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• High ability students were more likely to consult feedback.
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a b s t r a c t

In educational studies, the use of computer-based assessments leads to the collection
of multiple outcomes to assess student performance. The student-specific outcomes are
correlated and often measured in different scales, such as continuous and count outcomes.
A multivariate zero-inflated model with random effects is proposed and adapted for the
challenging situation where the multiple outcomes are zero-inflated and possibly right
truncated. The joint model consists of a Bernoulli component to deal with the problem of
extra zeros, and a multivariate truncated component to model correlated mixed response
outcomes from the same subject. In a Bayesian modeling approach, MCMC methods are
used for parameter estimation. Using a simulation study, it is shown that the within-
individual correlation between counts can be accurately estimated together with the other
model parameters. The multivariate zero-inflated model is applied to a computer-based
feedback study about computer literacy, where first-year bachelor students were given the
opportunity to receive additional feedback. The total number of feedback pages visited and
the total feedback processing time are modeled using a Poisson and a Gamma distribution,
respectively. The joint modeling framework is extended to incorporate explanatory latent
variables (student performance and speed of working), to explore individual heterogeneity
in feedback behavior in a computer-based assessment.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Computer-based assessment (a.k.a. computer-administered testing), where students are requested to answer items in
a computer environment, is receiving increasing attention. Various advantages of computer-based assessment have been
exploited such as improved reliability, improved question styles using interactive multimedia technology, and testing on
demand, among other things (e.g., van der Linden and Glas, 2010). Recently, the opportunity to provide instant feedback
to students has been further developed to improve learning. In different computer-based assessment studies, feedback
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information was integrated to inform students immediately about their deficiencies given the test results. The main object
was to investigate the effects of feedback on students’ learning outcomes (e.g., Hattie and Timperly, 2007; van der Kleij et al.,
2012).

The present study concerns a computer-based formative assessment (CBFA), where first-year bachelor students were
given the opportunity to consult feedback after completing an information literacy test. Interest was focused on student-
specific propensity to consult feedback and student-specific characteristics of feedback behavior such as the expected
number of pages visited and the expected total time to process the feedback information, also referred to as the total reading
time. The assessment data provide information about student achievement and working speed.

From a statistical point of view, several important features of the feedback data need to be considered. First, the data are
potentially zero-inflated, where a substantial group of students, around 42%, did not consult feedback for different reasons
(e.g., time limitations, motivation, not familiar with computer-based assessment). Second, the restricted number of test
items leads to right truncated feedback-use counts. Third, the probability of feedback use is most likely correlated with the
expected number of consulted feedback pages and the expected time reading feedback. This correlation should be taken into
account to avoid biased parameter estimates. Fourth, within-subject correlation needs to be addressed, since the number of
pages visited and the total time reading are clustered by subject. Fifth, the total number of feedback pages consulted (count
data) and the total feedback reading time (positive continuous data) are measured on different scales. Finally, individual
latent predictors, achievement and speed ofworking, aremeasured using a response time item responsemodel (RTIRT; Klein
Entink et al., 2009; van der Linden, 2007), which requires a proper treatment of the statistical error in the measurements
when using them as explanatory variables.

Here, a multivariate zero-inflated model with subject-specific random effects is presented that addresses the specific
features of the data. The real-data study about feedback use will be used throughout the paper to illustrate the various
modeling issues. The model consists of two components, where one component addresses the excess zeros and the other
multivariate component describes the variability of the counts (total visited pages) and the continuous times (total feedback
reading time). A truncated Poisson distribution is used to model the counts and a Gamma distribution is used to model the
times, where subject-specific random effects are used to model the unobserved between-subject variation. The log of the
mean parameters, representing the expected total feedback use and expected total processing time, are considered to be
random effects and assumed to be multivariate normally distributed to capture the within-subject correlation. This joint
model is referred to as a multivariate zero-inflated Poisson–Gamma model, where the random effect mean parameters are
referred to as subject-specific rates.

Several motivations can be given for the joint modeling framework. Inferences can be made for the original mixed
outcomes, the joint model implies separate univariate models, marginal inferences can be directly made, and the random
effect structure avoids heavy computational problems since it reduces the issue of dimensionality.

In the field of health research, where it is more common to measure mixed outcomes, the joint modeling of mixed
outcomes received considerable attention. Many applications consider the modeling of multivariate longitudinal outcomes
and a time-to-event outcome (e.g., McCulloch, 2008; Rizopoulos et al., 2010; Yang et al., 2007). Furthermore, in practice,
observations might be zero-inflated or censored such that values below or above a limit are not observed (Mihaylova et al.,
2011; Rose et al., 2006). For example, inHIV/AIDS studies viral loads belowa certain limit cannot bemeasured and are subject
to left censoring (Hu et al., 2011). In the presentmodeling framework, of typical interest would be, in the case of informative
dropouts, the jointmodeling of the censored viral loadmeasurements and time-to-event data.When considering healthcare
cost data (as the aggregated total cost of different sources) and the number of interventions (i.e. number of times a medical
intervention was required during a time period) a joint modeling approach will account for within-subject correlated
observations. A zero-inflated multivariate modeling approach was required when interventions were sparse for subjects in
the population. In other research fields, zero-inflated multivariate (count) data also arise naturally in different applications.
For example, in economics, purchases over time of different households and products are likely to be correlated within
households. And purchase observations of products that are rarely used are zero-inflated.

The present approach builds on work on zero-inflated (count) models. This includes the zero-inflated Poisson model,
Lambert (1992) and Loeys et al. (2012) for a more general introduction, where recently Bayesian alternatives have been
proposed (see Congdon, 2005; Gelman et al., 2004). Wang (2010) also proposed a model to handle zero-inflated count data.
Zero-inflated Poisson models with random effects were also considered by Min and Agresti (2005) and Rabe-Hesketh and
Skrondal (2007). The excess zeros will be explicitly modeled through a Bernoulli model, where the success probability
is defined as feedback use. This will make it possible to investigate the heterogeneity in the feedback use and student
characteristics can be used to explain individual differences in the propensity to use feedback.

The multivariate zero-inflated model is further extended by introducing latent student predictors (achievement and
speed of working) as covariates. Latent student characteristics are measured using a response time item response model
(RTIRT; Klein Entink et al., 2009; van der Linden, 2007) and used as explanatory variables (e.g., Fox and Glas, 2003;
Skrondal and Rabe-Hesketh, 2004). A Bayesian estimation approach is adopted, which supports joint estimation of all model
parameters using MCMC simulation techniques.

The remainder of this paper is organized as follows. In the next section, the proposed multivariate zero-inflated mixture
model is described using the real-data study as an example throughout the paper. Then, the measurement model for the
latent predictors is described. AnMCMC algorithm is proposed, which represents the sampling steps related to the different
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model components. Then, themodel is applied to the Dutch feedback data. Finally, the last section provides a discussion and
outlines directions for further research.

