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In this paper we present a numerical method for the queue 61/H2/s,  which is based on general results for 61/H,,,/s. We 
give a complete description of the algorithm which yields exact results for the steady distributions of the actual waiting time, 
the virtual wailing time and the number of customers in the system both at arrival epochs and in continuous time. 
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I .  I n t r o d u c t i o n  

In two recent papers, [1] and [2], we have obtained a general solution for the multi-server queue with 
hyper-exponential service times GI/Hm/s .  Here we describe a numerical method based on this general 
solution. We restrict ourselves to the model GI/H2/s ,  i.e. the service time distribution G is given by 

G ( x ) - - p 1 ( l  - e x p ( - b l x ) )  +p2(l  - exp(-b2x)) ,  x >I O, O) 
with 0 < Pi < 1, P2 - -  l --pl, b~ > b 2 > 0. Let S be a typical service time, denote its mean by ~ -- ES  and its 
coefficient of variation by Cs 2 - Var S / ~  2. Then ~ = p l / b l  + p2/b2 and Cs 2 > 1. If we fix p and Cs 2 we can 
still choose a third parameter r s which is defined by r s = ( p l / b t ) / ( p 2 / b 2 ) .  

For many practical situations, in which service times occur with a coefficient of variation larger than 1, 
the H 2 distribution may offer a satisfactory description. In what follows we shall give a method which 
yields the steady state distributions of the following quantities: 

- the actual waiting time W; 
- the virtual waiting time IV*; 
- the queue length at arrival epochs (i.e. just before arrivals) Q; 
- the queue length in continuous time Q*; 
- the total number of customers in the system at arrival epochs C; 
- the total number of customers in the system in continuous time C*. 
No exact results for the complete distributions of W and W* have been found before. For the special 

case of Poisson arrivals the moments of W* and the distributions of Q* and C* (which in this case are 
identical to those of IV, Q and C) can be calculated using the method of Takahashi and Takami [4]. In 
principle this method can be extended to the case of phase-type interarrival times, but in practice this may 
be difficult since such an extension leads to a very large state space. 

For a lucid discussion and typical results of existing exact and approximate numerical methods the 
reader is referred to van Hoorn [5]. Our method is independent of the form of the interarrival time 
distribution. Any distribution can be included by changing only a single line in the computer program 
while the CPU-time needed is hardly effected. For those cases and those results which can be obtained by 
other methods it seems that our method is more efficient, more accurate and more stable. This may be 
explained by the fact that we take advantage of our knowledge of the form of the resulting distributions. In 
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Section 2 we give the relevant results for the queue GI/H2/s, while Section 3 contains some more details 
about the numerical algorithm. As an illustration we give some typical numerical results for different 
interarrival time distributions. 

2. The queue GI/H2/s  ,, 

I 
In this section we give results for the queue GIIH2its. s > 1. The proofs can be found in I1] and I2i, 

where these results have been obtained for the more ger!eral model GIIHmls. s ) 1. m ) 1. Let T,, be the 
arrival epoch of the nth customer, n ffi 1. 2. . . . .  The interarrival ti.nes A, ffi T , -  T,_ l, are i.i.d, with 
common distribution function F and finite mean a. ['he coefficient of variation of F is denoted by 
c~ 2 - Var A, /a2 and its Laplace-Stieltjes transform by 

A (¢,) = E ( exp( - ¢~A, )) = f0°°exp( - ¢~x ) d F( x ), Re ¢~ >i 0. 

i 

The service times $,, n ffi 1, 2,. . . ,  are i.i.d, with commori distribution function G, as given by (1). We can 
interpret the hyper-exponential service time distributior by saying that there are two types of customers; 
with probability p~ an arriving customer is of type i and requires a service time which is exponentially 
distributed with parameter b~, i = 1, 2. This interpretatio n will be used in what follows. 

Let W. be the waiting time of the nth customer alid W. i, i -  1, 2, . . . ,s ;  the service backlog or the 
workload of the ith server just before the arrival of the ~ th customer, i.e. the i th server would become idle 
at T~ + W.,, (or is already idle at T. if W.,~ ffi 0) if the ntli and subsequent customers would not be admitted 
to the system. Since the queue discipline is first-come-first-served, we may assume that in front of each 
server there is a queue and that an arriving customei i joins the queue of the server with the smallest 
workload. If there are several servers with this smallest workload the customer selects one of them at 
random. Hence W. - min~W.,~. We say that at T. - (i.e.~ust before the arrival of the nth customer) server i 
is in phasej iff W.,~ > W~ and the last customer who joined the queue of server i before T. is of typej. Let 
X.,j be the number of servers who at T~ - are in phasej , j  = 1, 2; then X.,i + X..2 ~< s - 1. In fact if W. > 0 
then Xn,i + Xn.l = s -  1 with probability 1. We have shown in [1] that {(W., X.,t, X..2), n = 1, 2,... } is a 
vector Markov process and (W., X~,t, X.,2) converges weakly to the steady state vector (IV, Xt, X2) iff 
p = p/'(as) < 1. From now on we assume that this is the case. 

