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AIBIrjet--The paper describes a technique for the generation of boundary-fitted ¢urvilinear 
coordinate systems for the numerical solution of partial differential equations in two space 
dimensions. The technique is algebraic, has a transfinite character, and is based on the blending 
of shearing transformations. Applications to numerical grid generation for problems in the field 
of computational fluid dynamics are presented. 

1. I N T R O D U C T I O N  

The considerable progress in the numerical solution of partial differential equations on 
regions with arbitrarily-shaped boundaries in recent years has been greatly abetted by the 
development of techniques for numerical grid generation. This is especially true in the field 
of computational fluid dynamics, but also applies to other areas, such as heat transfer, 
mass transport, electromagnetism, solid mechanics, and structures [1-4]. 

Basically, techniques for numerical grid generation can be divided into two classes, viz. 
techniques which themselves involve solving partial differential equations, and algebraic 
interpolation techniques. In general, the preference for a technique involving the numerical 
solution of a partial differential equation above an algebraic technique is that it generates 
a smoother grid in which the propagation of boundary slope discontinuities is alleviated~ 
On the other hand, algebraic techniques provide explicit grid control and, in comparison 
to the other class of techniques, require relatively few computations. Subsequently, in 
implementation, they have the advantage of speed and simplicity. This also makes them 
particularly attractive for use in conjunction with interactive computer graphics and for 
the generation of grids for simulations involving time-varying problem domains [2-6]. 

In this paper, a new algebraic technique for the generation of boundary-fitted curvilinear 
coordinate systems for numerically solving partial differential equations in two space 
dimensions is presented. The technique may be classified as transfinite in the sense that 
it involves interpolation between the trajectories of the boundary curves defining a problem 
domain. In other words, as opposed to a finite number of points, the coordinate system 
is generated by a non-denumerable number of boundary points. Notwithstanding, the 
technique does not conform to the standard concept of transfinite interpolation--it cannot 
be formulated in terms of the Boolean sum of a sequence of univariate projections [2-5, 7]. 
The technique has some affinity with the linear two-boundary technique with side 
constraints described in Ref. [5] and referred to in Ref. [3]. However, the technique may 
best be regarded as a kind of blended shearing transformation. Indeed, it arose out of the 
desire to extend a shearing transformation in which the coordinates of the computational 
points in a grid were obtained simply by normalizing a given boundary distribution 
between two other adjoining boundaries, to situations in which a blended normalization 
would take place from the first boundary to a fourth boundary completing the demarcation 
of the problem domain. 

The technique described in this paper was actually developed in response to a desire to 
generate a computational grid such as that shown in Fig. 1. This mesh stems from an 
application of a computer program for the solution of the Navier-Stokes equations in two 
space dimensions using a finite difference technique based on curvilinear coordinates. 
Details of the computer program together with further applications can be found in Ref. 
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Fig. I. Grid for computation of flow under a barge in a lock (a) physical boundary (b) 
computational domain (c) mesh. 

[8]. This particular application was the computation of the flow under a barge moored in 
a lock, during the filling of the lock, with a view to calculating the forces exerted on the 
mooring ropes. The mesh represents a portion of a vertical profile lengthwise through the 
lock with inflow on the left and with the indentation in the upper boundary corresponding 
to the bow of the barge. The intersections of the lines in Fig. l(c) indicate the location 
of computational points for the finite difference solution of the Navier-Stokes equations. 
This nodal distribution was motivated by a consideration of the expected flow pattern and 
the corresponding desired numerical accuracy, and of simplicity. 

The salient feature of the numerical grid generation technique illustrated in Fig. 1 is the 
blending of the normalization between the upper and lower boundaries of the distributions 
of points on the left- and right-hand boundaries of the problem domain. A similar blending 
of the point distributions on the upper and lower boundaries also occurs. However, due 
to the choice of an identical horizontal spacing in this example this blending is not 
manifest. 

The foundations of the technique will be described in the next section. This will be cast 
in the form of a transformation of an arbitrarily-shaped simply-connected problem domain 
into a rectangular computational domain. In the subsequent section, the extension of the 
theory to problem domains containing "obstacles" and "islands" and in which the 
corresponding computational domain consists of a union of a number of rectangles will 
be presented. The extension enables a grid to be generated in an arbitrary block-structured 
multiply-connected physical domain without requiring the specification of a domain 
decomposition by the user. 
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Fig. 2. Grid for computation of flow in river bend (a) physical boundary (b) computational domain 
(c) mesh. 

