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Inquiry learning is a didactic approach in which students acquire knowledge and skills through pro-
cesses of theory building and experimentation. Computer modeling and simulation can play a promi-
nent role within this approach.Students construct representations of physical systems using modeling.
Using simulation, they execute these representations to study the phenomena or systems modeled.
However, the modeling task is complex, and students can fail to create adequate models, which pre-
vents effective learning. This necessitates supportive measures to scaffold the modeling processes.
In this paper, we address the issue of designing such support through the development of intelligent
advice to be incorporated in modeling environments.The advice is based on the definition of a family
of reference solutions for each modeling problem, on the comparison of the reference solutions with
the students’ solutions, and on the use of an advice knowledge base.This advice guides the students
to the construction of a better solution, helping them acquire the knowledge required for successful
modeling and for the correction of modeling mistakes. In a collaborative session, having the advice
encourages discussion between students about the advice and the best way of proceeding. Empirical
validations of the advice approach are presented.

Keywords: Inquiry learning, intelligent solution analysis, system dynamics modeling
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ding to Hansen [1], students retain 25% of what they
to, 45% of what they listen to and see, and 70% when
anipulate, control and modify experiments, putting
ractice what they are learning. Computer model-
d simulation (M&S) is an excellent instrument for
uring environments to allow students to carry out
ulation and experimentation, specifically in science
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domains. Using modeling, students can construct represen-
tations of physical systems and make their understandings
of a domain visible, sharable, and executable by means of
a model. Using simulation they can execute these repre-
sentations to further explore the systems modeled.

This approach fits nicely with the more general didac-
tic approach of scientific discovery learning or inquiry
learning. In inquiry learning [2, 3], a student performs ex-
periments involving a phenomenon and is asked to infer
domain knowledge from those experiments. Modeling fa-
cilities add to the students’capability of making an explicit
model of their understanding of the domain. They can run
this model to see if their ideas are compatible with other
DOI: 10.1177/0037549706074190
Volume 82, Number 11 SIMULATION 769

 at Universiteit Twente on November 17, 2008 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Bravo, van Joolingen, and de Jong

data they know and verify that the model they have made is
actually a proper description of the system to be modeled.
The assignment to create a model helps students to focus
on a specific goal, and the model they create is sharable
with other students.

In M&S, students must use their inquiry skills to ar-
ticulate their domain knowledge and then to combine this
domain knowledge with modeling skills to solve a spe-
cific modeling problem. This is not an easy task, and they
can fail due to a mixture of faulty inquiry skills, domain
knowledge, and/or modeling skills. Scaffolds for inquiry
learning are extensively discussed elsewhere (see, for ex-
ample, de Jong [4]). In this paper, we focus on scaffolds
for the modeling process. We address the issue of design-
ing such scaffolds by the creation of an intelligent advice
support to be incorporated in modeling environments.

Some systems that analyze solutions to modeling prob-
lems can be found in the intelligent tutoring systems (ITSs)
area. These systems, besides indicating whether the so-
lution is correct or not, can show what is wrong or in-
complete and what knowledge deficiencies are responsible.
Two prominent approaches have been used to realize such
ITSs. Cognitive tutors [5] feature a cognitive model of the
targeted skills, expressed as production rules. Constraint-
based tutors [6] are based on constraint-based modeling
(CBM) [7], which is a student modeling approach. In CBM,
knowledge is modeled by a set of constraints that are used
to identify errors in student solutions. These tutors use a
more abstract representation of the domain compared to
cognitive tutors [8].

A number of systems have been developed following
these approaches. The argument and expert coaches of
BELVEDERE [9] carry out a syntax and consistency analy-
sis to inform students when their solution (inquiry diagram)
differs from the expert’s solution. SYPROS [10] is an ITS
for synchronization of parallel processes with semaphores.
It derives a hierarchical representation of the problem-
solving knowledge for a specific task to be matched to
the student’s solution. KERMIT [11] is capable of analyz-
ing the student’s solutions to database modeling problems
using domain knowledge represented as a set of syntactic
and semantic constraints. The semantic constraints com-
pare the student’s solution to the ideal one. DomoSim-TPC
[12] is an environment for the teaching and learning of Do-
motics (House Automation) that incorporates facilities for
evaluating the models built and for generating feedback to
students. However, this support is offered to the students in
a different workspace than the one in which they perform
the modeling, and it can only be accessed later in a session.

