielectric displacement.  

(i, j e lement  of the) matr ix d, piezoelectric strain coefficient. 

dielectric displacement  vector. 

i, j e lement  of the matrix e, piezoelectric stress coefficient. 

9 dimensional  state vector, containing 6 elastic strain e lements  % i = 

1 . . . . .  6 and 3 electric fields Ei, j = 1, 2, 3. 
state vector which is also a median  vector 

i, j e lement  of the matr ix g, the  inverse piezoelectric stress coefficient. 

i, j e lement  of the matr ix h, the inverse piezoelectric strain coefficient. 

coupling factor. 

the elastic-dielectric-piezoelectric matrix 

in which the elements  d are made  equal  to zero. 

the elastic-dielectric-piezoelectric matrix 

in which the elements  s E and e T are made  equal to zero. 

(i, j e lement  of the) elastic compliance matr ix s, at constant  electric field 

E. 

(i, J e lement  of the) elastic compliance matrix s, at constant  dielectric 

displacement  D. 

elastic strain vector. 

elastic stress vector. 
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internal energy. 
elastic, mutual, dielectric contribution to the internal energy. 

(i, j e lement of the) impermeability matrix/3, at constant stress. 
impermeability matrix at constant strain. 

(i, j e lement  of the) dielectric coefficient matrix at constant stress T. 
angular frequency. 

1. Introduction 

The theory of coupling and loss eigenstate has three uses: 

A. It may be applied for characterization purposes, whereby a quick 
glance is sufficient to determine whether or not a material is 
suited for a special application. 

B. Resonator vectors may be decomposed into the coupling and loss 
eigenstates, which enables us to conclude immediately which 
geometry of a (possibly oblique poled) sample might best serve 
our purpose. 

C. It gives the extreme potentials of a material, and is here applied 
to both coupling and loss. 

In recent years, a large number of new ceramic compositions have 
been investigated and tabulated in such well-known handbooks as 
Landolt-BSrnstein [1] but also in more specialized books such as [2], 
[3] and [4]. When a designer wishes to construct a piezoelectric device, 
he may consult these tables and try to select a particular suitable 
material for his requirements. Usually he is inconvenienced by the fact 
that not all material constants of a certain composition are known. 
Moreover,  the imaginary parts of the elastic, dielectric and piezo- 
electric constants are usually unknown, or they are measured at a 
frequency that differs greatly from the operating frequency of his own 
device (tan 6 of the dielectric constant is often measured at 1000 Hz). 

On the other hand, he may have some materials available, none of 
which really fulfill the requirements he imposes. In this case a choice of 
a partictflar device geometry and a certain poling axis, might serve him 
well, although the other extreme, where no device geometry or direc- 
tion of excitation might be satisfactory, may also be true. 

It is the purpose of this paper to present the calculations for this type 
of problem and to clarify the meaning of the coupling and loss 
eigenstate spaces. Further, it is explained why some geometries are 
more appropriate for certain applications than others. 
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The concepts of eigencoupling and loss states were published in 
1969 by Holland and EerNisse [5], but were mostly considered by the 
authors [6] to be a mathematical curiosity without technical applica- 
tions. To the knowledge of the present authors it is the first time that 
practical situations are described in the framework of the eigenstate 
theory. Firstly we shall present the results of the calculations of the 
eigencoupling factor and the associated eigenstates. Further,  the 
characteristic vector of a certain resonator geometry will be calculated 
and positioned in the eigencoupling space. This is done for thin rings, 
bars with parallel and perpendicular poling axis, radial resonators and 

finally for thickness dilation resonators. 
The fourth section treats the renormalized coupling factor and 

shows how the eigencoupling space and the eigenloss space can be 
shifted into each other. 