In common with other algebraic methods, the numerical grid generation technique can 
be enhanced by the employment of algebraic stretching functions. However, in the interest 
of brevity, this aspect will not be dwelt upon. 

Further to Fig. 1, the practical application of the numerical grid generation technique 
is illustrated in Figs 2-6. In all the illustrations, no supplementary domain decomposition, 
patching, stretching, or smoothing, which might be advantageously employed to improve 
the appearance of  the meshes, has been effectuated. 

Figure 2 depicts a mesh for the computation of the depth-averaged flow in a river bend. 
The objective of the computation was to obtain prototype data for the analysis of models 
simulating the total cross-sectional flow around the river bend as a one-dimensional 
phenomenon. Figures 3-5 represent applications of the numerical grid generation pro- 
cedure to problems involving the numerical solution of the Navier-Stokes equations in two 
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Fig.  3. G r i d  for  c o m p u t a t i o n  o f  f low  in j u n c t i o n  o f  t w o  w a t e r w a y s  (a)  physica l  b o u n d a r y  (b) 
c o m p u t a t i o n a l  d o m a i n  (c)  mesh.  

space dimensions discussed in Ref. [8]. The configuration shown in Fig. 3, for instance, 
stems from the simulation of the change in flow pattern in a canal which would result from 
the construction of a hydropower station with an outlet on the canal. The tapered arm 
of the mesh corresponds to the projected outlet of the hydropower station, whilst the other 
arms represent the existing course of the canal. Figure 4 derives from a model of the coastal 
flow around the Amsterdam harbour entrance near Ijmuiden in North Holland. The 
interest here was in the erosion and sedimentation in the area. With the grid representing 
a total area of 13 x 7 km, the area protected by the harbour breakwaters was simulated 
as a single coastal obstacle. The last figure in this group, Fig. 5, results from a study into 
the scour around a pipeline on the sea bottom. In this case, the objective was to reproduce 
a laboratory experiment in which there was a current from left to right in the picture, and 
as a result of scouring of bottom material, the pipeline became suspended above the sea 
bed. The final illustration, Fig. 6, constitutes the most involved network of the examples 
presented. This network was generated for modelling the inshore flow pattern to be 
expected from the construction of breakwaters at Sabratah in Libya. The breakwaters had 
been designed to protect the harbour against heavy seas; and the goal of the modelling 
was to ascertain their effectiveness in also mitigating the fouling hazard to shipping caused 
by pestilent sea-weed growth in the area. A novel feature of this mesh is that it was so 
designed that it could easily function for the simulation of the present situation without 
the harbour breakwaters by completion of the blank portions. This facilitated easy 
comparison of the flow pattern in the present and projected situations, cf. Ref. [9]. 
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A further application of the numerical grid generation technique involving patching, for 
the computation of tide- and wave-induced currents in a coastal zone, is to be found in 
Ref. [9]. 

Practical experience has borne out that the numerical grid generation technique 
described in this paper compares favourably with techniques involving the numerical 
solution of a partial differential equation. Compared with these more sophisticated 
techniques, two principal advantages have been identified. Firstly, the technique is 
computationally more economical. Secondly, the structure of the generated mesh is more 
easily controlled, particularly by the specification of computational points on the boundary 
or in the interior of the problem domain [9]. The technique provides an alternative to other 
algebraic grid generation techniques. 
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Fig .  4. Grid for computation of  coastal flow around harbour area protected by breakwaters (a )  
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c o m p u t a t i o n a l  d o m a i n  (c) m e s h .  

2. T H E O R E T I C A L  F O U N D A T I O N  

Consider a problem domain D in a physical plane defined in terms of a Cartesian 
coordinate system (x, y). Suppose that we can specify a homeomorphism of the boundary 
of D onto the boundary of a canonical region R defined in terms of a coordinate system 
(~, t/). Then the objective of numerical grid generation as considered here is to construct 
an extension of the boundary transformation to a homeomorphism between the closure 
of D and the closure of R. The coordinates (~, t/) then constitute a boundary-fitted 
curvilinear coordinate system and define a computational plane. Simultaneously, the 
specification of a uniform grid on R in the computational plane generates a numerical grid 
in the physical problem domain. 
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Fig. 6. Grid for computation of inshore flow around harbour breakwaters (a) physical boundary 
(b) computational domain (c) mesh. 

Throughout this and the following section we shall suppose that D and R are non-empty 
open bounded two-dimensional spatial domains; and denote by OD the boundary of  D and 
by D the closure of  D, etc. 