In this paper, we propose a method of providing intelli-
gent advice to students who carry out modeling tasks. Our
advice approach is based on the definition of a family of
reference solutions for each modeling problem in a library.
The reference solutions represent the expert knowledge
about the system that is being modeled. These solutions
are compared to the student’s solution to identify possible
differences. Based on these differences, the method gen-

erates advice that is presented on-line to students in order
to help and guide them towards building a better solution
to the modeling problem. This advice is given to students
when they require it and only under certain conditions, so
as not to overwhelm students with too much advice.

This proposed advice method has been implemented in
the Co-Lab environment. Co-Lab [13] is a scientific dis-
covery learning environment in which students, organized
in groups, can experiment with simulations and remote lab-
oratories. In particular, this environment includes a system
dynamics (SD) model editor in which the advice method
has been integrated. SD appears to be an effective tech-
nique to represent the dynamic nature of physical systems
and to allow the study of variables and their relationships
over time by means of simulation. In the next section we
describe the learning setting in which the advice approach
is applied. In Section 3 we show the models we have de-
veloped to represent solutions and modeling problems. The
advice method is presented in Section 4, as follows: (i) the
procedure of solution matching; (ii) the process of advice
generation; (iii) some details about the advice method con-
figuration; and (iv) the integration of the method in Co-Lab.
In Section 5 we describe evaluation results, and in Section 6
we draw some conclusions and discuss the limitations and
future lines of research suggested by the method.

2. Learning Setting

In this study we used the Co-Lab1 environment. Co-Lab
[13] is an environment designed for synchronous collabo-
rative inquiry learning. Students work in small groups, in
a shared workspace, exploring “phenomena” in the form
of simulations and/or remote laboratories, and they create
their own models of these phenomena. For this, Co-Lab
incorporates a model editor tool that allows students to
construct SD models and to run simulations with them.
It supports shared simulation and goal-oriented modeling
according to the classification of collaborative modeling
and simulation for learning (CMSL) systems proposed by
Bravo et al. [14]. In this study we did not use Co-Lab’s
collaborative facilities; the students worked on their own
and received individual advice on their models.

SD [15, 16] is a powerful computer simulation modeling
technique for framing, understanding, and discussing com-
plex issues and problems. SD involves translating real-life
systems into computer simulation models that allow one
to understand the structure and behavior of such systems.
SD uses components to describe the structure of a system:
stocks, flows, constants, auxiliaries or converters, and re-
lations or connectors. Co-Lab’s model editor supports the
specification of SD models using mathematical formulae
as well as qualitative relations. The latter are defined in an
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Figure 1. Screenshot of a Co-Lab session

interactive way by selecting among a set of qualitative re-
lation types, which makes this task very easy and intuitive
for students.

Co-Lab as a whole is organized around a building
metaphor. Each building represents a course in a specific
domain. The building contains floors, which represent the
different modules of the courses. A specific system is the
subject of study on each floor. The goal for the students is
to create a model of the system described at each particular
floor. Therefore, there is a modeling problem assignment
for each floor, and the set of all floors makes up a modeling
problem memory. Four rooms on each floor (theory, lab,
meeting and hall) organize the learning activity.

Figure 1 shows a screenshot of a Co-Lab session. On
the left side of the user interface there is a menu with dif-
ferent tools available, a panel with the session members,
and tools for navigation through rooms and coordination.
The bottom part contains a chat and a tool to move objects
across rooms. The central work area houses the model ed-
itor, and the graph and table tools to represent the value of
the variables during simulation in a numerical and graph-
ical way. A more detailed description of Co-Lab and its
tools can be found in van Joolingen et al. [13].

Using the model editor (which is in the theory room)
students can make and execute models. This tool follows

the typical structure of a CAD tool: a whiteboard and a
toolbar with the components (stocks, auxiliaries, etc.) to
be inserted on it (see Figure 1). The representation of the
model follows an icon-based structure. In addition to the
component toolbar, a simulation toolbar is available, which
controls operations such as starting, stopping and pausing
the simulation, and defining simulation parameters. These
parameters are the following: the speed (delay) with which
the model will be run; the step time, which indicates the
time steps with which the model will calculate its output;
and the start and stop times.