2. Multivariate zero-inflated random effect models

A formal description of the modeling framework is given on the basis of the feedback study. A total of n students are
considered that have an opportunity to consult feedback for each item k = 1, . . . , K . Let Y f

i denote the total number of
feedback pages visited (k = 0, 1, 2, . . . , K) by student i (i = 1, . . . , n). The observed number of feedback pages of student
i will be assumed to be Poisson distributed with feedback rate λ

(f )
i .

The observed discrete count data may contain excess zeros relative to what can be expected according to the Poisson
distribution. This may occur when a significant group of students do not open any of the feedback pages. This group is not
interested in feedback and will represent a zero state. Other students may ignore the feedback this time, but they might
consult feedback on another test occasion. Following Lambert (1992), the relevant distribution is a mixture of the Poisson
distribution and a degenerate distribution at zero. The zero-inflated Poisson model for the total number of feedback pages
opened of subject i is represented by

Y f
i ∼


0, with probability 1 − φi

Poisson

λ

(f )
i


, with probability φi,

(1)

where 1−φi is the probability of an excess zero of student i. It follows that the probability of a zero response and a non-zero
response is given by, respectively,

P

Y f
i = 0 | λi = λ

(f )
i , Y f

i ≤ K


= (1 − φi) + φie−λi/Ci(K), (2)

P

Y f
i = j | λi = λ

(f )
i , Y f

i ≤ K


= φi
e−λiλ

j
i

j!


Ci(K), (3)

where j = 1, 2, . . . , K . Here,

Ci(K) = P

Y f
i ≤ K | λi = λ

(f )
i


=

K
j=0

e−λiλ
j
i

j!

is the truncation probability to account for the upper bound of K items.
Let T f

i denote student i’s total time (in seconds) reading or processing the feedback information. This feedback time
equals zero when student i does not open any feedback page. Subjects not opening feedback pages generate a substantial
proportion of zeros. Therefore, feedback time data are modeled as a mixture of a degenerate distribution at zero (with
success probability 1 − φi) and a distribution for the non-zero observations.

The zero-inflated time observations are assumed to be zero-inflated Gamma distributed, which is represented by

P

T f
i = 0 | λi = λ

(t)
i


= (1 − φi), (4)

P

T f
i = ti | λi = λ

(t)
i , ν


=

φi
2λi
νi

 ν
2

Γ


ν
2

 t(ν−2)/2
i exp


−tiν
2λi


, (5)

where 0 < ti < ∞ and Γ (·) denotes the Gamma function. Note that in this parametrization of the Gamma distribution the
shape parameter is ν/2 and the scale parameter 2λ(t)

i /ν. Then, the expected feedback time is equal to λ
(t)
i and the variance

to 2λ2(t)
i /ν.

When a test is administered with a time limit, the total time is restricted to be lower than the time limit. In that case, the
total time is truncated Gamma distributed, where the truncation probability accounts for the time limit.

In some cases, the times are coarsely observed, when, for example, discrete times are recorded as proxies of the
continuous observations. In the present study, relatively small total feedback times were stored in whole seconds. These
discrete time observations can also be modeled by a Poisson distribution, where a Poisson rate parameter λ

(t)
i can represent

the expected total time (in seconds) of subject i’s feedback time. In the same way as Eq. (1), the zero-inflated Poisson model
for the feedback (reading) time is given by

P

T f
i = 0 | λi = λ

(t)
i


= (1 − φi) + φie−λi , (6)

P

T f
i = j | λi = λ

(t)
i


= φi

e−λiλ
j
i

j!
, j = 1, 2, . . . (7)
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In the Gamma distribution and in the Poisson distribution, (5) and (7), the parameter λ
(t)
i represents the expected total

reading time of subject i. The subject parameter λ
(f )
i represents the expected number of feedback pages that are visited. Both

subject parameters λ
(f )
i and λ

(t)
i are restricted to be positive and assumed to be independently distributed over subjects, but

it is to be expected that they are nested within the subject. For example, the total amount of feedback time increases when
opening more feedback pages.

The subject parameters are referred to as subject’s rate parameters and the within-subject correlation between the
rates are modeled with a multivariate log-normal distribution. That is, the logarithm of the subject’s rates are multivariate
normally distributed,

log(λ(f )
i ), log(λ(t)

i )
t

| µ, 6 ∼ N2 (µ, 6) . (8)

The student-specific probability of not opening any feedback page equals 1 − φi, which can be explicitly modeled to
explore and explain differences between subjects in their use of feedback information. Let Gi denote the class-membership
variable, where Gi = 0 when an excess zero is given and Gi = 1 otherwise. The probability φi represents the probability of
a non-zero observation using a logistic probability model,

φi = P (Gi = 1 | α) =
exp(xtiα)

1 + exp(xtiα)
, (9)

where the vector xi contains the relevant predictors of subject i for the probability of giving a non-zero response.
A multivariate zero-inflated Poisson–Gamma model is represented by Eqs. (1), (4), (5), (8) and (9). For discrete time

observations, a multivariate zero-inflated Poisson model is represented by Eqs. (1) and (6)–(9). In the fully Bayesian model,
priors are required for the parameters µ, 6, and α. The recommended normal priors will be used for µ and α (Gelman et al.,
2004).

The usual prior for the covariance matrix 6 is the inverse-Wishart distribution, but the variances of the rates are not
identified due to the mixture probabilities φi. This follows from the expression of the marginal mean,

E(Y f
i ) = E


E

Y f
i | λ

(f )
i


= φi (exp(µ1 + Σ11/2)) ,

= exp(log(φi)µ1 + log(φi)Σ11/2), (10)

where Σ11 is the first diagonal element of 6. Note that the conditional expected rate equals the expected value of a log-
normally distributed variable (Aitchison and Ho, 1989). For the multivariate zero-inflated Poisson model, it can be seen
that, besides the variance term Σ11, the mixture probability φi influences the marginal mean and simply serves as a scaling
factor. The indeterminacy outlined can be solved by fixing Σ11 to an arbitrary constant. In the same way, the variance term
Σ22 is restricted to identify the scale of the Poisson rate, λi(t), which represents the expected feedback time. For the Gamma
distribution, it can be shown in a similar way that there is an indeterminacy between the variance termΣ22 and themixture
probability φi.

Due to this identification issue, variance termsΣ11 andΣ22, representing the between-subject prior variance in the rates,
will be restricted to one. The prior for the covariance parameter Σ12 to model the correlation between subject’s rates will
be conditionally specified. Following Klein Entink et al. (2009), this parameter will have a normal prior in the regression of
log λ

(f )
i on log λ

(t)
i . Obviously, observed data will be used to assess the between-individual posterior variation.

Note that the model could also be identified by restricting the mean parameter µ1. However, in that case the mean
structure is constructed by the variance components, which can complicate the estimation procedure and the interpretation
of the variance components.