In this section we shall suppose that the domain D is simply-connected and consider a 
canonical rectangular region R = {(~,q):~l < ~ < ~2, ql < ~ < q2}. We suppose further- 
more that a homeomorphism between the boundary of  D and the boundary of  R is 
defined. Thus we can write aD = {(x(~, r/i), y(~, rh)): ~l ~< ~ < ~2} U {(x(~2, q), Y(~2, q)): 
r/i ~<q < q~} U {(x(~,q2),y(~, rh)): ~2~ ~ > 41} U {(X(~,, ~/),y(~,,r/)): r/2~> r/ >rh}. The 
objective is now to construct an extension of  this mapping such that we can express 
/~ = {(x(~, q), y(~, r/)): (~, r/) e ~ } .  
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For each point (~, r / )e/~ let ~(~, r/) denote the normalized projection of  the point 
(x(~:,r/),y(~,q)) onto the line connecting the points (x (~ t , r / ) , y (~ ,q ) )  and 
(x(~,r /) ,y(~2,r /))  in the physical plane. The equation of the line joining the two 
last-mentioned points is: 

where 

and 

,L(,~){y - y(¢, ,  ,1)} = ,~, (,~){x - x(~,,  ,~)}, 

~ ( ~ )  = x (¢~ ,  ,1) - x ( ~ , ,  ,7) (1) 

Set 

and 

and 

ey(~) = y(~, rh) -- y(~, r/, ). 

~(¢)  = ~(¢, r/~) for i = 1, 2, 

and 

/~,(q) =/~(~,  q) for i = 1,2. 

Observe that for i = 1, 2; ~(~) is defined and continuous for ~ ~< ¢ ~ ~2 with ~ ( ~ )  = 0 and 
~ ( ~ )  = 1. Similarly for i = 1,2; /~(q) is defined and continuous for ql ~< q ~< q~ with 
/~(~,) = 0 and/~(r/~) = 1. 

The essence of  the present technique is that we now blend the normalized projections 
by prescribing: 

~(~, q) = {1 -/~(~, t/)}~, (¢) +/~(~, t/)~2(~), 

fl(~, q) ---- {1 -- 0c(~, q)}fl, (q) + o~(~, q)fl2(rl), 

for all (~, ~/)e R. Elimination of  unknowns in these two equations yields: 

~(~, r/) = [{1 - /~ ,  (q)}~, (¢)  + if, (fl)~2(¢)]/d(~, q) ( l l )  

(lO) 

6y(rl ) = Y(~2, q) - Y({ , ,  q ). (2) 

Hence, the normal to this line, projecting the point (x({, t/),y(¢, q)) onto it, is: 

6,(~){y - y ( ~ ,  ~)} = -6x(~){x  - x ( ¢ ,  ~)}. 

This gives the point (x,, y,)  of  the projection on the line as: 

x,(~, n) = x(~, ,  n) + ~(~, q) 6x(n) (3) 

Y,(¢, q) = Y(~,, n) + ~(~, q) 6,(r/) (4) 

when 

~(~,n)=[{x(~,,1)-x(~,,n)}ax(,1)+{y(~,n)-y(~.,n)}6y(,t)]/[ax(,t)2+6y(n)2]. (5) 

Similarly, one can define the normalized projection of  the point (x(~, q), y(¢, r/)) onto the 
line with end-points (x(~, ql),y(~, rh)) and (x(~, q~),y(~, th)) as: 

xa(¢, n) = x(~, q,) + fl(~, n) ¢x(~) (6) 

yp(~, r/) = y(~, ql) + fl(~, q) ey(~), (7) 

where 

~(~,r l )=[{X(~,r l ) - -X(~,rh)}Ex(~)+{y(~,r l ) - -y(~,q , )}E,(¢)] /[Ex(~)2+Ey(~)2] ,  (8) 

Ex(~) = x(¢, rh) - x(¢, q,) (9) 
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and 

where 

/~(~, ~)  = [{1 - ~, (~)}fl ,  (n)  + ~, (¢)/~2(n)]/d(¢, ,~), 

d(¢, q) = 1 -- {~2(~) -- ~x~(~)} {fl2(q) -- fl,(q)}, 

(12) 

(13) 

by which means ~(~, q) and fl(~, q) are defined for all (~, ~/)e g .  
Note that if 0<0q(~) ,  ~2(~)<1 and 0<fl~(q),  f l2(r/)<l then the denominator 