In what follows we shall impose five conditions. We have shown that these conditions are 'almost 
always' satisfied, implying that any model for which they do not hold can be approximated arbitrarily 
closely by a model for which they do. Let I(A) be the indicator function of the event A, i.e. I(A)ffi 1, if A 
occurs and I (A)=  0, otherwise; and let 8~s be Kronecker's symbol, i.e. 8. ffi 1 and 8~j ffi 0, i ~ j .  Trinomial 
coefficients will be denoted by 

i)__ i! 
j ; k  j ! k ! ( i - j - k ) ! '  j>~O, k>~O,j+k<~i. 

The identity matrix of appropriate dimension is denoted by I. 
The distribution of (IV, X l, X 2) can be specified by the following functions: 

Z(i,j)ffiP(Xi--i, X2ffij), l>~O,j>~O, i+j<~s-2; 
ffi O, otherwise; 

Zl,(cb)=E(exp(-epW)l(Xi=k- l, X2ff is-k)) ,  k - l , 2 , . . . , s ;  Re~>~0. 

These functions satisfy the system of equations given below: 

H(cF)Z(q~)--A(-q~)Z* + Z (O) -D( -~ ) ,  R e ~ - O ,  (2) 
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where 

( zl ((~)) 
z ( , ) =  , Z* ~-- 

Z~ D,( , ) )  
D ( , ) =  i , 

D,(~) 
with 

Z ~ - p , Z ( k - 2 ,  s - k ) + p 2 Z ( k -  1, s - k -  1), 

and D,(¢  ), k = 1, 2, . . . ,s ,  are functions which are bounded and analytic for Re ¢ >I 0; and where H(¢)  is 
an s x s-matrix given by 

kb 1 
H, . , (¢)f  l - A ( - ¢ )  P ' ~ + k b ,  +(s-k)b  2 

k = 1, 2 , . . . , s ;  

( s -  k + 1)b 2 ] 
+ P 2 ,  + ( k  - 1)b, + ( s -  k + 1 ) b  2 ' 

kbt 
n k . k + , ( ¢ ) f - A ( - , ) p 2 e p + k b l + ( s _ k ) b 2 ,  k f f i l , 2 , . . . , s - 1 ;  

( s -  k + l )b  2 
Ht"*-~(~')= -A(-e~)P~e#+(k-1)bt + ( s - k +  1)b 2'  k f f i2 ,3 , . . . , s ;  

Hk,j(~) ffi 0, otherwise; 

moreover, for i >~ 0, j >i 0, i + j  ~< s - 2 

s-2s-2-k 
Z(i,J)fSi+j,o+ E E b( i , j ,k , i )[P,Z(k- l , i )+p2Z(k, l -1)]  

k=i /=j 

+ E E E i ; n , - i  j ;n2-j  (-1 +i+JDk(n'b '+n'ba) '  
k f i +  l n I = i  n2= j 

where 

(3) 

(4) 

, , (  k )( 
b( i , j , k , I ) ,  = ~'~, E i;nt_ i j;n2 

n! - - i  n2-- j 

O <~ i <~ k,  O <~j <~ l, k + i <~ s - 1; 
ffi O, otherwise; 

(5) 

and finally, for k = 1, 2, . . . ,s ,  

D~((k - 1)b, +(s - k)b,) = Z~(0). (6) 
In [I] the system (2)-(6) is solved using a factorization method. Next we give the result for the case 

considered here: 
(i) det H(O) can be written in the form $ $ 

det H ( ~ ) =  1 + E 1 t.o ~+lbt +(s-I)b2 ~, [A(-~)]ka(i,k), k - 1  

where the a(i, k) are constants not depending on ~; 
(ii) if ~.l[A(Ibt + (s-I)b2)]ka(I, k)~O for I ffi 1, 2 , . . . , s  (Condition 1) then det H(~) has exactly 

s + 1 zeros in the left half-plane Re ~ < 0, which we denote by Pt, P2,... ,P,+ t; 
(iii) assume that the p~, i ffi 1, 2, . . . ,s  + 1, are distinct (Condition 2), let B~ be a (nonunique) nonzero 
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s-dimensional column vector satisfying 