When ignoring the zero-inflated component and treating the times as count data, the joint Poisson model resembles the
multivariate Poisson-log normalmodel of Aitchison andHo (1989). Thismultivariate Poisson-log normalmodel can describe
the correlation between multivariate discrete count data, where the assumption of independence among the counts can be
tested since it is a constrained version of the model. In this field, Böckenholt et al. (2003) proposed a factor-analytic Poisson
model, where multiple factors are used to model the dependency structure. Wang (2010) defined a linear model for the
Poisson rates using a log link function and latent person variable. The multiple counts are considered to be responses to
items, which are indicators of an underlying latent variable.

The multivariate zero-inflated Poisson model allows for overdispersion, since the marginal variance of each count
variable, Y f

i and T f
i , is greater than the marginal mean relative to an inflated Poisson distribution. The multivariate log-

normally distributed Poisson rates induce this overdispersion for the marginal distributions (Aitchison and Ho, 1989).
Furthermore, the Poisson rates can be positively and negatively correlated in contrast to other multivariate discrete
distributions such as multinomial or negative multinomial (Tunaru, 2002).

3. Latent explanatory variables

Individual differences in the use of feedback and the time spent reading the feedback can be explored through individual
explanatory information. In the present computer-based formative assessment the feedback pages can be consulted as an
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additional source of information after the test has been completed. The results from the assessment are used to collect
information about students’ abilities and speed of working. Therefore, obvious explanatory variables for student feedback
behavior are the skills measured by the test and the working speed. The individual item responses and response times are
indicators of the underlying latent variables ability and speed, respectively. The subject-specific latent variables will be used
as predictors of the expected feedback use and expected feedback time, and they will constitute the matrix x of explanatory
variables in Eq. (9).

The response time item response model (RTIRT) will be used to measure the latent variables speed and ability given
continuous item response times and discrete item responses (van der Linden, 2007; Fox et al., 2007; Klein Entink et al.,
2009). Let Y a

ik and T a
ik denote the dichotomous response and continuous response time of subject i to item k, respectively. At

the level of observations, the two-parameter response model is specified as

P

Y a
ik = 1 | θi, ak, bk


= Φ (akθi − bk) , (11)

and the log-normal response time model as

log T a
ik | ζi, ck, dk ∼ N


dk − ckζi, ω2

k


. (12)

At the level of subjects, the subject-specific latent variables are multivariate normally distributed:

(θi, ζi)
t
| µP , 6P ∼ N2 (µP , 6P) . (13)

In the fully Bayesian framework, priors need to be specified for the item parameters. Following Klein Entink et al. (2009),
a multivariate normal prior is defined for the difficulties, b, intensities, d, the log of discriminations, log a, and the log of
time-discriminations, log c . Subsequently, a non-informative normal prior and an inverse-Wishart prior will be used for the
mean and covariance matrix, respectively. A different prior model is given by Meyer (2010), who specifies the model with
completely independent priors.

The joint distribution of the multivariate outcome data given the latent explanatory variables is given by

p

yf , tf | φ, θ, ζ, 6


=


i


(1 − φi) + φi


R2

+

p

yfi , t

f
i | λ

(f )
i , λ

(t)
i


p

log λ

(f )
i , log λ

(t)
i | θi, ζi, 6


dλ


, (14)

where R2
+
denotes the positive orthant of two-dimensional real space R2. Note that in this case, interest is focused at the

level of subjects, and relationships between feedback (seeking) behavior and latent student characteristics are explored. The
latent explanatory student characteristics are related to observable indicators at a lower hierarchical level. This corresponds
with the modeling framework of Fox and Glas (2003), where several IRT models were used to measure latent explanatory
variables at different levels in a structural multilevel analysis. Skrondal and Rabe-Hesketh (2004, pp. 440–443) describe an
application of a hazardmodel with a latent covariate. Croon and van Veldhoven (2007) and Lüdtke et al. (2008) showed that
explanatory variables measured as aggregate scores at the lower level lead to biased regression effects when the associated
uncertainty is ignored. Through a latent variable approach, the uncertainty of the higher-level constructs is taken into
account.

4. MCMC algorithm

The parameters of both joint models, the multivariate zero-inflated Poisson–Gamma model, Eqs. (1) and (5), and the
multivariate zero-inflated Poisson model, Eqs. (1) and (7), will be estimated simultaneously using MCMC. For both models,
subject’s rates are assumed to be log-normally distributed according to Eq. (8). Furthermore, both models contain a logistic
component for the mixture probabilities, Eq. (9), and the RTIRT component for measuring the latent explanatory variables,
Eqs. (11) and (12). A sketch is given of the MCMC scheme that represents the full conditional posterior distributions from
which samples are to be drawn consecutively. References are given to well-known sampling steps.

The MCMC algorithm consists of several steps to simulate values for the latent explanatory variables and for the
parameters of the multivariate zero-inflated model. In iteration m, the first step is defined as the sampling of the latent
explanatory values of ability and speed, denoted as θ

(m)
i and ζ

(m)
i , respectively. These sampling steps, and the steps for

simulating the other RTIRT parameters, are completely described in van der Linden (2007), Klein Entink et al. (2009), and
Fox (2010).
Mixture model part

The logistic model parameters α are sampled with a Metropolis–Hastings step. Therefore, consider the random variable
Zi which equals one when feedback is consulted and zero otherwise. For the multivariate Poisson model, Zi is Bernoulli
distributed with a success probability of using feedback

P (Zi = 1 | λi, α) = P (Gi = 1 | α) P

Y f
i > 0, T f

i > 0 | λ
(f )
i , λ

(t)
i , Y f

i ≤ K


=
exp(xtiα)

1 + exp(xtiα)


1 − exp


−λ

(f )
i − λ

(t)
i


/Ci(K)


, (15)
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where Ci(K) is the truncation probability defined in Eq. (3). For the multivariate Poisson–Gamma model, the success
probability is described by the logistic model with parameter α.

Using a multivariate normal proposal distribution for α, the candidate α(m) can be evaluated using the acceptance ratio

p

z | x(m), λ(f ), α(m)


p

α(m)

| µα, Σα


p

z | x(m−1), λ(f ), α(m−1)


p

α(m−1) | µα, Σα

 , (16)

where in iteration m, the vector x(m)
i contains also latent explanatory variables ability and speed values, θ

(m)
i and ζ

(m)
i ,

respectively.
Multivariate zero-inflated (Poisson–Gamma) log-normal part

The rate parameters are also sampled using Metropolis–Hastings. Using the prior defined in Eq. (8), the conditional prior
for λ

(f )
i can be specified as

log λ
(f )
i | λ

(t)
i , µ, Σ12 ∼ N


µ1 + Σ12


log λ

(t)
i − µ2


, 1 − Σ2

12


, (17)

where Σ12 is the covariance between the two subject rates, and the variance of each rate is fixed to one. The log posterior
distribution of the Poisson rate can be expressed as

log p

λ

(f )
i | yfi , zi


∝


log(1 − φi) + φi exp


−λ

(f )
i


/Ci(K)


I (zi = 0)