2. Eigen or stationary coupling factors 

If a material is considered to be lossless, we can derive for the 
electroelastic contribution to the internal energy density: 

U =½T ~ • S+ I t ~D • E (1) 

or, using the constituent equations, of piezoelectricity [11] 

U=~T1 ~ . s  E . T + ½ T  t . d  ~ . E + ½ E  ~ . d . T + I E  t . ~ r . E  

= UE + 2 U M +  Up. (2) 

We define the coupling factor as: 

2UM 
k - U z  + U p  " (3) 

The stationary values of k are found as solutions of: 

Ok Ok 
0 T = 0 ,  ~-~i=0 i = 1 , . . . , 6 ;  ] = 1  . . . . .  3. (4) 

3. Representation of resonators in the coupling state space 

It appeared that we could define a particular vector having useful 
properties. It is called a median vector Fm and it is defined by the 
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following properties P: 

Pi a median vector is normalized to 
energy density equal to 1 J/m 3 

J. G. SMITS AND A. J. MOUTHAAN 

have dielectric plus elastic 

UE + Uo = 1 J/m 3 

P~ the distribution of energy is such that 

UE = Up = ½ J/m 3. (5) 

If the coupling factor k associated with a vector F is written as 
k(F), it readily follows from these properties that: 

Piu when the length in (T1, T2, T3) space of a median vector Fm is 
changed, and at the same time the electric field is also changed 
then the new vector F,. + AF may still have property P~, but no 
longer P~, and further the following relations are valid 

k(Fm+aF)<k(V~) if F ~ . M o . F I > 0 ,  (6) 

k(F~+AF)>~k(F,.) if Ftm-Mo-Fl~<0.  (7) 

Piv when a median vector F.~ is infinitesimally changed to a new 
median vector F "  =Fm + AF, then 

k(F,.+/iFm)>k(F,,~) if / I F t .  M o . F ~ > 0 ,  (8) 

k(F,.,+AFm)<~k(F,~) if / IFm.M0 .F I~<0 .  (9) 

The proof of Pai and Piv is simple and will not be presented here. Note 
that all coupling eigenstates are median vectors. 

For ease of reference the coupling eigenstates are tabulated in table 
1. It is clear that we can unambiguously distinguish shear modes from 
dilatation modes, because shear modes are not piezoelectrically 
coupled by fields parallel to the spontaneous polarization. Only fields 
perpendicular to this axis excite shear deformations. This is reflected 
by the field of zero's in the matrix of the constituent relations, above, 
below and to the right and left of the inner shear heart  of the matrix 
[11]. In figure 1 the eigenstates are drawn, together with their coupling 
factors. The x and y-axes point out of the paper, at angles of 45 °, 
allowing us to draw F1,  F 2 and F 3 in the plane of the paper, while F 9 

points towards the reader. In the analytical expression for F 9 w e  find 
no dependence on piezoelectric coefficients; apparently this mode has 
no relation to piezoelectricity. It represents elastic forces in the +x and 
- y  direction, and it is therefore equivalent to the Lam6 mode in 
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TABLE 1. Eigenstates and eigencoupling factors of poled ferroelastic ceramics. 

F1 Fz F3 V4 1:5 F6 F7 F8 F9 

e31 e31 a 1 
0 0 0 0 0 

x/73T3_ es3 ~ 2 s.~66 

e31 e31 ot --1 
0 0 0 0 0 

~ T 3  -- E~ 3 ~ 2 S~66 

e31 e33 -d31~ 0 0 0 0 0 0 
T S T S "~-E13-- E 33 ~ 3 3  d33 

1 1 
0 0 0 0 0 0 0 

1 1 
0 0 0 0 0 0 0 

1 
0 0 0 0 0 0 0 0 

- 1  1 1 
0 0 0 0 ~x/~T - Fx/~T, ex/-~L 0 0 

-1  1 
0 0 0 0 0 0 0 

1 - 1  1 1 
o o o o o 

kl k2 k3 k4 k5 k6 k7 k 8 k9 

I I + + 

+ r 
The columns form the eigenstates, while their associated eigencoupling factors are 

printed Vertically below them. The nonzero elements of F 4 to F 9 are the inner shear 
heart. 

plates,  which canno t  be  excited in ceramics [7]. In  figure 2 half of the 

elastic par t  of the coupl ing space of P Z T 4  is shown [8]. A ne t  formed 

by  solid l ines of cons tan t  (0, ~)  (in polar  coordinates)  indicates  the 

shape of a t h r ee -d imens iona l  ellipsoid. The  length  of a vector  f rom the 

or igin  to the surface of this ell ipsoid indicates  the requ i red  elastic force 

in the (0, 4)) d i rec t ion  necessary  to ob ta in  an elastic energy  densi ty  of 
1 3 J /m in the mater ia l .  
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Fig. 1 
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Piezoelectric eigenstates of a ferroelectric ceramic. 