The model editor supports a continuous simulation.
However, it is possible to calculate the model results with-
out having to know precisely how the program performs
the calculations. Accordingly, the editor’s simulation en-
gine supports several integration methods of the differen-
tial equations, ranging from the Euler method to Runge–
Kutta fourth order. A model starts its calculations with the
starting values of the model variables and then calculates
how these values change after the specified time step us-
ing the formulae describing the relationships between vari-
ables. The new values (after one time step) are used to
calculate the model changes in the next time step. In this
way, the model calculates in time steps until it reaches the
specified end time.

Volume 82, Number 11 SIMULATION 771
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3. Formalization of Modeling Problems and
Solutions

In order to develop intelligent and automatic advice sup-
port we need reference models. These models can be in-
stantiated and operations and transformations can be ap-
plied to them. In this section, we describe first the models
for representing the solutions built by the students and,
secondly, a model for problem specifications that contain
a problem statement as presented to students, a reference
solution, additional information concerning this reference
solution, and parameters to configure the advice.

3.1 Describing Solutions

We represent a solution to a SD modeling problem by
means of a set of object classes and relationships between
them. The object classes identified in the SD domain are
Stock, Auxiliary, Constant, and Flow. The first three ob-
jects are called variables; the Flow represents the derivative
(with respect to time) of the value of the Stock. A variable
is described by a name, a type, a unit, and the expression
that defines it.

The types of relationships are FlowRel, QualitativeRel,
and InitializationRel. Each relationship definition includes
the object classes it refers to. A FlowRel represents a flow–
stock structure. There are four subtypes of FlowRel de-
pending on the class of the source and destination (stock
or sink). For the relations (connectors) between variables
(stocks, auxiliaries, and constants), we focus on qualitative
types. According to Löhner et al. [17], qualitative spec-
ifications are appropriate during the initial stages of the
modeling process when students still lack a clear under-
standing of the model they are building. As the advice is
meant to support these initial stages, we made the choice
to handle qualitative relations. There are five subtypes of
QualitativeRel: positive linear, parabolic minimum, nega-
tive linear, exponential, and parabolic maximum. An Ini-
tializationRel connects a constant or auxiliary with a stock
in order to initialize its value in the first simulation step.
All the relationship types are unidirectional. For instance,
a QualitativeRel between auxiliaries A and B means that
A is used to calculate B, but B is not used to calculate A.

This object-oriented description of models facilitates
its representation by means of computable structures such
as directed graphs, which can be easily implemented by
means of matrices. An object model built according to the
syntax underlying the aforementioned domain model is not
always correct. It needs to conform to the domain semantic
constraints (see Section 4.1); that is, the formulae defining
the variables must be semantically correct.

These models are of a conceptual nature. A graphical
representation is required to visually represent a set of ob-
jects and relationships. Typically, objects are represented
by icons and relationships by lines. Figure 2 shows a graph-
ical representation of the water tank level system. This
model allows the students to investigate the water level in

a leaking tank and the influence of the diameter of both
the tank and the bottom hole in it. The model contains
five objects (one stock, one auxiliary, two constants, and
one flow) and five relationships (four connectors and one
relationship of FlowRel type).

The system implementing this approach represents and
stores a specific SD model by means of an XML-based
specification. Figure 3 shows an excerpt of an example.
Each variable in the model is described in a varspec label
inside the variables section. The relationships are defined
in the links section inside the layout section. Each relation-
ship includes its conceptual definition (variables related
and relationship type) as well as some graphical properties
such as the x–y coordinates and color of the variables in-
volved. The graphical aspects of the variables are included
in the nodes section. This type of specification allows stu-
dents, among other things, to save their models and send
them to others.

3.2 Modeling Problem Specification

The learning environment in which the advice approach
presented in this paper is applied contains a set of modeling
problems that can be presented to students so that they can
get to know what systems need to be modeled. In Co-Lab,
these modeling problem assignments are presented in the
hall room.

In our proposal, the modeling problems and their solu-
tions are represented by means of XML-based specifica-
tions to facilitate their definition and computational ma-
nipulation. The definition of a modeling problem includes
four sets of information: (i) a research question that spec-
ifies for the student what needs to be modeled; (ii) a refer-
ence solution (RS) in the form of a model that represents
a satisfactory solution for the problem; (iii) additional in-
formation about the components of this solution; and (iv)
some parameters configuring the automatic advice support
for that modeling problem.

The RS is represented, like any other solution, as a sepa-
rate XML file following the specification presented in Sec-
tion 3.1 (see Figure 3). This is the second set of information
in the problem specification.