+


log(φi) − λ

(f )
i + yi log λ

(f )
i − log yi! − log(Ci(K))


I (zi = 1)

+ log p

log λ

(f )
i | λ

(t)
i , µ, Σ12


. (18)

Proposals are sampled from a normal distribution, and the acceptance ratio can be defined using the posterior density of
λ

(f )
i in Eq. (18). When modeling the times with a Poisson distribution, a Metropolis–Hastings step for the Poisson rate λ

(t)
i

can be defined in a similar way. When using the Gamma distribution, the log posterior distribution of the rate λ
(t)
i can be

expressed as

log p

λ

(t)
i | t fi , zi


∝ (log(1 − φi)) I (zi = 0) +


log(φi) +

ν − 2
2

log(ti) −
tiν

2λ(t)
i

− (ν/2) log(2λ(t)
i /ν) − Γ (ν/2)


I (zi = 1) + log p


log λ

(t)
i | λ

(f )
i , µ, Σ12


, (19)

and a Metropolis–Hastings can be defined using the specified posterior density. The degrees of freedom ν can be sampled
from p(ν | λ(t)), since ν does not enter the likelihood. The posterior can be derived from the posterior p


λt

| ν, φ, t, z = 1


and a Gamma prior for parameter ν. The posterior density is a non-standard one and Metropolis–Hastings is used to draw
samples.

The mean part of the multivariate model can be explicitly modeled such that µi = xtiβ, which can include latent
covariates. Subsequently, regression parameters β in the multivariate lognormal model can be directly sampled given the
subject rates and a conjugate multivariate normal prior.

The diagonal elements of 6 are restricted to one. Following the approach of McCulloch et al. (2000), the covariance
parameter Σ12 is a regression parameter in Eq. (17), where the diagonal elements of 6 are restricted to one. Let the residual
variance parameter be denoted as σ 2

ρ = 1 − Σ2
12. The residual variance is restricted to be positive, which restricts the

parameter space ofΣ12 to the interval (−1, 1). Assume a normal prior restricted to this intervalwithmean zero and variance
Σ0. Then, the posterior distribution is given by

Σ12 | λ, µ, σ 2
ρ ∼ N



i

λ̃
(t)
i λ̃

(f )
i /σ 2

ρ
i

λ̃
2(t)
i /σ 2

ρ + Σ−1
0

,
1

i
λ̃
2(t)
i /σ 2

ρ + Σ−1
0

 I(−1, 1), (20)

where λ̃
(f )
i = λ

(f )
i − µi1 and λ̃

(t)
i = λ

(t)
i − µi2, and

σ−2
ρ | λ, µ, Σ12 ∼ Ga


i


λ

(f )
i − Σ12(λ

(t)
i − µ2)

2
2 + g1,

n
2

+ g2


(21)

where Ga() denotes the gamma density, and using an inverse gamma prior with scale and shape parameters g1 and g2,
respectively.
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Table 1
Simulation study: parameter estimates and 95%HPD regions across 100 simulated data sets for different within-subject correlations.

True Par. Model M1 Model M2 Model M3

Mean HPD Mean HPD Mean HPD

ρ = 0 0.00 [−0.10, 0.10]
φ = 0.8 0.80 [0.76, 0.83] 0.81 [0.77, 0.83] 0.81 [0.77, 0.84]
µ1 = 5 5.01 [4.91, 5.10] 5.58 [5.58, 5.59]
µ2 = 5 5.01 [4.92, 5.10] 5.42 [5.41, 5.42]

ρ = 0.25 0.26 [0.16, 0.35]
φ = 0.8 0.80 [0.76, 0.83] 0.80 [0.76, 0.83] 0.79 [0.76, 0.83]
µ1 = 5 4.99 [4.90, 5.09] 5.45 [5.45, 5.45]
µ2 = 5 5.01 [4.92, 5.10] 5.52 [5.51, 5.52]

ρ = 0.50 0.50 [0.42, 0.57]
φ = 0.8 0.80 [0.76, 0.83] 0.80 [0.76, 0.83] 0.80 [0.76, 0.83]
µ1 = 5 5.01 [4.91, 5.10] 5.50 [5.49, 5.50]
µ2 = 5 5.01 [4.91, 5.10] 5.49 [5.48, 5.49]

5. Simulation study: joint modeling multivariate counts

In this simulation study, the parameter recovery of the developed MCMC algorithm is evaluated for different within-
subject correlations and for multivariate count outcomes. The parameters of the zero-inflated multivariate log-normal
Poisson model, denoted as model M1, will be compared with the true values to assess the accuracy of the developed
estimation method. Furthermore, the estimates will be compared with the estimates of zero-inflated univariate Poisson
models that ignore the within-subject correlation. In the zero-inflated univariate Poisson model, a linear term is defined for
the Poisson rate and the probability to be in the Poisson process using the log and the logit link function, respectively.

To emulate the real-data study below, for 500 subjects, 100 data sets were simulated for within-subject correlations
of 0, 0.25, 0.50. For the three different correlations, two log Poisson rates were assumed to be multivariate normally
distributedwithmeans of five and variances of one. Next, bivariate count datawere generated according to the zero-inflated
multivariate log-normal Poisson model, where the probability of feedback use was common across subjects with φ = 0.80
such that 20% of the counts were excess zeros.

The simulationswere conducted in R using the developedMCMC scheme. For each data set, 20,000 iterationsweremade,
and a burn-in period of 5000 was sufficient according to Geweke, and the Gelman–Rubin statistic. The intercepts α0, µ1,
and µ2 were assigned weakly informative normal priors centered at zero. The covariance parameter Σ12 is assumed to be
normally distributed in the interval (−1, 1) with mean zero and variance one. The parameters of a zero-inflated univariate
Poisson model, with a log-linear model for the Poisson rate, were estimated given the first vector of counts and given the
second vector of counts, denoted as model M2 and M3, respectively.

The results are given in Table 1. The estimates of model M1, M2, and M3 are given in the second, fourth, and sixth
column across the 100 simulations, respectively. Furthermore, the average 95% HPD intervals were computed over the 100
simulations. The first column represents the true parameter values. The estimates of the model M1 are close to the true
value for the different correlation values. Although the prior means were set to zero, the parameter estimates do not show
shrinkage toward the prior means. The different correlations between the log Poisson rates were also accurately estimated.

For both univariate models the mean parameter estimates showed a bias. The bias is more or less the same across
the different correlation values. This follows from the fact that the expected value of the first and of the second vector
of outcomes equals exp(µ1 + Σ11/2) = exp(5.5) and exp(µ2 + Σ22/2) = exp(5.5) given non-excess zeros (see Eq. (10)),
respectively, which explains the bias. In this situation of overdispersion the variance in the observed data is alsomuch higher
relative to the Poisson distribution. It follows that the univariate Poissonmodel fails to describe the correlation between the
multivariate counts, since it assumes independent Poisson counts. Furthermore, the expected counts are overestimated and
the variability in the counts underestimated.