The eigenstate F9 is perpendicular to the plane of the paper. This 
picture is drawn by means of a computer  program, which calculated 
the location of the projection of a point on the surface onto a plane, 
spanned by the vectors (0, 0, 1) and (1, 1, 0). The ellipsoid is drawn as 
it is percepted by an observer, whose eye is at a distance from the 
plane of the paper, which is approximately equal to three times the 
length of the major  axis of the ellipsoid. 

The contours in broken lines running from the lower left to the 
upper right, are the lines of constant values of the coupling factor. A 
normalized vector with angles (0, 4~) in polar coordinates, has a coupl- 
ing factor indicated by the value of k at the point (0, 4~) on the surface 
of the ellipsoid. We see that a vector of normalized length and of 
appropriate dielectric energy content in the direction of the x-axis, will 
reach a coupling factor k~ = -0 .32 ,  while a vector along the z-axis will 
achieve k~ = 0.68. When the vector of a particular state does not 
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contain an appropriate amount  of dielectric energy (it is not a median 
vector), the modulus of the coupling factor is always lower. The 
limiting vectors with elastic or dielectric energy content equal to zero, 
are associated with coupling factors zero. 

It should be noted, that in the calculations of the eigencoupling 
states, these states are without phase components, which excludes 
phenomena very close to elastic resonance. At  this point it is important  
to distinguish the purely elastical phenomenon of resonance, causing 
phase shifts between T and S, and the phenomenon of coupling 
between the dielectric and elastic properties. For resonators it is clear 
that good coupling properties will result in large phase variations near 
resonance, and a large frequency interval between the so-called reso- 
nance frequency and the antiresonance frequency. This means, that 
even if we exclude phase shifting in the eigenspace, the vector rep- 
resentation bears information about the relative quality of resonators. 

We are now in a position to start calculations of the state vector of 
various modes. Because of the lack of spatial variations of the elastic 
forces, we begin with the radial mode in samples with the shape of a 
thin ring. 

A. RADIAL MODE IN THIN RINGS 

All volume elements are subjected to the same forces T1 and E3, 
whether the electrodes are inside and outside the ring or at the top and 
bot tom plane [8]. The constituent relations for this set of boundary 
conditions reduce to: 

where 

$1 = s~aT1 + d31E3, 

D 3 = d31T 1 + e~3E3. 

d31 [ 09 2 \ d31 
T 1 = ~ \mo-CO-/~----~]E3 = ST  E3R' 

(lO) 

(11) 

oj2-_ 1/a2 ps~l 

a = radius of the ring 

in which R is the resonance term, and in which the time dependence 
e j~t is suppressed. 
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According to the definition of k in equation (3) we find: 

2 UM d31 T1E3 
k = UE . j#~ = 1  E ,TO --1 T P '2"  (12)  

~811 1 ~ t ~E33~ 3 

The electric field E3 is adjusted in such a way that: 

1 z - . 2 -1  r F2 _ 1 J/m 3 (13) ~ S l l l  1 -I- ~E 33-1[U-,3 -- 

which yields: 

/1 1 de \-1/2 
E 3  = V2 ~3T 3 ~ - - - ~ @  g 2} , ( 1 ' )  

2 sll ] 

d31 /1 r l d ~ 1 \  -*/2 
T, = s---~l R~e33 +5~11) . (15) 

By substitution of (14) and (15) in (12) we now find for k: 

d21 R 

k = s~ 1 [1 r d321 2 \ "  (16) 
~833-}-~s~l R ) 

The frequencies of the extreme values for k are found to be: 

2 
60~,2(k -= kextr ) = ¢-°o d31 ' (17) 

1 ± /  ~ r 
"V Sl1833 

where the plus and the minus signs correspond to a maximum and a 

minimum for k of: 

:1:d31 
k i  = E--------~ " (18) 