(13) in expressions (11) and (12) is non-zero. Consequently, it can also be shown that 
0 < ct(~, q) < 1 and 0 < fl(~, r/) < 1. Moreover, if ~l(~) = ~2(~) for some ~ e [¢1, ~2], then 
expression (11) reduces to ~(¢,~/)=~q(~)=~t2(~) for all r/e[r/l,r/2 ]. Similarly, if 
ill(r/) =#20/)  for some r/~[r/l,r/2], then (12) reduces to f l(~,q)=/~t(q)=fl2(r /)  for all 

With 0t (~, r/) and fl (~, r/) defined by (11)-(13), inversion of (5) and (8) subsequently yields 
the proposed boundary-fitted mapping from R to D: 

x(~, r/) = [{x,(¢, rl)6~(n) +y , (~ ,  ~/)6y(n)}~r(~) 

-- {xt~(~, rl)ex(~) + yo(~, tl),y(~)}fy(tl)]/A(~, tl ) (14) 

Y(~, q) = [{x0(~)e~(~) + YO(~, rl)ey(~)]rx(n) 

- {x,(~, n)fx(rl) + y,(~, rl)ry(rl)}ex(~)]/a(~ , rl), (15) 

in which x,(~, r/), y~(~, r/), xa(~,~/) and y~(~, ~/) are defined by (3), (4), (6) and (7) 
respectively, and 

a ( ~ ,  ,1) = ~x(n)Ey(~)  - Ex(~)rA,1) .  (16) 

Meshes generated by application of this technique as described above are illustrated in 
Figs 1 and 2. We remark that a mesh generated with this technique is invariant under 
rotation and under scaling of both of the coordinate axes in the physical plane, but not 
necessarily under scaling of  only one of the coordinate axes. 

The potential weakness of the numerical grid generation technique described in this 
section lies in the use of the projection of the curves in the physical plane defined by ~ = ~' 
and ~/= q' onto the lines joining their end-points. If these projections are poorly defined, 
the technique may break down. For instance, if the computational domain contains a point 
(~', r/') such that in the physical plane the lines joining the end-points of  the curves defined 
by ~ = ~" and r /=  r/" are parallel, then the technique will not work since the denominator 
(16) in expressions (14) and (15) will become zero. Similarly, if the projection of a boundary 
curve onto the line joining its extremities is not one-to-one, the technique may fail to 
generate a satisfactory grid. Such difficulties can be avoided by exercising some additional 
control of  the numerical grid. This can be achieved by, for example, specifying the physical 
coordinates of a number of points or curves in the interior of  the problem domain and 
treating these as fictive boundaries which together with the original boundaries define a 
new domain, and then applying the extension of the technique described in the next section 
to the adapted domain. 

3. EXTENSION TO MORE COMPLICATED SITUATIONS 

Up to now, the discussion of the theoretical basis of  the numerical grid generation 
technique has been restricted to the generation of a boundary-fitted grid on a simply- 
connected domain by considering a canonical rectangular region in the computational 

plane. In this section, we shall present the extension of  the theoretical basis to more 
irregular physical domains in which corresponding computational domain consists of  the 
union of  a number of  rectangles. 
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We consider a canonical region R defined in terms of a coordinate system (~, r/) 
satisfying the following criterion. For each (~, q ) •  R let 

~,(~, q) = inf{~': (¢", r t ) • R  

~2(~, 7) = sup{~': (¢", ~) • R 

7, (¢, t/) = inf{7': (~, 7") • R 

q~(~, 7) = sup{7 ': (~, q " ) •  R 

for all ~"e  (~', ¢]} 

for all ¢ " •  [¢, ~')} 

for all 7 " •  (q', r/]} 

for all q" • [7, r/')}; 

then the total set of  coordinate values ~(~, 7), (~, q ) •  R, i = I, 2, consists of  a finite 
partition, a0 < al < a~ < • • • < a., and the total set of  coordinate values 7~(~, 7), (~, q) • R, 
i = 1, 2, consists of  a finite partition, b0 < b~ < b2 < • • • < b,.. It follows that we can state 
that 