6. Model checking and comparison

Posterior predictive checkswill be used to assess the fit of themultivariate zero-inflatedmodels to the data. The posterior
predictive data under the model are compared to the observed data using a discrepancy measure. The discrepancy measure
takes an extreme value if themodel is in conflict with the observed data. For the zero-inflated Poissonmodel, three different
discrepancymeasures are often considered to evaluate the fit of the Bernoulli and the Poisson components (e.g., Neelon et al.,
2010; Wang et al., 2007).

Hjort et al. (2006) showed that the posterior predictive p-valuemay not be uniformly distributed under the hypothesized
model, which complicates the interpretation of the posterior predictive p-value. They suggested a calibration procedure to
correctly interpret the p-values, which requires an additional simulation procedure. Here, the posterior predictive checks
are used as a diagnostic tool to identify possible model misfits. This avoids an additional simulation procedure but it is
advisable to verify and investigate model misfits suggested by the p-values. That is, a careful investigation of the possible
misfit between the observed data and the posited model is needed for situations considered extreme by the p-values.
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First, the number of observations equal to zero will be compared to the predicted number of zeros under the model,

P


i

y(rep)
i = 0 >


i

yi = 0 | y


,

where y(rep)
i are the replicated data under the model. A posterior probability close to one indicates an overestimation, while

a posterior probability close to zero indicates an underestimation of the observed amount of zeros.
Second, the index of overdispersion will be used to check whether the model predicts more or less variability in the data

relative to the variance of the Poisson model. The posterior predictive check of the overdispersion index is given by

P

Var(y(rep))/E(y(rep)) > Var(y)/E(y) | y


.

In the case of overdispersion, when the posterior probability is close to one, the model will describe more variability in the
data than the Poisson model. The random effect Poisson model component is likely to predict more variance than expected
under the Poisson model. Typically, the random effect approach is introduced to accommodate relatively low and high
feedback-use observations, and subsequently to account for any overdispersion.

Third, the predictions of the non-zero counts are compared to the observed values. Therefore, the marginal posterior
predictive counts are compared with the observed counts, where the posterior predictive check is given by

P


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
i

yi = c | y


, for c = 1, 2, . . .

For each category, a posterior probability is computed to checkwhether the predictions aremore extreme than the observed
value.

The deviance information criterion (DIC) is used to compare different models. The deviance of the zero-inflated model
cannot be directly computed. Therefore, twice the negative log likelihood is used to define the deviance function. Let �

denote the set of relevant model parameters given the observed data y and t. The deviance is defined as
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The DIC is computed as the sum of the posterior mean difference, D(�), and the effective number of parameters, pD. The
effective number of parameters is the difference between D(�) and the estimated deviance given the posterior mean
estimate�.

7. Exploring student feedback behavior

In a computer-based formative assessment (CBFA) at a Dutch university of applied sciences, the opportunity to consult
feedbackwas provided to first-year bachelor students of Law,Health, and Business Administration. After completing the test,
the CBFA presented an automatically generated knowledge of results page (summary of correct and incorrect responses)
with for each item a link to an additional feedback page. For each item, the additional feedback contains the correct answer
and summarized information related to the item content. A student is said to use feedbackwhen he/she visited an additional
feedback page. The feedback time was measured as the time between opening and closing the pop-up page showing the
additional feedback for that item. For each student and each item, the CBFA registered the response and the response
time. Furthermore, the observation whether feedback was consulted and the time taken to process the feedback was also
administered.

A CBFA of eleven items on information literacywas used to obtain observational (item) response data on feedback seeking
behavior. The eleven items were selected in correspondence with lecturers involved. A total of 610 students completed the
test. A brief instruction about the testwas given at the start of the assessment, and awritten instructionwas also handed out.
Most of the students completed the test within 45 min, and after this time students were allowed to leave the examination
room. The objects are to examine student-specific feedback seeking behavior, including the propensity of using feedback,
and the relationship with student-level latent predictors as ability and speed of working.

The total number of feedback pages opened and the total time (in seconds) to process the feedback are the multivariate
outcome data. The complexity of the data, with multivariate data and a large number of zeros, requires a multivariate
advanced zero-inflatedmodeling approach. Twomultivariatemodeling approaches will be considered. In one approach, the
total processing times (stored in seconds) are treated as counts using the Poisson distribution, and in the other approach, as
positive continuous observations using theGammadistribution. AGammahyperpriorwas specified for the shape parameter,
with shape hyperparameter one and scale hyperparameter five.

TheMCMC algorithmwas implemented in R (RDevelopment Core Team, 2010). TheMCMCalgorithmwas ran for 100,000
iterations with the first 20,000 iterations as a burn-in. The common convergence diagnostics such as Geweke’s and Gelman
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Table 2
Feedback behavior study: posterior mean estimates and 95% HPD intervals from empty univariate and multivariate
zero-inflated models.

Component Model M1 Model M2 Model M3

Mean HPD Mean HPD Mean HPD

Feedback Use (Bernoulli part)
Intercept, α0 0.29 (0.13, 0.46) 0.33 (0.17, 0.50) 0.29 (0.13, 0.45)
1 − φ 0.43 (0.39, 0.47) 0.42 (0.38, 0.46) 0.43 (0.38, 0.47)

Feedback Behavior (Poisson–Gamma)
Intercept, µ1 1.13 (0.99, 1.26) 1.39 (1.34, 1.45)
Intercept, µ2 1.92 (1.81, 2.02) 2.23 (2.16, 2.31)
Correlation,Σ12 0.93 (0.82, 0.99)

Feedback Behavior (Full Poisson)
Intercept, µ1 1.07 (0.97, 1.23)
Intercept, µ2 1.90 (1.78, 2.02) 2.69 (2.54, 2.86)
Correlation, Σ12 0.96 (0.85, 0.99)

and Rubin’s did not show any indication of nonconvergence for any of the MCMC chains. The trace plots and convergence
diagnostics were evaluated in R.

Estimates of different empty zero-inflated models are given in Table 2. In model M1, the total number of feedback pages
and feedback times were jointly modeled, where the component for the feedback times consisted of a zero-inflated Gamma
distribution, according to Eqs. (4) and (5). Additional estimates are reported referred to as full Poisson,where one component
models the feedback times using a zero-inflated Poisson distribution, according to Eqs. (6) and (7). Under the label M2 and
M3, estimates are given of a univariate zero-inflated Poisson (number of feedback pages as outcomes) and a univariate
zero-inflated Gamma model (the number of feedback times as outcomes), respectively. Finally, the feedback times were
alsomodeled using a zero-inflated Poissonmodel, where the estimates are given in the last row of Table 2 undermodelM3.