4 S l l E 3 3  

Examination of T1, E3 and the energy densities UE and ED shows, that 

at these frequencies 

+1 1 
T 1 -  $ ~  1 E 3 -  ~f-~3 

and 

UE = Up =½ (19) 

SO we conclude that the state vector of the ring resonator is a median 

vector at these frequencies. Below and above these frequencies the 
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behavior of k is reflected by Piii- T1 is the only component  in a ring, 
and consequently, the elastic part  of the vector representing of the ring 
(the state vector), is collinear with the x-axis. The vector, which 
increases quadratically at low frequencies, contacts the surface of the 
ellipsoid at a frequency ¢ol. (See equation (17)), where the coupling 
factor is a maximum. It increases asymptotically to resonance, where 
sign reversal occurs and now decreasing with increasing frequency, it 
again contacts the surface of the ellipsoid at ~o = ¢o 2. This point is at the 
opposite side of the ellipsoid where the coupling factor equals 

IE T - G ~ / ~ .  

B. O T H E R  MODES OF VIBRATION 

Before we proceed, we realize that in bars and plates T and E depend 
on the place. At  any place r in the body of a resonator, we may 
consider an infinitesimal volume element dx dy dz = dr in which we 
assume T(r) and E(r) to be constant. Then we can write 

u (r) = ½S~(r) • T(r) + ½D~(r) • E(r), (2o) 

In order to facilitate the calculations, we collect the six elastic forces 
and three electric fields in a generalized force vector F of nine 
elements, we designate the elastic and dielectric matrices by Mo and 
the piezoelectric matrix by M1 according to 

dr) (21) 

and rewrite (20) as 

u(r) -- ½F ~(r). Mo" F(r) +½F ~(r)- M~. F(r). (22) 

in which u(r) is the local energy density. From (22) we define the local 
coupling factor k(r) as 

½F (r). M~- F(r) 
k(r) = ½F ~(r) Mo F(r)" (23) 
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The total electroelastic energy is then: 

U = ~ u(r) dr 

V 

and we can introduce the " total  coupling factor"  kv as 

95 

(24) 

1 
kv = V  f k(r)dr ,  

v 

where V denotes the volume of the body. 

(25) 

C. LENGTH EXPANDER BAR WITH FIELD PERPENDICULAR TO LENGTH 

The boundary  condition for these resonators are the same as for the 
ring resonator,  but Newton 's  equation has a different form, due to the 

spatial variation of T [8]. This leads to: 

d31E3(cosax' ) d31E3 
T1 = s--~l \co--s a]2 1 = s---UH-- H (R~ - 1) (26) 

in which a = wl/v, (v is velocity of sound propagation) and x ' =  ½-x/ l .  
For the meaning of x and l we refer  to figure 3. 

A plot of T1 is shown in figure 4, where the electric field E3 is 
assumed to be 1 V/m. Here  we see a y-axis which serves as the T1 axis 
and an x-axis on which a point indicates the place in the bar  at which 

the forces, energy densities and the coupling factor are evaluated. The 
free ends of the bar are equivalent to x '  = +0.5, while the center of the 

bar  corresponds to x ' =  0. The reduced frequency axis, i.e. the a-axis  

which is perpendicular  to x and y-axes is shown pointing away from 

Z 

z 

Fig. 3 The length expander bars with electric fields perpendicular and parallel to 
lengths. 
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Fig. 4 Plot of Tl(freq, place) perpendicular poled bar resonator. 

the reader and slanting upwards. The dependence of T1 on x is 
calculated for different values of the frequency with increments of 
zia = 0.05. Resonance is then found at a = ",-]2. For low frequencies 
the dependence of T1 on x is shown as a part of a negative cosine, 
while with increasing frequency T1 extends in negative direction, 
changing its sign at resonance and again decreasing with increasing 
frequency above resonance. As the frequency dependence is calculated 
from d.c, to twice the resonance frequency, the diagram is shifted to 
the right above resonance, to avoid too many crossing lines confusing 
the reader. At  00 = 2~ore s the value of T1 has not diminished, although 
the electrical admittance of the bar shows no particular behavior at this 
frequency. The local coupling factor is found by substituting (26) into 
(23), giving: 