R = U (a,_l,a,) x (b]_,,bj) U (a,_l,a,) x [bj, bj] 
(i,j) e ll (i ,j)~ l 2 

U [a,, ,,,] x (6- , ,  b~) U [',,, ,,,] × [6, 6] 
(i,J) ~ 13 (i,J) ~ I 4 

for some or other (sub)collections of  pairs of  indices (i,j) with 1 ~< i < n and 1 < j  ~< m; 
I~, 12, 13 and 14 say. Moreover, given R, this is the smallest union of rectangles with this 
property. Examples of  such canonical regions R are given in Figs l(b), 2(b), 3(b), 4(b), 
5(b) and 6(b). The boundary of R may contain isolated points and isolated curves 
corresponding to slits in the physical domain. A problem domain D defined in the physical 
plane is characterized by the existence of  a homeomorphic mapping from the boundary 
of  R onto the boundary of  D, viz. one has specified OD = {(x(~, q), Y(~, 7)):(~, 7 ) •  OR }. 

Note that by definition, given any point (~, 7) • R, i f j i s  such that b~_ ~ ~< q < bj; although 
(t (~, 7) and ~2(~, 7) may span several segments of  the partition a0, a~ . . . . .  a.; the points 
(~, (~, ~/), bj_ ,), (~2(~, 7), bj_l), (~1 (~, 7), bj), and (~(~, 7), b~) e 0R; whilst the rectangle 
(~l (~, q), ~2(~, q)) x (b~_ ~, b~) is wholly contained in R. Hence, f o r j  = 1, 2 . . . . .  m, we can 
inductively define: 

• 1 (~, 7) = [{x(~, b~_l ) - x(~, (~, 7), b~_ ,)}&x, 1 

+ {y(¢, bi_l) - Y ( ¢ t ( { ,  q), b~-O}ay,,]/[6~,, + 62.1] 

where 

and 

6x,1 = x(~2(~, ~), bi_1) - x(~,  (~, ~), bj_ 1) 

6y,, = Y(~2(~, 7), bj_ ,) - Y(~I (~, 7),  bj_ ,) 

x ( ~ , b j _ l ) - - -  lira [X(~I(~,7),~)'~-~I(~,t~){X(~2(~,7),7)--X(~I(~,7),7)}] 
,tb s -~ 

y(~, bs_ ,) = lim [Y(~I (~, 7), q) + al (~, 7){Y(~2(~, 7), 7) - Y(~, (~, 7), 7)}] 
, tb- t  

if (~ ,bj_l )~OR,  

for all (~, ~/) • R with bj_ 1 <<. ~l < bj. Similarly, we can inductively define 

a~(¢, 7) = [{x(¢, bj) - x(~X, (¢, 7), bj)}hx.2 + {y(¢, bj) -Y(¢1(¢,  7), bj)I6y.2]/[6~,2 + ay2,2] 

where 

6~,2 = x(~2(~, 7), bi) - x(~l (~, 7), bj) 

6y,2 = Y(~2(~, 7), bj) - y ( ~ , ( ~ ,  7), bj) 
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and 

x(~. b~) = lim [x(~l (¢. r/). q) + ~2(~. ~/) {x(~2(~. r/). r/) - x(~. (~. r/). q)}] 

y(~. b~) = lira [Y(~I (~. , ) .  r/) + ~ (¢ .  r/){Y(~2(~, q). ~/) - Y ( ~ I  (~. r/). r/)}] 
~bj 

if (~, b~) ~ OR, 

for all (~, r/) ~ R with bg >1 r / >  b~_ 1, for j = m, m - 1, m - 2 . . . . .  1. Likewise, given any 
(~, r/)~ R, if i is such that ai_ 1 ~< ~ ~< ai; al though r/i (~, r/) and r/2(~, r/) may span several 
segments of  the parti t ion b0, bl . . . .  , b,,; the points (a~_ 1, rh (~, r/)), (ai_ 1, r/~(~, r/)), 
(as, ql(~, q)), and (ai, r/2(~, r/)) ~ OR, whilst the rectangle (a;_ 1, al) x (r/l(~, r/), r/2(~, q)) is 
wholly contained in R. So that, for i = 1, 2 . . . . .  n, we can inductively define 

where 

and 

fll (~, r/) = [{x(ai_ i, r/) - x (a i_ t ,  rh (~, r/))}e~. 1 
2 + {y (ai ,  i. r/) -- Y (al_, .  q l (~. r/))}~. 1 ]/[e ~x., + ey.l] 

E,,, 1 = x ( a i _ l ,  r / 2 ( ~ ,  r / ) )  - x (a l_ l ,  rh (~, r / ) )  