Given the estimates of model M1, it follows that around 43% of the students did not open any of the feedback pages, and
completely ignored this option in the CBFA. The estimated population average equals 57%, which reflects the probability of
using feedback. This reflects the high percentage of extra zeros and the requirement of using a zero-inflated Poisson model
for themultivariate data. From the estimated log rates follow that on average the expected number of feedback pages visited
equals exp(1, 13) ≈ 3.09, and the expected total feedback reading time (in seconds) exp(1, 92) ≈ 6.82. These estimates
are slightly smaller than the average observed values of feedback pages visited and total feedback time, when ignoring the
zero observations, which are 4.11 and 9.35, respectively. The within-subject correlation between the log rates is high and
around 0.93, which means that the expected total reading time is highly related to the expected number of pages visited.
When treating the feedback times as counts, and fitting a multivariate zero-inflated Poisson model, denoted as full Poisson,
slightly smaller estimates are obtained.

In Table 2, under model M2 and M3, the results are shown of a univariate zero-inflated Poisson model for the total
number of feedback pages opened, and a univariate zero-inflated Gamma model for the total feedback reading time. It can
be seen that the percentage of extra zeros in both outcomes are comparable with the estimates of 42% and 43%, respectively.
The independently estimated Poisson and Gammamean are slightly higher than the jointly estimatedmeans. It follows that
the multivariate normal prior induces more shrinkage toward the general prior mean of zero than the non-informative
independent normal prior for the Poisson and Gamma rate in model M2 and M3, respectively. When modeling the total
times as count data using the zero-inflated Poisson model, estimates comparable to the zero-inflated Gamma model were
obtained.

The model fit was investigated of the different zero-inflated models. Given the posterior predictive p-values, all zero-
inflated models were capable of predicting adequately the number of extra zeros. The multivariate zero-inflated models
slightly underestimated the feedback-use counts of four and five and slightly overestimated the higher counts nine and
ten. This is not very surprising, since just two and four students evaluated nine and ten feedback pages, respectively. The
posterior predictive check based on the index of overdispersion showed that the Poisson–Gamma model predicts more
variability in the observed feedback-use data relative to the variance of the Poissonmodel (p-value equals 0.97). This shows
that the variability of the feedback-use data is much higher than predicted by a Poissonmodel, which justifies the use of the
random effect Poisson component (see, Albert, 1992).

7.1. Exploring student feedback behavior: using background information

Attention will be paid to the multivariate zero-inflated Poisson–Gamma model to analyze the mixed data about the use
of feedback, the total number of visited feedback pages, and the total time processing the feedback. However, as part of the
joint model, the RTIRT model component (Eqs. (11) and (12)) is used to describe the response data as a function of student’s
ability and speed of working given the eleven item scores on information literacy.Within the proposedMCMC algorithm for
the joint model, posterior draws are made for the latent predictors, which are used to sample the other model parameters.
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Table 3
Feedback behavior study: posterior mean estimates and 95% HPD intervals from univariate and multivariate zero-inflated models.

Component Model M4 Model M5 Model M6

Mean HPD Mean HPD Mean HPD

Feedback Use (Bernoulli part)
Intercept, α0 0.29 (0.17, 0.51) 0.37 (0.20, 0.54) 0.30 (0.14, 0.47)
1 − φ 0.42 (0.38, 0.46) 0.41 (0.35, 0.47) 0.43 (0.36, 0.49)
Ability, α1 0.63 (0.36, 1.10) 0.78 (0.42, 1.14) 0.67 (0.31, 0.98)
Speed, α2 −0.93 (−1.38, −0.46) −0.94 (−1.42, −0.48) −0.88 (−1.36, −0.48)

Feedback Behavior
Feedback (Poisson part)

Intercept, β0 1.15 (0.98, 1.28) 1.39 (1.33, 1.44)
Ability, β1 −0.39 (−0.67, −0.13) −0.36 (−0.48, −0.25)
Speed, β2 −0.26 (−0.59, 0.13) −0.15 (−0.30, −0.02)

Feedback-Time (Gamma part)
Intercept, β0 1.93 (1.80, 2.03) 2.70 (2.64, 2.75)
Ability, β1 −0.25 (−0.48, −0.03) −0.86 (−0.95, −0.78)
Speed, β2 −0.36 (−0.65, −0.05) −0.60 (−0.71, −0.53)
Correlation, Σ12 0.93 (0.81, 0.99)

Subsequently, in the full conditional joint model, the latent explanatory variables working speed and ability are used as
predictors.

The predictors are used to explore differences in the use of feedback through a logistic model. That is, the mixture
probabilities are conditionally modeled as

φi = P (Gi = 1 | α, θi, ζi) =
exp(zi)

1 + exp(zi)
,

zi = α0 + α1θi + α2ζi,

such that student-specific ability and speed are related to the probability of using feedback. Subsequently, student response
rates of feedback (i.e. expected number of feedback pages visited and expected total feedback reading time) aremultivariate
log-normally distributed,

log λ
(f )
i = β00 + β01θi + β02ζi + η0i,

log λ
(t)
i = β10 + β11θi + β12ζi + η1i

where ηi is multivariate normally distributed with variances restricted to one and correlation parameter Σ12. Normal
independent priors for the parameters α and β are specified with zero means and large variances.

In Table 3, the estimated parameters are given of the full joint model, denoted as model M4. A univariate zero-inflated
Poisson and a univariate zero-inflated Gamma model with explanatory variables are considered to model the total number
of visited feedback pages and the total feedback time, denoted as model M5 and M6, respectively.

From model M4 follows that the average percentage of students not visiting any feedback page is around 42%, which
was also found with the empty joint models (see Table 2). The student-specific predictors ability and speed of working have
a significant relationship with the probability of using feedback. It follows that students who performed well on the test
have a significantly higher probability of using feedback (i.e. visiting at least one page) than those who performed poorly.
For an average working speed, an increase in ability of 0.50 leads to an increase of around 8% in the probability of using
feedback. High ability students were specifically interested in feedback to incorrectly answered questions, whereas low
ability students were probably less motivated to check out the feedback. The working speed is negatively related with the
probability of using feedback. This means that students who work fast have a lower probability of using feedback than
students who work more slowly. For an average ability, an increase of 0.50 in working speed leads to an average decrease
of 11% in the probability of using feedback.

In Fig. 1, the estimated student-specific probabilities of using feedback are plotted against the student ability and speed
of working. It follows that variations in ability and speed of working lead to differences in the probability of using feedback,
where high ability students who worked slowly on the test have a high chance of using feedback. Students who worked
very fast and those who performed poorly on the test have a low chance of using the feedback. Here, it seems that test
motivation is an important factor, since students who took the test seriously, who performed well and took their time, also
visited feedback pages.

The estimates of the multivariate Poisson–Gamma part show negative effects for both predictors. There is a negative
relation between ability and speed of working and the expected total number of visited feedback pages. Although high
ability students are more likely to visit a feedback page than low ability students, they are expected to visit less feedback
pages in total. For a studentwith an averageworking speed, high ability students (θ = 1) visit on average two feedback pages
(i.e., approximately exp(1.15−0.39)), low ability students (θ = −1) on average four to five feedback pages and students of
average ability (θ = 0) on average three feedback pages. This corresponds to the finding that high ability students consult
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Fig. 1. Posterior probability of using feedback as a function of student ability and speed of working.