d~(R~ - 1)/sf ,  2K~I(Rs - 1) 

k'°c =~½s[, ( s ~  ~ (Rs - 1))a +5e331 T = 1 + ~ ( R s  - 1)2 (27) 

in which the familiar cluster a r E d31/e33s11 is denoted as K~I. In figure 5 a 
plot is shown of the local coupling factor as a function of the position 
in the bar and of the frequency. The figure consists of two parts, below 
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and above resonance. The part above resonance being again graphi- 
cally shifted to the right, to avoid too many crossing lines. We see that 
at a frequency of 0.838 Xfres [8] the local generalized force vector for 
the centre of the bar is a median vector. For frequencies closer to 
resonance, the local elastic energy density becomes too high, resulting 
in lower values of kloo. This causes of the maximum to be split into two 
maxima, which move outwards to the ends of the bar when the 
frequency approaches resonance. The definite integral of k]oc over the 
whole bar yields: 

4K321(l+b) 
k t o t  - abet 

tp  /tan2 a+2r  tan-a+ s )  4 4 L 
• log[ 4 2-- 

~tan2 4-2r tan ~+ s 

( ( t a n 4 + r  / ( t a n 4 -  r/~ t 
2(q - rp) arctan - - - - - / +  arctan \ ~ ] ]], 

\ \ , / s -r2 /  ,/s-r 2 / 

(28) 

K L ~  C [ . 

i i i p i i t r c =  i i p p i i i i ~ ~ i i i i i i i i i 

P L R C E - e  

Fig. 5 Plot of a k~oc(freq, place) perpendicular poled bar. 
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where the following abbreviations are used: 

a = reduced frequency: 

b = cos a/2 
oL = 1+  K321(1 - 1/b 2) 

13 = 1 +  K~(1 + l /b)  2 

= 1+  K ~ ( 1 -  l /b)  2 

"IT/D/tO 0 

3 = (1 - b)/(1 + b) 

s = 4 ~ , / / 3  

r = ~/(s - a/~3)/2 

p = (1 + 8/s)/4r. 

(29) 

This expression is of considerable complexity, and for other geometries 

it becomes even more  complicated, so no at tempts were made to 
derive analytical expressions for the total coupling factor of the parallel 

poled bar  and the plate resonator.  In the coupling state space, each 

point in the bar  has its own state vector, which is for all points collinear 
with the x-axis, but  which has different magnitudes for different points. 

Of  course, due to the symmetry  of the bar  with respect to the centre, 
symmetrically located points have the same state vector. These vectors 

contact the surface of the ellipsoid each at a different frequency 
depending on position, in the bar. At  resonance they all change sign 

while with increasing frequency, they all pass the ellipsoid surface 
again. For  a large port ion of the bar  the local state vectors remain very 

close to the surface of the ellipsoid, resulting in a coupling factor which 

is almost maximum, for this part  as ment ioned before. 

D. LENGTH EXPANDER BAR WITH FIELD PARALLEL TO LENGTH 

For this geometry  (see figure 3) the boundary  conditions are given by 

T~=T2=O, 
(30) 

T3(0, 1) = 0, 

while we apply a voltage difference ~ e  i°'t to  the electrodes. From 

Maxwell 's  equation V. D = 0  follows for an uncharged insulating 
medium as an electrical boundary  condition: 

OD3 
= O. (31) 

3x3 

I t  is therefore useful to consider as the appropriate  set of constituent 

relations: 

$3 = s~3T3.-t- g33D3, 

E 3 = -g33T3 +/3~'3D3 . 
(32) 
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Newton's equation for this type of excitation gives: 

02~3 1 02~3 

o or2 = s~30x~ 

from which follows 

(33) 

COS a x  3 
$3 = g33D3 - -  - g33D3RB, (34) 

cos a/2 

where ~ is the displacement of a particle from its equilibrium position, 
and a is again the reduced frequency defined by (29). Substitution in 
(32) yields: 

= g3--2 D3(RB - 1), (35) T3 s~3 

7" g~3 E3 = ([333 +-~33 (1-RB))D3. (36) 

In order  to evaluate our  electrical boundary condition (31) we inte- 
grate the electric field across the bar, because as 

