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Extended abstract 

Explicit expressions for closed curves C n about the attractor that enclose a part of its basin are obtained. If n ~ oo the 
interior of  C, covers the complete basin. A sequence of invertible polynomial transformations is given, that converges rapidly 
towards  the normal transformation, that transforms the nonlinear motion in the basin to a linear one. Using these 
t ransformations we obtain some practical tools to describe one aspect of the transient behavior in the basin. 

1. Results 

Consider a quadratic invertible mapping of the 
real plane, x ~ x' ,  with 

x ' =  Hx ,  Hx  - Px + O ( x ) ,  (1) 

with constant positive Jacobian b, smaller than 
unity. Q ( x )  is a homogeneous quadratic expres- 
sion in the components x~ and x 2. The matrix P 
is assumed to have two different complex eigenval- 
ues, such that the origin is a spiral attractor. 

We obtain a sequence of polynomial expres- 
sions, representing closed curves C. about  the 
origin, which enclose a part of its basin of attrac- 
tion. For  each enclosed domain we shall obtain a 
polynomial Lyapunov function L . ( x ) ,  which con- 
trols the rate of convergence, 

Lo( I-lx) Z O.( L . ( x ) ) L . ( x ) ,  
(2) 

On( L . )  =- b,/Z + b ' /2qL. ,  

where q is some positive constant representing the 
'strength'  of the nonlinear term (cf. sec. 2). At 
sufficiently large n, each x in the basin is enclosed 
by a contour C,. Fig. 1 shows some contours for 
the Hrnon  mapping [1]. 

To describe the transient behavior we introduce 
a functional n~(x) that represents the number of 
steps necessary to map x into a well defined 
e-neighborhood of the origin: below a Lyapunov 
function L ( x )  is defined, for which 

L ( H x )  = b l / Z L ( x )  (3) 

for each x in the basin. Eq. (3) shows that a level 
line L ( x )  = L o is mapped onto the level line L ( x )  
= b~/2Lo . Thus the number of steps, necessary to 
map x into a small region given by L ( x ) <  e, 
depends on L only and is 

n~(x)  - I N T [ ( l n  L ( x )  - l n e ) / l n b - 1 / 2 ] ,  (4) 

i.e. the integer part of the expression in brackets. 
The irregular shape of the area enclosed by a 

level line (cf. fig. 2) indicates irregular transient 
behavior. One aspect of this behavior is for- 
mulated more precisely 'in terms of the gradient of 
L: in a (sufficiently) small neighborhood of some 
x o the average value of n~(x) equals n~(xo) and 
one readily shows that its root mean square is 
proportional  to the length of (XTL/L)x=xo (cf. fig. 
3). Both for the level lines and the gradient we 
have explicit approximate expressions. 
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Fig. 1. Contours C2, C8 and C10 for the H6non mapping (1) 
• = ( 2 c  - b )  ~(2x2)  (of.[4]), b=0.7 and with P 1 0 and Q(x) 0 

e = 0. + denotes the attractor and × is a saddle fixed point. 
The curve through × is the stable manifold W s of the saddle. 
The basin of attraction is certainly within the region enclosed 
by this stable manifold. There can be other attracting orbits 
within this region however [5]. 

Fig. 2. Level fines of  L for b = 0 . 9  and c = 0 .  Curve 3 is 
mapped  by H in 5 steps onto curve 2, etc. Observe that the 
shape of the enclosed area is more complicated for larger values 
of  L. 

~MAX 36.6 

• W s 

, , ,  , 

0 • 2rv 

Fig. 3. [[~TLII/L along the level fines of fig. 2. Observe that the 
maximal value and the complexity of the graphs increase 
with L. 

2 .  M e t h o d :  t r a n s f o r m a t i o n  t o  n o r m a l  f o r m  

To  obta in  the results above a sequence of invert- 

ible coord ina te  t ransformations x . (u ) ,  with in- 

verse u.( x ), 

x . ( . )  = . . ( x )  = J'-"nn(x), (5) 

is in t roduced.  It can be proved [2] that the se- 

quence  ( x , ( u ) }  converges to an analytic function 
x ( u ) ,  that  is defined for u ~ R 2 and whose range 

is the basin  of  at traction of  the origin. Further-  

more,  x(u)  t ransforms the mapping  x ' =  H(x)  
restricted to this basin, to the linear mapping  

u ' =  Pu. The existence of  this function and its 

inverse u(x)  is guaranteed by an easy extension of 

a theorem of  Poincar~ [3]. 
Wi th  these t ransformations the functionals L ,  

and  L are defined, 

1/2 L . ( x )  = ( . . ( x ) ,  Au . (x ) )  , 

L ( x )  = (u(x) ,  Au(x))  1/2, 
(6) 

where A is a real symmetric positive matrix such 
that  (Pu, APu) = b(u, Au). Such an A exists since 
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jo has complex eigenvalues. One readily proves (2) 
and (3), with q being the smallest positive number 
such that (Q(x ) ,  A Q ( x ) )  < q2(x, Ax )  2. 

Furthermore,  observe that a level line Ln(x  ) = 
L 0 is the image in the x plane of an ellipse 
(u, Au)  = L o in the u plane by the mapping xn(u ). 
Such an ellipse is parametrized by u = 

Llo/2(a1 cos dp + a 2 sin,/,), a I and a 2 being eigen- 
vectors of A of appropriate length. Consequently 
we have explicit expressions for the level lines of 
L n. Since Ln(x  ) has only one stationary point, 
which is a minimum at the origin, it is clear from 
(2) that curves C n for which 0 n = 1 enclose a do- 
main in the basin of attraction. It can be proved 
that a level line L , ( x ) =  L o converges to a level 
line L ( x )  = L o [2], and that VLn(x  ) along a level 
line converges to v L ( x ) .  
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