Fig. 2. Posterior expected total number of visited feedback pages as a function of student ability and speed of working.

feedback of the few items that were made incorrectly. The working speed has a negative effect on the total number of pages
visited but this effect is not significant.

In Fig. 2, the posterior expected total number of feedback pages is plotted against ability and speed of working using the
estimates from model M4. It can be seen that high ability students visited one to two feedback pages, whereas low ability
students visited four to five pages. On average slightly more than three pages were visited. It follows that the total number
of visited pages varies a lot for students with the same working speed.

Finally, the total time processing the feedback is negatively related to ability andworking speed. The estimated effects are
such that the average feedback processing time is around 6.8, where low ability students spendmore time reading feedback
and high ability students less time. The same pattern is found for fast and slow working students. In Fig. 3, the posterior
expected total time is given for each student. The negative trend between student ability and total time shows that high
ability students read a few specific feedback pages, whereas others consult more pages and use more reading time. The
negative trend between the total time and speed of working suggests that fast working students also work more quickly
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Fig. 3. Posterior expected total time reading the feedback as a function of student ability and speed of working.

Table 4
Feedback behavior study:multivariate zero-inflatedmodel comparison.

Model Deviance pD DIC

M1
Full Poisson 4396.75 268.78 4665.53
Poisson–Gamma 4113.14 346.06 4459.20

M4
Full Poisson 4313.24 284.03 4597.27
Poisson–Gamma 4048.39 362.09 4410.38

through the feedback pages. However, the fast working students were also known to be less motivated to use feedback (see
Fig. 1), which may also lead to less processing time for those who consulted feedback. They could have opened a feedback
page and closed it quickly without paying much attention to the content.

The log rates are highly positively correlated, around 0.93. From the results of model M5 and M6 follows that the effects
of the predictors are quite similar. However, as in the empty joint model, the intercepts of the independently estimated
rates are slightly higher compared to the jointly estimated intercepts. The correlation between the log rates leads to slightly
smaller expected values. That is, the total number of consulted feedback pages is expected to be smaller given the total
feedback time in comparison to the unconditional expected value. In the same way, the total feedback time is expected to
be smaller given the total number of consulted pages than the unconditional expected value. For the Gamma component,
the estimated degrees of freedom ν equals 38.78 and 40.16 for the empty and the conditional model, respectively.

Finally, results of a small model comparison study are given in Table 4. The empty multivariate zero-inflated
Poisson–Gamma model fits the data better than the full Poisson model, where the feedback times are considered proxies
and treated as counts. It follows that the random effect Gamma component has more free parameters, which leads to a
substantially better fit. The fit of the model is further improved by incorporating the explanatory variables, according to the
DICs of model M4. However, from the DICs follow that the empty Poisson–Gamma model fits the data better than the full
Poisson model with explanatory variables. This shows that the simplifying case of modeling multivariate counts instead of
modeling outcomes in different scales leads to less optimal results with respect to model fit.

8. Discussion

A multivariate zero-inflated Poisson–Gamma model has been proposed to explore student feedback behavior in a
computer-based assessment from which counts and continuous data were observed. The proposed joint model consists of
a binary component and a multivariate component. The binary component models the use of feedback. The multivariate
component models the total number of feedback pages consulted using a truncated Poisson distribution and the total
feedback processing time using the Gamma distribution. At a higher-level, the student-specific log means or rates of both
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components are assumed to be normally distributed. A multivariate zero-inflated Poisson model is given for the situation
where both observations are discrete measurements. In a simulation study it is shown that the developed MCMC algorithm
can recover accurately all model parameters and that modeling the count data separately with a zero-inflated univariate
Poisson model leads to parameter bias in situations of overdispersion. It is shown that the multivariate model can provide
accurate random effect Poisson and Gamma rate predictions, which also leads to accurate predictions of counts and other
quantities of interest.

Further, it is shown that latent explanatory variables (ability and speed) can be integrated using an RTIRT measurement
model. Therefore, posterior draws of the latent explanatory variables are used to sample the other model parameters.

The proposed jointmodel has several important features. First, it addresses the extra zeros through amixture component
relative to the ordinary Poisson and Gammamodel. Second, it models the use of feedback aswell as the feedback intensity as
the total number of pages consulted and the total reading time. Third, the joint modeling approach accounts for dependence
between model components, which can lead to less biased inferences. Fourth, it can handle within-subject correlation
between observed mixed outcomes. Fifth, explanatory information can be incorporated to model heterogeneity in the
probability of feedback use and, given feedback use, feedback behavior.

The posterior predictive checks showed that the use of log-normally distributed rates improved the model’s capability
to describe the variability in the data. However, extreme discrete outliers were difficult to model correctly. Further research
will focus on a normal mixture prior for the rates to capture extreme cases, where subjects with extreme observations can
also be classified as such. However, such a nested structure ofmixtures is complex, where the normalmixture prior is nested
within the mixture component to handle zero-inflated count data, and requires proper identification rules (Vermunt, 2003;
Vermunt and Magidson, 2005).

The purpose of the Dutch feedback behavior study was to explore feedback behavior in a CBFA. Furthermore, the object
was to explain individual heterogeneity in their willingness to seek feedback using student-characteristic variables. It was
shown that heterogeneity in feedback use was partly explained by student achievement and speed of working. Student
achievement also explained a significant amount of variation in the expected number of pages consulted and the expected
total reading time. The student working speed did show a less clear relationship with the expected outcomes of feedback
behavior. Various studies show different effects of feedback in computer-based assessment on student learning, where the
effects are influenced by individual differences in feedback behavior and ways of providing feedback. In specific, student
differences in feedback seeking behavior complicate a straightforward efficient implementation of feedback in a computer-
based assessment. For example, Timmers and Veldkamp (2011) showed that the attention paid to feedback differs over
students, where student characteristics such as study motivation and a positive attitude influence the time spent reading
feedback.

Different reasons can be given for the relatively low percentage of students using feedback. First, students were given
feedback regarding their performances on a low-stake test, which did only motivate the high ability students to seek
feedback. Second, the feedback was provided after the test. The feedback use might increase when providing the feedback
immediately after responding to an item. In this context it is also possible to consider system-initiated feedback such that
feedback can be provided automatically after an incorrect answer is given.

This study shows that there is high degree of between-individual heterogeneity in feedback use. Although the relation
between feedback and learning outcomes receives much attention, individual variability in feedback use is generally
neglected. To study accurately the effects of feedback interventions on learning outcomes this variation in feedback use
should be taken into account.

Acknowledgment

The author thanks Caroline Timmers for providing the data from the computer-based assessment for learning on
information literacy.