1/2 

E3 = 04, i t  f o l l o ws  t h a t  4, ---- -- ] E 3 d x  3. (37) 
c3X3 ' 

--112 

This can be used to calibrate E3, and we find this as a function of 4, 
given by 

E3 = ( 1_  RB~:323) 4, (38) 
tan a/2' 

a/2 
where 

K2 d23 g~3 (39) 
33~---2E T = U T 

833e33 S33~333 

and we calculate T3 as a function of 4, by means of equations (35) and 
(36): 

d33 4, 
T3 = s ~  (RB - 1) . (40) 

2 tan a/2 
- 1 + K 3 3  a/2 

Equations (38) and (40) express/73 and T3 as functions of the external 
voltage difference 4, and of the frequency oJ (by means of the reso- 
nance term RB (see (34))). If we maintain the voltage amplitude 4, at a 
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constant level (4~ = 1), we can calculate and plot T3 and E3 versus to: 
these plots are shown in figures 6 and 7. The plots are not trivial 

variations of the plot of T1 for the perpendicular poled bar, because 
they show the phenomenon  of the so-called "precursory"  resonance. 

While the " t rue"  resonance frequency is found as the resonance of $3, 
we observe a shifting to lower frequencies of the resonances of 7"3 and 

E3 which is caused by the occurrence of a zero in the numerator  of 
(38) and (40) for a frequency lower than resonance. The precursory 

resonance frequency % is found as a solution of a transcendental 

equat ion 

k~3 -- tan %/________2 (41) 
ap/2 

which shows that the shifting is larger for greater piezoelectric effects. 

A similar shifting was already observed in piezoelectric plates by 

Tiersten [9]. At  the " t rue"  resonance, the pole in the denominator  is 

cancelled by the pole in the numerator ,  and no discontinuity is ob- 

served in the behavior  of T3 and E3. In our example we used K33 = 0.7, 
which gives a precursory resonance frequency of 

0.748fres, or % = 2 . 3 5 .  

Further,  we observe that  E3 has negative values near precursory 
resonance, which indicates that an inverted potential  difference exists 

Fig. 6 Plot of T3(freq, place) parallel poled bar resonator. 
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• k I P L F ] C E - - 4  / \, 

. /  . j .  . . . . .  

Fig. 7 Plot of E3(freq, place) parallel poled bar resonator. 

at the central region of the bar  (below precursory resonance) or at the 
ends of the bar (above). This inversion, or generally the dependence of 

E3 on position is the main reason for considering the voltage difference 
4~ across the electrodes as an externally controlled parameter ,  contrary 
to the resonator  with field perpendicular to length where the electric 

field is considered as such. Figure 8 shows a plot of the local coupling 

factor as a function of the position in the bar, and of frequency, kloo 

T 

Fig. 8 

- ~ .  2 t 
I 

Plot of k~oo(freq, place) parallel poled resonator. 
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grows rapidly in the centre until it reaches its maximum value (K33) 
long before precursory resonance, where the excitation vector is then 

locally a median vector. With still increasing frequency, the maximum 

splits up into two parts, each of which shifts to the ends of the bar. In 

the regions where E 3 becomes negative, while T3 still remains positive, 
the local coupling factor becomes negative, a phenomenon  which is 

observed even before precursory resonance. The dramatic changes in 

E3 and T 3 at this point are not found in kxoc, because the poles in E~ 

and 7"3 cancel each other out as a common factor in klo~. 
Though it is not clearly visible in the plot (due to large position steps 

in the calculation) klo~ can reach a maximum at any position in the bar 

at a certain frequency below resonance. The position x3~ where kloc 
reaches this maximum is given by 

1 1 a 
x3~ = - a r c c o s - - c o s - .  (42) 

a K33 2 

The  lowest frequency for k~oc to reach a maximum value is found by 
making x3m in (42) equal to zero, which yields for this frequency 
a = 1.59, which is roughly at one half of the resonance frequency. 

Above  resonance the values of E3 and T3 remain more  or less at the 
same level, and the local state vector is located close to the surface of 

the ellipsoid over  a large par t  of the bar, which causes kloc to have a 

maximum value which is more  or less independent  of position or 

frequency. 