However, many modeling problems do not have one
single solution; instead, multiple equivalent solutions are
possible. Therefore, we use a more flexible model that iden-
tifies each variable as optional or obligatory to represent a
family of solutions for a modeling problem (this is the third
set of information). Thus, an optional variable can be or not
be in the student’s solution. The family of solutions is built
by generating all the combinations of optional variables
starting from the RS. The number of solutions in this family
is the same as the number of combinations among optional
variables. This generation method requires the conversion
of connectors between variables. Figure 4 shows a model
(left) that contains an optional variable C. The model on
the right is an alternative solution that does not contain this
variable, but it includes a new connector between B and

772 SIMULATION Volume 82, Number 11
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Figure 2. The model of the water tank level system

<?xml version="1.0" encoding="UTF-8"?>
<model>
<descriptor>
  <symbol>Condenser Discharge Solution</symbol> 
</descriptor>
<variables>
  <varspec> 
    <variable> 
      <descriptor><symbol>current_intensity</symbol></descriptor> 
      <type>double</type> 
    </variable> 
    <specification> 
      <auxSpec> 
        <expression>1/resistance * electric_potential</expression> 
        <unit>A</unit> 
        <exprType>1</exprType> 
      </auxSpec> 
    </specification> 
  </varspec>... 
</variables>
<layout>
  <nodes> 
    <naux symbol="current_intensity" x1="289" y1="152" x2="321" y2="184" 
      label="south" color="0,0,0"/>... 
  </nodes> 
  <links> 
    <lrelation symbol="relation_5" start="capacity" end="electric_potential" 
      type="2" x1="93" y1="210" x2="185" y2="195" cx1="123" cy1="200" cx2="155" 
      cy2="201" color="0,0,0"/>... 
  </links> 
</layout>
</model>

Figure 3. Excerpt of the specification of a student’s solution

D built according to a transitivity table. This transitivity
table defines conversion rules to describe how to convert
the connectors connected to an optional variable to new
connectors in a model in which this variable is not present.

In this strategy, the stocks are always obligatory to rep-
resent a family of solutions with a unique reference solu-
tion. This can be a suitable approach for a majority of the

modeling problems that can be presented in secondary ed-
ucation and first-year University courses. In these areas of
education, the models to build can fit into this approach (re-
quiring a fixed number of stocks to represent the modeled
system’s state) depending on the nature of the specific do-
main. Such domains include population dynamics, water
management, electricity, etc.

Volume 82, Number 11 SIMULATION 773
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Figure 4. Elimination of an optional variable in a solution

To be able to compare students’ solutions with an RS,
we need to consider that students may name the variables
differently than in the reference model. We attempt to over-
come this by associating a list of possible words (aliases)
with each variable in the RS, hypothesizing that the stu-
dents will use these words in their variable names. This
heuristic will be explained in Section 4.1.1.

The fourth set of information allows the teacher to con-
figure the advice method for that specific modeling prob-
lem. Figure 5 shows an excerpt of a modeling assignment
aiming at representing the discharge process of a con-
denser. The RS (see Figure 3) completes this specification.
The variables section contains the list of solution variables.
The optional character of a variable is defined in the op-
tional label. The alias definition for a variable is found in
the aliases section. Finally, the parameters for configur-
ing the advice are included in the checkParameters, mod-
eChangeParameters, and adviceSelectionParameters sec-
tions. This configuration is described in Section 4.3.

Given these specifications of the four sets of informa-
tion making up the definition of a SD modeling problem,
a problem P can be formalized as follows: P = (modelin-
gAssignment, RS, optionalVars, aliases, checkParameters,
modeChangeParameters, adviceSelectionParameters).

The matching of a student’s solution to an ideal model
or possible solution is quite a common process in ITSs. In
constraint-based tutors (see, for example, Mitrovic et al.
[6]), there is an ideal solution, which is compared against
the student’s solution. In KERMIT [18], the ideal solution
really represents more than one solution, because there are
rules that allow the system to transform the solution to
equivalent solutions having different forms, which is sim-
ilar to our case. Other approaches, instead of comparison
to an expert model, use one or more solutions built by a
teacher. This is the case for CTAT [19], an authoring tool
for pseudo-tutors. Pseudo-tutors are developed by demon-
stration [20], instead of programming. This way, the au-
thor demonstrates correct and incorrect solutions, which
are used for matching and giving feedback.

