ANALYTICAL DESCRIPTION OF THE BASIN AND THE TRANSIENTS OF A POINT ATTRACTOR OF THE HÉNON MAPPING

Theo P. VALKERING
Center for Theoretical Physics, Twente University of Technology, 7500 AE Enschede, The Netherlands

Extended abstract

Abstract

Explicit expressions for closed curves C_{n} about the attractor that enclose a part of its basin are obtained. If $n \rightarrow \infty$ the interior of C_{n} covers the complete basin. A sequence of invertible polynomial transformations is given, that converges rapidly towards the normal transformation, that transforms the nonlinear motion in the basin to a linear one. Using these transformations we obtain some practical tools to describe one aspect of the transient behavior in the basin.

1. Results

Consider a quadratic invertible mapping of the real plane, $x \rightarrow x^{\prime}$, with
$x^{\prime}=H x, \quad H x \equiv P x+Q(x)$,
with constant positive Jacobian b, smaller than unity. $Q(x)$ is a homogeneous quadratic expression in the components x_{1} and x_{2}. The matrix P is assumed to have two different complex eigenvalues, such that the origin is a spiral attractor.

We obtain a sequence of polynomial expressions, representing closed curves C_{n} about the origin, which enclose a part of its basin of attraction. For each enclosed domain we shall obtain a polynomial Lyapunov function $L_{n}(x)$, which controls the rate of convergence,

$$
\begin{align*}
& L_{n}(H x) \leqq \theta_{n}\left(L_{n}(x)\right) L_{n}(x), \tag{2}\\
& \theta_{n}\left(L_{n}\right) \equiv b^{1 / 2}+b^{n / 2} q L_{n},
\end{align*}
$$

where q is some positive constant representing the 'strength' of the nonlinear term (cf. sec. 2). At sufficiently large n, each x in the basin is enclosed by a contour C_{n}. Fig. 1 shows some contours for the Hénon mapping [1].

To describe the transient behavior we introduce a functional $n_{f}(x)$ that represents the number of steps necessary to map x into a well defined ε-neighborhood of the origin: below a Lyapunov function $L(x)$ is defined, for which
$L(H x)=b^{1 / 2} L(x)$
for each x in the basin. Eq. (3) shows that a level line $L(x)=L_{0}$ is mapped onto the level line $L(x)$ $=b^{1 / 2} L_{0}$. Thus the number of steps, necessary to map x into a small region given by $L(x) \leqq \varepsilon$, depends on L only and is
$n_{\varepsilon}(x) \equiv \mathrm{INT}\left[(\ln L(x)-\ln \varepsilon) / \ln b^{-1 / 2}\right]$,
i.e. the integer part of the expression in brackets.

The irregular shape of the area enclosed by a level line (cf. fig. 2) indicates irregular transient behavior. One aspect of this behavior is formulated more precisely in terms of the gradient of L : in a (sufficiently) small neighborhood of some x_{0} the average value of $n_{t}(x)$ equals $n_{\varepsilon}\left(x_{0}\right)$ and one readily shows that its root mean square is proportional to the length of $(\nabla L / L)_{x=x_{0}}$ (cf. fig. 3). Both for the level lines and the gradient we have explicit approximate expressions.

Fig. 1. Contours C_{2}, C_{8} and C_{10} for the Hénon mapping (1) with $P=\left(\begin{array}{cc}2 c & -b \\ 1 & 0\end{array}\right)$ and $Q(x)=\binom{2 x_{1}^{2}}{0}$ (cf. [4]], $b=0.7$ and $c=0 .+$ denotes the attractor and \times is a saddle fixed point. The curve through \times is the stable manifold W^{s} of the saddle. The basin of attraction is certainly within the region enclosed by this stable manifold. There can be other attracting orbits within this region however [5].

Fig. 2. Level lines of L for $b=0.9$ and $c=0$. Curve 3 is mapped by H in 5 steps onto curve 2, etc. Observe that the shape of the enclosed area is more complicated for larger values of L.

Fig. 3. $\|\nabla L\| / L$ along the level lines of fig. 2. Observe that the maximal value and the complexity of the graphs increase with L.

2. Method: transformation to normal form

To obtain the results above a sequence of invertible coordinate transformations $x_{n}(u)$, with inverse $u_{n}(x)$,
$x_{n}(u) \equiv H^{-n}\left(P^{n} u\right), \quad u_{n}(x) \equiv P^{-n} H^{n}(x)$,
is introduced. It can be proved [2] that the sequence $\left\{x_{n}(u)\right\}$ converges to an analytic function $x(u)$, that is defined for $u \in \mathbb{R}^{2}$ and whose range is the basin of attraction of the origin. Furthermore, $x(u)$ transforms the mapping $x^{\prime}=H(x)$ restricted to this basin, to the linear mapping $u^{\prime}=P u$. The existence of this function and its inverse $u(x)$ is guaranteed by an easy extension of a theorem of Poincaré [3].

With these transformations the functionals L_{n} and L are defined,
$L_{n}(x) \equiv\left(u_{n}(x), A u_{n}(x)\right)^{1 / 2}$,
$L(x) \equiv(u(x), A u(x))^{1 / 2}$,
where A is a real symmetric positive matrix such that $(P u, A P u)=b(u, A u)$. Such an A exists since
\dot{P} has complex eigenvalues. One readily proves (2) and (3), with q being the smallest positive number such that $(Q(x), A Q(x)) \leqq q^{2}(x, A x)^{2}$.

Furthermore, observe that a level line $L_{n}(x)=$ L_{0} is the image in the x plane of an ellipse ($u, A u)=L_{0}$ in the u plane by the mapping $x_{n}(u)$. Such an ellipse is parametrized by $u=$ $L_{0}^{1 / 2}\left(a_{1} \cos \phi+a_{2} \sin \phi\right), a_{1}$ and a_{2} being eigenvectors of A of appropriate length. Consequently we have explicit expressions for the level lines of L_{n}. Since $L_{n}(x)$ has only one stationary point, which is a minimum at the origin, it is clear from (2) that curves C_{n} for which $\theta_{n}=1$ enclose a domain in the basin of attraction. It can be proved that a level line $L_{n}(x)=L_{0}$ converges to a level line $L(x)=L_{0}$ [2], and that $\nabla L_{n}(x)$ along a level line converges to $\nabla L(x)$.

Acknowledgements

I thank Robert Helleman and Reinout Quispel for useful discussions. This study was partially supported under DE-AC03-84-ER40182.

References

[1] M. Hénon, Comm. Math. Phys. 50 (1976) 69.
[2] T.P. Valkering, to be published. More details of the present work and proofs will be presented in this paper.
[3] V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations (Springer, Berlin, 1983).
[4] R.H.G. Helleman, in: Long Time Prediction in Dynamics, C.W. Horton, L.E. Reichl and A.G. Szebehely, eds. (Wiley, New York, 1983) p. 95.
[5] S.E. Newhouse, in: Chaotic Behavior of Deterministic Systems, G. Iooss, R.H.G. Helleman and R. Stora, eds. (North-Holland, Amsterdam, 1983) p. 381.