H ( ~ , ) n , - O ,  (7) 

and let B be the s × (s + 1)-matrix whose ith column is B~; 
(iv) define the (s + 1) × (s + 1)-matrix L by 

1 
Lsa, = [ + + ( j -  Z)b, + ( s - j  + Z)b  " 

j =  1, 2 , . . . , s  + 1, k =  1, 2 , . . . , s  + 1, 

where Boa, ffi B,+ l.k = 0, k = 1, 2,... ,s + 1; and the (s + 1) x s-matrix M by 

Mj. k -- plSj,, +! + p28j.tc; 

assume det L ~ 0 (Condition 3) and define 

C = L-  IM; 

(v) the s × s-matrix K(~) is given by 

X ( , )  = nS( , )C ,  

where J(qb) is the diagonal (s + 1) × (s + 1)-matrix with 

k =  z , : , . . . ,s+  z; 

(vi) define the s × s-matrix Q(tb) by 

Qj.k(*)= K j . k ( * ) / A ( * ) - P i ( s - - j  + 1)Kj - t . k (*) - - [  pz j  + p : ( s - - j  + ])] gj.k(r~) 

-p2jKj+ l.k (~),  J = 1, 2, . . .  ,s, k = 1, 2,. . .  ,s, 

where Ko.k(¢~) = K~+la , (~ ) -  0, k ffi 1, 2 , . . . , s ,  and the s ×s-matrix S by 

Ss.k = Qj.k(-(J-  l ) b , - ( s - j ) b 2 ) ;  

(vii) assume that det S ~ 0 (Condition 4) and define 

G ( , ) =  ( X ( O ) -  H ( , ) K ( , ) ) S - i ;  

and, for i~O,j;bO,  i + j ~ s - 2 ,  k =  1, 2, . . . ,s ,  

h -  1 s-  )",+"=+~+J~ 
c( i , j ,k)= i ;nz - i  j;n= j ( - I  ,.,,.i,(-nzbz-nzb2); 

h - i +  l nl--i nz-- j 

(viii) number the elements of the set ((i,j)li  >~ O,j >~ 0, i + j  ~< s - 2} from 1 until (1) by assigning to the 
pair ( i , j )  the number n( i , j ) - -  i + 1 + (s + i + j  + 1 X s -  i - j -  2)/2; and define the (~) × (~)-matrix T b y  

T, afPt[b(kt.k,. l ,  + 1,1,)+c(kz,k,,l+ 1)] +p,[b(kz.k,.I,, l ,  + 1)+c(kz,k,.l)], 

k = l , 2 , . . . ,  2 ' l = l ' 2 " ' " s - l '  

"Ptb(kl, k2,1t + 1,12)+p2b(kt,k2,1t,12 + 1), 

k - l , 2 , . . . ,  2 ' l - - s ' s + l " ' "  2 ' 

where k = n(kt, k=) and t = n(h,  /2); 
(ix) assume that the matrix 1 -  T has rank ( ~ ) -  1 (Condition 5) and construct the matrix T' from 
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I -  T by replacing the last row by the row vector T o given by 
$ $ 

r ° = 1 +p, E R~.,÷, +p, E R~.,. 
h = l  h = l  

= 1 ,  

k =  1, 2 , . . . , s -  1, 

where R = K(O)S-!; 
(x) Let i ° be the (~)-dimensional column vector with the last component equal to 1 and the other 

components equal to O, and let Z ° be the column vector with components 

z°, zg,...,z~,, 

satisfying 

T,Z o = io, 

then, for i >~ O, j >~ O, i + j  < s - 2, we have 

Z ( i , j )  ffi Z°,.,, 
and, for k ffi 1, 2 , . . . , s ,  

s - - I  

z , (o) -  R~.,p,z ° + E R~.~[p,z°-, +p,z~] + R,.,p,z?_,; 
h..2 

(xi) define the column vector V with components V I, V2,..., V~+! by 

v= cK-'(o)z(0) 

and, for j ffi 1, 2, . . .  ,s + 1, 

aJ-- ~'~j i .  l 

(xii) let A*(~) - (I - A ( ~ ) / ( a ~ ) ,  ~ ~= 0, and A*(0) --- I, and define, for i ;~ O, j >~ 0, i + j < s - 2, 