E. THICKNESS MODES IN THIN PLATES WITH ELECTRODED MAJOR 
SURFACES AND POLARIZATION PERPENDICULAR TO THESE 
SURFACES 

Suppose we excite an infinitely large plate with certain thickness. Then 

contour modes cannot arise due to the fact that the velocity of sound is 
finite, so no lateral motion nor lateral deformation will be present  

(S1 = $2 = 0). Again we have Maxwell 's  equation ~r. D =  i9, which 
yields for insulating and uncharged materials: 

O D 3  
= O, 

cg x 3 

D1 = 0, (43) 

D2 = 0. 
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The condition of free major  surfaces of the plate results in: 

T3(x3 = ±½) = 0. (44) 

Suppose that the plate is now excited by an externally applied voltage 
difference: 

th(x3 = ½) - q~(x3 = -½) = q)0, (45) 

then this set of boundary conditions enables us to use the constituent 
equations in a configuration with S and D as independent  variables: 

T1 = T 2  = c D 3 s 3  - -  h31D3, 

c 3 3 5 3  - -  h33D3, (46) T3 = o 

E 3 -- - h 3 3 S  3 +/3S3D3.  

Solving these equations, together with Newton's equation, as has been 
outlined in the previous sections for other resonator forms, we find 

(C' 3 
- h3~) q~, (47) T1 = T2 = \c--f333 hg3Rp 

T3 = h33(Rp - 1)~, (48) 

(-h~3 fls3)@, (49) 
E3 = \ C---~-3 Rp + 

where 

(~OE 3s3 COS a x  3 

t b=  h323 2 - a - l '  Rp-- - .cosa /2  (50) 
D s tg 

c33/333 a 2 

Not  all these forces or fields are important, for example plots of T3 and 
E3 are trivial variations of the plots of T3 and E3 of the parallel poled 
bar and we shall not consider them here. A plot of T1 is presented in 
figure 9, which shows that even at zero frequency, T1 has a finite value, 
inside the plate as well as at the surface. For increasing frequency the 
forces grow, even at the surface, which is a consequence of the fact 
that solids have a non-zero Poisson Ratio• The existence of a non-zero 
T1 at f = 0 causes a non-zero, negative coupling factor kloc (see figure 
10) at f =  0. 

Only near resonance, does T3 gain enough influence to render kloc 
positive. T1 has a precursory resonance frequency of 0.885[re~ for 
P Z T  4 as can be seen by making the denominator of • equal to zero• 
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Fig. 9 Plot of T1(freq, place) plate resonator. 

Above resonance we see almost the same deep trench as for the 
parallel poled bar, with two differences: 

a) at the surfaces of the plate the coupling factor remains negative, 
while for the bar it becomes zero at the electrodes. 

b) the local coupling factor does not  achieve as low values for the 
plate as those for the bar. 

KL~C 

Fig. 10 Plot of klo~(freq, place) plate resonator. 
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Fig. 11 Locus of (T1, T3) plate resonator coupling state space• 

We can understand this by considering figure 11, where the locally 
normalized elastic part of the state vector (E > 0) is drawn. The locus 

of T3 versus T1 in which the frequency and place are parameters is an 
ellipse-like curve, of which the inclination of the long axis equals 

arc tan  CEl3/ Cf3 . 
Here  we see that the state vector below resonance becomes a 

median vector in the proximity of a coupling eigenstate with a coupling 
factor zero, whereas it again crosses the UE = ½ contour, left of the T3 
axis. Here  the locus of T3 for the bar crosses the inner contour 
(corresponding to the ellipsoid surface) closer to the eigenstate with 
k = - k l  (see table 1); so it can be expected that kloc for the bar reaches 
lower values. The position where this locus T 1 - T 3  for the plate 
crosses the UE = ~ contour above resonance moves to the right with 
increasing piezoelectric coefficients. It is possible for the crossing point 
of intersection to move to the right of the vertical axis for values of 
these coefficients exceeding those which are presently known, and 
which are not theoretically excluded. This implies that an eigenstate is 
almost excited in a plate vector. Until now it was accepted that it is 
possible to excite an eigenstate vector in a volume resonator having the 
shape of a short, thick cylinder in which radial resonance would 
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coincide with length resonance. Such cylinders have been studied by 
several authors e.g. [10], and it is found that at a certain 
thickness/radius ratio, strong resonance is observed. It is likely that at 
this ratio an eigenstate is excited, which gives rise to strong coupling 
over a large area in the body of the resonator. We now find, under 
certain conditions, that it is also possible to excite an eigenstate in a 
plate resonator. 

