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Extended abstract

Explicit expressions for closed curves C, about the attractor that enclose a part of its basin are obtained. If n - oo the
interior of C, covers the complete basin. A sequence of invertible polynomial transformations is given, that converges rapidly
towards” the normal transformation, that transforms the nonlinear motion in the basin to a linear one. Using these
transformations we obtain some practical tools to describe one aspect of the transient behavior in the basin.

1. Results

Consider a quadratic invertible mapping of the
real plane, x — x’, with

4

x’=Hx, Hx=Px+Q(x), (1)

with constant positive Jacobian b, smaller than
unity. Q(x) is a homogeneous quadratic expres-
sion in the components x; and x,. The matrix P
is assumed to have two different complex eigenval-
ues, such that the origin is a spiral attractor.

We obtain a sequence of polynomial expres-
sions, representing closed curves C, about the
origin, which enclose a part of its basin of attrac-
tion. For each enclosed domain we shall obtain a
polynomial Lyapunov function L, (x), which con-
trols the rate of convergence,

L,(Hx)<6,(L,(x))L,(x),

2)
6,(L,)=b"?+b""}qL,,

where ¢ is some positive constant representing the

‘strength’ of the nonlinear term (cf. sec. 2). At

sufficiently large n, each x in the basin is enclosed

by a contour C,. Fig. 1 shows some contours for

the Hénon mapping [1].

To describe the transient behavior we introduce
a functional n (x) that represents the number of
steps necessary to map x into a well defined
e-neighborhood of the origin: below a Lyapunov
function L(x) is defined, for which

L(Hx)=b"?L(x) (3)

for each x in the basin. Eq. (3) shows that a level
line L(x) = L, is mapped onto the level line L(x)
= b'/?L,. Thus the number of steps, necessary to
map x into a small region given by L(x) =<e¢,
depends on L only and is

n(x)=INT[(InL(x)-Ine)/mb-?],  (4)

i.e. the integer part of the expression in brackets.

The irregular shape of the area enclosed by a
level line (cf. fig. 2) indicates irregular transient
behavior. One aspect of this behavior is for-
mulated more precisely in terms of the gradient of
L: in a (sufficiently) small neighborhood of some
xo the average value of n (x) equals n (x,) and
one readily shows that its root mean square is
proportional to the length of (VL/L),_, (cf. fig.
3). Both for the level lines and the gradient we
have explicit approximate expressions.
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Fig. 1. Contours C,, Cg and C;, for the Hénon mapping (1)
2
with P = (ZC "’) and Q(x)= (2(’)‘1) (¢t. [4]), 5=0.7 and
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1 0
¢=0. + denotes the attractor and X is a saddle fixed point.
The curve through X is the stable manifold W* of the saddle.
The basin of attraction is certainly within the region enclosed
by this stable manifold. There can be other attracting orbits
within this region however [5].

Fig. 2. Level lines of L for =09 and ¢=0. Curve 3 is
mapped by H in 5 steps onto curve 2, etc. Observe that the
shape of the enclosed area is more complicated for larger values
of L.
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Fig. 3. {|vL|/L along the level lines of fig. 2. Observe that the
maximal value and the complexity of the graphs increase
with L.

2. Method: transformation to normal form

To obtain the results above a sequence of invert-
ible coordinate transformations x,(u), with in-
verse u,(x),

x,(u)=H"(P"u), u,(x)=P"H"(x), (5)
is introduced. It can be proved [2] that the se-
quence { x,(u)} converges to an analytic function
x(u), that is defined for u € R? and whose range
is the basin of attraction of the origin. Further-
more, x(u) transforms the mapping x’= H(x)
restricted to this basin, to the linear mapping
u’ = Pu. The existence of this function and its
inverse u(x) is guaranteed by an easy extension of
a theorem of Poincaré [3].

With these transformations the functionals L,
and L are defined,

L,(x)=(u,(x), 4u,(x))",

1/2 6)
L(x)= (u(x), 4u(x))"?, (

where A is a real symmetric positive matrix such
that (Pu, APu)= b(u, Au). Such an A exists since
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P has complex eigenvalues. One readily proves (2)
and (3), with g being the smallest positive number
such that (Q(x), AQ(x)) < ¢%(x, Ax)>.

Furthermore, observe that a level line L, (x)=
L, is the image in the x plane of an ellipse
(u, Au) = L, in the u plane by the mapping x,(u).
Such an ellipse is parametrized by u =
LY*(a,cos¢ + a,sing), a; and a, being eigen-
vectors of A of appropriate length. Consequently
we have explicit expressions for the level lines of
L,. Since L,(x) has only one stationary point,
which is a minimum at the origin, it is clear from
(2) that curves C, for which 6,=1 enclose a do-
main in the basin of attraction. It can be proved
that a level line L (x)= L, converges to a level
line L(x)= L, [2], and that YL, (x) along a level
line converges to VL(x).
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