s- i - j  s - l -k  
Z*(i,j)= E ~- b*(i, j ,k,I)[P,Z(k-l, l)+P2Z(k,l-1)] 

k-i I - j  

s-j h-l s-h~.~ (na.j, h-1)(  s-h n2_j ,,I + n = + ' + /  
+ ~ ~'* - - , i ; n , - i  ( - -1)  

h-l+! n l - - i  

s Vi [hb, L , j + ( s - h +  1)b2L._,j] 
X ~.. n=bl + n2b2 + ~1 I-1 

X [A*( - I~ , ) -A*(n ,b ,  + n2bz)], 
where 

b*(i,j,k,I)ffi ~ i;nl_ i j;n2_ j ( - 1 )  n' nlbt +nab2); 
/tim/ 

and define, for j = 1, 2 , . . . , s  + 1, 

(8) 
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Now we have found all the parameters for the steady state distributions which are given by 
s + !  s + !  

P ( W < x ) - I +  Y'~ajexp(~jx), x>~O, P(W*<x)ff i l+ E d j e x p ( / ~ j x ) ,  
jffii Jffi] 
s + l  

P(Q<k)= l + E a j [ A ( - P j ) ]  k+',  
j = !  

k = 0 , 1 ,  . . . .  

s + l  

P(Q* <~k)= 1 + E dj[A(-Pj)] k+', 
jffiffil 

k = 0 , 1 ,  . . . .  

P(C~k)ffi Y'~ Z(i,j), kfO, l,...,s-2, 
i+j~k 

P(C*~k)ffi ~ Z*(i,j), k f f i 0 , 1 , . . . , s - 2 ,  
i+j~k 

s + i  

P(C <~k)ffi I + E aj[A(-P,)] k-~+', 
j=l 

k - s - l , s , s + l ,  .... 

s + l  
P(C* ~<k)= 1 + Z dj [A(-~t j ) ]  k-s+ ' ,  

j = l  
k - - s - l , s , s + l  ..... 

x>_-0, 

3. The numerical algorithm 

The solution given by (i)-(xii) in the previous section implies a numerical algorithm for calculating the 
required parameters. In the case of Poisson arrivals it is apparent that dj ffi a j, and it may be shown that 
Z*(i , j )-Z(i , j )  so that we can omit (xii). The zeros Pro, P2,. . . ,Ps+t turn out to be real. In order to 
determine them we have to calculate det H(¢}) many times. The following recursive method is accurate and 
efficient. Take 

gP2b2 
h o ( ~ ) - ] ,  g l ( ~ ) ' - - A ( - ~ ) ~ + s b  2, 

and, for k ffi 2, 3 , . . .  ,s, calculate 

plbl 
h i ( ~ ) f f i l - A ( - ~ )  ~ + b t + ( s _ l ) b  2 

( s - k  + 1)p2b2 gk(~) ffi 
~b + ( k -  1)b, + ( s - k  + 1)b2 tgk_l (~)  + h k _ 2 ( ~ ) l , [ 1  

= + - 
kp~bi 

ep + kb I + ( s - k )b 2 

sp2b_......~2 ] 
+ ¢b + sb2 ' 

then det H(¢,) - h, (¢,). 
The system (7) may be solved recursively since H ( ~ )  is a Jacobi matrix and we may choose some 

convenient value for Bt~. For the solution of (8) we may take advantage of the fact that T' has the form 

T~I 

Tt~- • 

T~-2.1 

Ts p- i.i 

0 

T~_ 2,2 " " Ts t- 2.s- 2 

Ts'_ i. 2 . . .  T;_l.s_ 2 

where T~. I is an (s - k)  × (s - I)-matrix• 

Ts'- 2.s- i 
Ts'_ i.s_ i 
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One may apply the following accuracy checks: 

(a) det K ( 0 ) -  I-  [ (k-1)bl+(S-k+])b2" 
k = !  - -~k  ' 

(b) Z ° should satisfy the last equation of ( I - T) Z ° -- 0. 

The algorithm has been programmed in Algol-~O and run on a DEC-10 computer. The CPU-time needed is 
hardly effected by the choice of the interarrival time distribution and the parameters/~, c 2 and r s. In Table 
1 we show how it depends on the number of st~ vers s. 