E.y.i ~- y (a i_ l ,  1'/2 (~, r/)) - y (a ,_ l ,  rh (~, r/)) 

x (a i_ l ,  r/) = lira 

Y (ai- 1, r/) = lira 
~ T a i  - I 

[x (~, n l (¢, r/)) + #1 (~, r/){x (~, r/2 (~, r/)) - x (~, n, (~, ,1))}] 

[y(~, ql(~, r/)) + fll(~, r/){y(~, r/2(~, r/)) - y (¢ ,  r/l(~, q))}l 

if (ai_ 1, r/) ~ OR, 

for all (~, r/) e R with ai_ i ~< ~ < ai; and, for i = n, n - 1, n - 2 . . . .  ,1,  

f12(~, r/) = [{x(a,, r/) - x(ai ,  r/, (~, r/))}ex.2 + {y(ai,  r/) - y(ai ,  r/, (~, r/))}Ey. 2I/[E~. 2 -t-/~y.212 

where 

and 

ex.2 = x(ai ,  r/2(~, r/)) - x(al ,  r/l (~, r/ )) 

Ey,2 = y (a,, r/2 ( ~, r/ )) - Y (a,, r/i ( ~, r/ )) 

x(al ,  r/) = lim [x(~, r/, (~, r/)) + fl2(¢, r/){x(~, q2(~, r/)) - x(~, r/, (~, r/))}] 

y(as, r/) = lim D'(¢, r/, (~, r/)) + f12(~, r/){y(~, r/2(~, r/)) - y ( ~ ,  q,(¢, r/))}] ~a~ 

if (as, r/) ~ OR, 

for all (~, r/) e R with ai i> ¢ > ai_ 1. The formulae for the boundary-f i t ted mapping of  R 
to D are now given by (1)-(4), (6), (7), and (9)--(16), with ct~(~) replaced by ~ti(~, r/), ill(r/) 
replaced by fl~(~, r/), ~i replaced by ~i(~, r/), and r/s replaced by r/s(~, r/), for i = 1, 2. 

In principal, the above formulae can be used to generate a numerical grid on an 
arbitrari ly-shaped mult iply-connected domain  wi thout  further ado. Nonetheless,  tests have 
revealed that  this does not  always lead to the optimal form, since, in general, as it were, 
the coordinates  generated in a point  (U, r/') will be predominant ly  determined by the 
behaviour  of  the physical boundary  corresponding to the lines ~ = ~ l ( ~ ' , r / ' ) ,  
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= ~:(~ ', ~/'), ~/ = ~/l (~',  ~/'), and ~/ = ~h(~', ~/') at  the expense o f  ignoring "obs tac les"  and 
" is lands"  in the physical plane in the ne ighbourhood  of  the image point  
(x(~ ' ,  ~ / ' ) ,y (~ ' ,  ~/')). The  fo rm improves  through the simple measure  o f  taking the grid 
generat ion in stages. 

First, physical  coordinates  for  those points  in the computa t iona l  plane ((,  ~/) with the 
p roper ty  that  [~l(~, r/), ~2(~, ~/)] x [~h (~, ~/), ~h(~, ~/)] is conta ined in /~  are generated.  Once 
the physical coordinates  for  these points  have been generated,  a new computa t iona l  
domain  consisting of  the remaining points  in R is au tomat ica l ly  defined, and the procedure  
is repeated. Since the originally-specified computa t iona l  domain  is composed  of  the union 
o f  a finite n u m b e r  of  rectangles, this s t rategy need only be repeated a limited number  o f  
times to satisfactorily generate  an entire grid in the original domain .  

C o m p a r e d  with decompos ing  D into subdomains  cor responding  to rectangular  sub- 
regions o f  R and subsequent ly  patching meshes generated independent ly  on each sub- 
domain ,  the essential feature of  the extension of  the grid generat ion technique described 
above  is that  it is au tomat ic .  Tha t  is to say, it does not  require the specification of  any 
internal dividing curves on the par t  o f  the user (a l though natural ly  one is free to define 
imaginary  internal boundar ies  if  one so wishes). 

Meshes generated by the extended technique as described in this section are shown in 
Figs 3-6. These meshes illustrate the scope of  the technique. In part icular ,  Figs 4 and 6 
depict meshes in which the physical domain  contains  one or more  "obs tac les" ,  whilst 
Fig. 5 depicts a mesh in which the physical  domain  contains  an " is land".  All o f  these 
meshes are derived f rom practical  appl icat ions in the field o f  computa t iona l  fluid dynamics  
which are reviewed in the In t roduct ion.  
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