The total coupling factor is shown in figure 12, where we see that the 
tendency of shifting to lower frequencies both for the peak and the 
zero crossing (if the piezoconstant is high enough) is met here just as it 
was for the length expander bar with field parallel. The difference 
between the bar and plate resonators, namely that the former had a 
zero approaching positive coupling factor for zero approaching fre- 
quency, while the latter then had a coupling factor of a certain negative 
value, is somewhat artificial, because it is induced by boundary condi- 
tions (43, 44, 45) which explicitly exclude the phenomenon of resonat- 
ing contour modes. 

Fig. 12 Total coupling factor of a plate resonator for different values of the piezoelec- 
tric coefficient d. 
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In the plate resonator the maximum value of kto t is positive, only if 
the piezoelectric effect is small, while for increasing piezoeffect the 
peak value decreases to a negative value. The reason for the negative 
coupling factor in strongly piezoelectric materials is that with increas- 
ing piezoeffect a larger part of the ellipse-like locus is below the 
"dead" mode in the negative coupling factor area. Thus a larger part 
of the volume of the resonator has a negative coupling because with 
increasing piezo-effect, the ellipse-like curve bends outwards and more 
volume elements in the body of the resonator move into the negative 
coupling area. 

4. Representation of resonators in the loss eigenstate space 

The loss eigenstates span the loss eigenspace. Any resonator with a 
known state vector can be represented in the loss space. The direction 
in which the state vector points is the same in coupling space as in loss 
space, as it depends only on the ratio between the entries of the vector. 
However the lengths are different due to different normalizations in 
coupling and loss spaces. In the coupling space the vectors are nor- 
malized so that 

UE + Up - i (51) 

while in the loss space the vectors are normalized to have 

UE + 2U~ + Up = 1. (52) 

It is clear that this normalization mismatch is readily overcome by 
renormalizing the coupling factor: 

2UM 
k ~  . . . .  - U z  + U o  + 2 U ~ "  (53) 

This renormalized coupling factor now has the physical meaning of a 
coupled fraction. The renormalized eigencoupling factors, called eigen- 
coupling fractions are 

T S \1 [2  
E33  - -  e 3 3 )  (54) 

f l  = ( E T 3 ) l / 2  ~ ( /~T 3 - -  e3S3)1/2 ' 

(eT ~s )1/2 
11 - -  11 

f 2  = T 112 T E~1)1/2" (s~l) +(e l l -  

~=0.  

(55) 

(56) 
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The corresponding eigenstates F '  of f are found by multiplying the 
eigenstates F of k by 1/(1 + k) 1/2 

F~ 
Ff - - -  (57) 

~/1+ ki" 

Now the eigenstates of the coupled fraction and of the loss are 
identically normalized and a vector can be transferred from one space 
to the other without alterations. Therefore,  it is possible using a certain 
resonator geometry and known material coefficients to predict simul- 
taneously the coupling and loss behavior of the resonator. 

5. Conclusions 

If all material coefficients of a certain material are known we can draw 
a spatial diagram with lines of constant coupling factor and constant 
loss factor. If a designer wants to realize a piezoelectric device in which 
he requires a certain amount  of coupling, and in which he can tolerate 
a certain loss, he can consult this materials diagram and determine in 
which spatial directions he should excite the device, to obtain the 
desired coupling factor. In general he will find a conical surface in 
which all state vectors yield the same coupling factor. This conical 
surface intersects the ellipsoid with an elastic energy density of ½, and 
this intersecting line itself will also be intersected by lines of constant 
loss. If there is an interval on the intersecting line in which the losses 
are satisfying the conditions required, this material can be used. If this 
is not the case, another material, with better  combinations of loss and 
coupling must be chosen. 
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