References

Aitchison, J., Ho, C.H., 1989. The multivariate Poisson-log normal distribution. Biometrika 76, 643–653.
Albert, J., 1992. A Bayesian analysis of a Poisson random effects model for home run hitters. The American Statistician 4, 246–253.
Böckenholt, U., Kamakura, W.A., Wedel, M., 2003. The structure of self-reported emotional experiences: a mixed-effects Poisson factor model. British

Journal of Mathematical & Statistical Psychology 56, 215–229.
Congdon, P., 2005. Bayesian Models for Categorical Data. Wiley, Chichester.
Croon, M.A., van Veldhoven, M.J.P.M., 2007. Predicting group-level variables from variables measured at the individual level: a latent variable multilevel

model. Psychological Methods 12, 45–57.
Fox, J.P., 2010. Bayesian Item Response Modeling: Theory and Applications. Springer, New York.
Fox, J.P., Glas, C.A.W., 2003. Bayesian modeling of measurement error in predictor variables using item response theory. Psychometrika 68, 169–191.
Fox, J.P., Klein Entink, R.E., van der Linden, W.J., 2007. Modeling of responses and response times with the package cirt. Journal of Statistical Software 20

(7).
Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B., 2004. Bayesian Data Analysis, second ed. Chapman & Hall, New York.
Hattie, J., Timperly, H., 2007. The power of feedback. Review of Educational Research 77, 81–112.
Hjort, N.L., Dahl, F.A., Steinbakk, G.H., 2006. Post-processing posterior predictive p-values. Journal of the American Statistical Association 101, 1157–1174.
Hu,M.C., Pavlicova,M., Nunes, E.V., 2011. Zero-inflated and hurdlemodels of count datawith extra zeros: examples fromanHIV-risk reduction intervention

trial. American Journal of Drug and Alcohol Abuse 37, 367–375.

http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref1
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref2
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref3
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref4
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref5
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref6
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref7
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref8
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref9
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref10
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref11
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref12


374 J.-P. Fox / Computational Statistics and Data Analysis 68 (2013) 361–374

Klein Entink, R.H., Fox, J.P., van der Linden, W.J., 2009. A multivariate multilevel approach to the modeling of accuracy and speed of test takers.
Psychometrika 74, 21–48.

Lambert, D., 1992. Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics 34, 1–14.
Loeys, T., Moerkerke, B., De Smet, O., Buysse, A., 2012. The analysis of zero-inflated count data: beyond zero-inflated Poisson regression. British Journal of

Mathematical and Statistical Psychology 65, 163–180.
Lüdtke, O., Marsh, H.W., Robitzsch, A., Trautwein, U., Asparouhov, T., Muthén, B., 2008. Themultilevel latent covariatemodel: a new,more reliable approach

to group-level effects in contextual studies. Psychological Methods 13, 203–229.
McCulloch, C., 2008. Joint modelling of mixed outcome types using latent variables. Statistical Methods in Medical Research 17, 53–73.
McCulloch, R.E., Polson, N.G., Rossi, P.E., 2000. A Bayesian analysis of themultinomial probitmodelwith fully identified parameters. Journal of Econometrics

99, 173–193.
Meyer, J.P., 2010. A mixture Rasch model with item response time components. Applied Psychological Measurement 34, 521–538.
Mihaylova, B., Briggs, A., O’Hagan, A., Thompson, S.G., 2011. Review of statistical methods for analysing healthcare resources and costs. Health Economics

20, 897–916.
Min, Y., Agresti, A., 2005. Random effect models for repeated measures of zeroinflated count data. Statistical Modeling 5, 1–19.
Neelon, B.H., O’Malley, A.J., Normand, S.H., 2010. ABayesianmodel for repeatedmeasures zero-inflated count datawith application to outpatient psychiatric

service use. Statistical Modelling 10, 421–439.
R Development Core Team 2010. R: A Language and Environment for Statistical Computing. In: R Foundation for Statistical Computing, Vienna.
Rabe-Hesketh, S., Skrondal, A., 2007. Multilevel and latent variable modeling with composite links and exploded likelihoods. Psychometrika 72, 123–140.
Rizopoulos, D., Verbeke, G., Molenberghs, G., 2010. Multiple-imputation-based residuals and diagnostic plots for joint models of longitudinal and survival

outcomes. Biometrics 66, 20–29.
Rose, E., Martin, S.W., Wannemuehler, K.A., Plikaytis, B.D., 2006. On the use of zero-inflated and hurdle models for modeling vaccine adverse event count

data. Journal of Biopharmaceutical Statistics 16, 463–481.
Skrondal, A., Rabe-Hesketh, S., 2004. Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models. Chapman & Hall,

Boca Raton, Florida.
Timmers, C.F., Veldkamp, B.P., 2011. Attention paid to feedback provided by a computer-based assessment for learning on information literacy. Computers

& Education 56, 923–930.
Tunaru, R., 2002. Hierarchical Bayesian models for multiple data. Austrian Journal of Statistics 31, 221–229.
van der Kleij, F.M., Eggen, T., Timmers, C.F., Veldkamp, B.P., 2012. Effects of feedback in a computer-based assessment for learning. Computers & Education

58, 263–272.
van der Linden, W.J., 2007. A hierarchical framework for modeling speed and accuracy on test items. Psychometrika 72, 287–308.
van der Linden, W.J., Glas, C.A.W. (Eds.), 2010. Elements of Adaptive Testing. Springer, New York.
Vermunt, J., 2003. Multilevel latent class models. Sociological Methodology 33, 213–239.
Vermunt, J., Magidson, J., 2005. Hierarchical mixture models for nested data structures. In: Weihs, C., Gaul, W. (Eds.), Classification: The Ubiquitous

Challenge. Springer, Heidelberg, pp. 176–183.
Wang, L., 2010. IRT-ZIP modeling for multivariate zero-inflated count data. Journal of Educational and Behavioral Statistics 35, 671–692.
Wang, H.M., Kalwani, M., Akçura, T., 2007. A Bayesian multivariate Poisson regression model of cross-category store brand purchasing behavior. Journal of

Retailing and Consumer Services 14, 369–382.
Yang, Y., Kang, J., Mao, K., Zhang, J., 2007. Regression models for mixed Poisson and continuous longitudinal data. Statistics in Medicine 26, 3782–3800.

http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref13
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref14
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref15
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref16
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref17
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref18
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref19
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref20
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref21
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref22
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref23
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref24
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref25
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref26
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref27
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref28
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref29
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref30
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref31
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref32
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref33
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref34
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref35
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref36
http://refhub.elsevier.com/S0167-9473(13)00248-X/sbref37

	Multivariate zero-inflated modeling with latent predictors: Modeling feedback behavior
	Introduction
	Multivariate zero-inflated random effect models
	Latent explanatory variables
	MCMC algorithm
	Simulation study: joint modeling multivariate counts
	Model checking and comparison
	Exploring student feedback behavior
	Exploring student feedback behavior: using background information

	Discussion
	Acknowledgment
	References