Most of the CPU-time is spent on calculating the coefficients c(i,j, k) (step(vii)). The number of 
operations in this part of the program is almost proportional to s 6. For s -  20 the CPU-times for the 
successive steps of the algorithm are approximately as follows: (i)-(iv): 2 seconds, (v)-(vi): 6 seconds, (vii): 
65 seconds, (viii)-(xi): 15 seconds, and (xii): 7 seconds. For large s the total memory requirements amount 
to approximately s 3 + 8s 2 reals (double precision, 62 bits) and 4S 2 integers. Up to s--- 15 the algo,-ithm 
turns out to be very stable and accurate even for extreme parameter values like Cs 2 - i0 and r s - 10 or 
r s , - 0 . 1 .  For less extreme cases reasonably accurate results may still be obtained up to s -- 30. 

As an illustration we give some typical results for the model G I / H 2 / 1 5  with p - 0.9, Cs 2 - 5 and r s - 0.5. 
For convenience we take p - 1. The percentile ~,p of a random variable X is defined by P( X > ~,p) - p. For 
the hyper-exponential interarrival time distributions we have chosen r A -- 1. 

The program has been tested extensively. The results for the queue length in the system M / l f ~ / s  are in 
full agreement with results obtained by Hokstad [3], Marcel Neuts (personal communication) ~sing the 
matrix geometric method, and Van Hoorn [5] using the method described in [4]. 

The approximations and simulation results for the waiting times in the system M / H 2 / s  which ~vere also 
published in [5] agree closely with our exact results. Known results from queuing theory, such as L -- ~W, 

Table I 

s 5 10 15 20 25 30 

CPU-time in seconds 0.5 5 28 95 290 690 

Table 2 
Actual waiting time 

EW Var W P(W = 0) Yo.ot Yo.o5 "to.to 

D 0 0.8409 2.1941 0.4531 6.7632 3.9297 2.7099 
E 5 0.2 0.8943 2.3966 0.4346 7.0550 4.1200 2.8563 
E 2 0.5 0.9777 2.7162 0.4099 7.4924 4.4048 3.0753 
M 1 1.1161 3.2913 0.3751 8.2209 4.8783 3.4390 
H 2 2 1.3850 4.5571 0.3267 9.6305 5.7922 4.1392 
H 2 $ 2.1951 9.4414 0.2421 13.7846 8.4791 6.1941 

Table 3 
Virtual waiting time 

Gi c~ 2 EW* Var W* P(W" = 0) Yo.ot Yo.os "to.to 

D 0 0.8618 2.2218 0.4242 6.8004 3.%69 2.7471 
E s 0.2 0.9125 2.4193 0.4123 7.0846 4.1496 2.8859 
E 2 0.5 0.9887 2.7309 0.3966 7.5108 4.4232 3.0937 
M 1 1.1161 3.2913 0.3751 8.2209 4.8783 3.4390 
H 2 2 i.3627 4.5224 0.3445 9.5954 5.7570 4.1041 
H 2 $ 2.1007 9.2662 0.2905 13.6487 8.3431 6.0582 
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Table 4 
Number of customers at arrival epochs 

Gi c 2 EQ Var Q P(Q -- 0) EC Var C P(C = O) 

D 0 1 ! .083 394.75 0.4970 24.358 438.46 0.0737 × 10- 6 
E s 0.2 11.866 434.98 0.4787 25.194 480.21 0.1620 × 10- 6 
E 2 0.5 13.055 498.89 0.4536 26.454 546.31 0.3800 × 10- 6 
M 1 15,067 614.90 0.4174 28.567 665.74 0.9876 × 10 -6 
H 2 2 19.006 873.75 0.3657 32.662 930.42 3~5649 × 10- 6 
H 2 5 30.982 1895.74 0.2725 44.930 1966.01 17.7352 × 10 - 6 

Table 5 
Number of customers in continuous time 

Gi ca EQ* Vat Q* P(Q* -- 0) EC* Var C* P( C* ~- O) 

D 0 11.352 399,97 0.4761 24.852 438,71 0.0232 × 10- 6 
E s 0.2 12,088 439.29 0.4620 25.588 480,45 0.0725 x 10-6 
E 2 0.5 13.200 501.70 0.4434 26.700 546,50 0.2480 x 10- 6 
M 1 15,067 614.90 0.4174 28.567 665.74 0.9876 x 10 - 6 
H 2 2 18.698 867.00 0.3809 32,198 929,49 7.4171 × 10- 6 
H 2 5 29.634 i 860.77 0.3165 43,133 1957,66 87.0153 × 10- 6 

Poisson arrivals see time averages and heavy traffic approximations have been used to check the internal 
consistency of our method. 
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