4. A Flexible Advice Approach

Figure 6 shows the structure of the advice method. The
advice generation takes place in two phases. First, the stu-

dent’s solution (SS) is matched to the reference solution
(RS). Secondly, the advice messages are generated based
on the differences detected. The student builds the SS using
Co-Lab’s model editor. The RS is built by the teacher using
an authoring tool. The following subsections describe both
phases and components of the method, its configuration,
and its integration in Co-Lab.

4.1 Analyzing Differences between Solutions

The advice procedure works on demand, avoiding un-
necessary intrusion into the student’s task performance.
When student asks for advice (check to request advice),
the matching process is started (see Figure 6).

For the matcher to do its work, the SS must be syntac-
tically and semantically valid. The syntactic and semantic
rules have been coded into the model editor. Graph gram-
mars [21] would be an option for expressing and checking
syntactic aspects. However, their use is restricted by ef-
ficiency [22]. This way, the model editor constrains the
student by preventing syntax errors or allowing their im-
mediate correction. Before starting the matching process,
the matcher performs a final semantic check, informing the
student of the semantic errors so that they may be corrected.

Every difference found between the SS and the RS is
an opportunity for the system to present advice and for the
student to acquire new knowledge and skills [23]. A dif-
ference is defined by an identification and five parameters,
which are used to store the names of the objects and rela-
tionships involved in the difference. Two difference levels
are identified: general differences, which do not refer to
a particular element, and specific or detailed differences,
which refer to a specific object or relationship represented
by means of the parameters. The difference types are or-
ganized into seven categories: STOCKS, FLOWS, AUX-
ILIARIES, CONSTANTS, CONNECTORS, UNITS, and
OTHER. The majority of them refer to SS variables that do
not belong to the RS, which are therefore unnecessary vari-
ables, and to RS variables not considered by the students
in the SS, which are therefore missing variables. Table 1
shows a few sample difference types.

The matching process consists of two stages: linking
SS variables with RS variables, and then comparing both
solutions to detect structural differences.
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<?xml version="1.0" encoding="UTF-8"?> 
<model>
  <descriptor> 
    <symbol>Condenser Discharge Modeling Assignment</symbol> 
  </descriptor> 
  <variables> 
    <variable> 
      <descriptor> 
        <symbol>current_intensity</symbol> 
      </descriptor> 
      <optional>false</optional> 
      <aliases> 
        <alias>intensity,current</alias> 
        <alias>intensity </alias> 
        <alias>current</alias> 
        <alias>curr</alias> 
      </aliases> 
    </variable>... 
  </variables> 
  <parameters> 
    <checkParameters> 
      <minimumNumberOfElements>3</minimumNumberOfElements> 
      <timeBetweenChecks>60</timeBetweenChecks> 
    </checkParameters> 
    <modeChangeParameters> 
      <timeToIntermediate>600</timeToIntermediate> 
      <numberOfChecksToIntermediate>3</numberOfChecksToIntermediate> 
      <modelChangesToIntermediate>4</modelChangesToIntermediate> 
      <timeToFinal>1200</timeToFinal> 
      <numberOfChecksToFinal>5</numberOfChecksToFinal> 
      <modelChangesToFinal>6</modelChangesToFinal> 
    </modeChangeParameters> 
    <adviceSelectionParameters> 
      <messagesToShow>99</messagesToShow> 
      <messageCategoryOrder> 
        <errorOcurrencesOrder>0</errorOcurrencesOrder> 
        <errorTypeOrder>1</errorTypeOrder> 
        <objectTypeOrder>0</objectTypeOrder> 
        <objectNameOrder>2</objectNameOrder> 
        <errorLevelOrder>0</errorLevelOrder> 
      </messageCategoryOrder> 
      <filterFirstElementInCategory>false</filterFirstElementInCategory> 
    </adviceSelectionParameters> 
  </parameters> 
</model>

Figure 5. Excerpt of the specification of a modeling problem

Table 1. Sample of differences generated by the matching phase

Category Difference ID Meaning Level Parameters

STOCKS STOCK– Some stocks are
missing

General –

STOCKX+ The stock <object> is
unnecessary

Specific objectType, objectName

CONNECTORS CONNSD_RTYPE The connector
(<object1>,<object2>)

is not of the correct type

Specific objectType1,
objectName1,
objectType2,

objectName2,
connectorType

Volume 82, Number 11 SIMULATION 775
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Figure 6. Structure of the advice method: phases, processes, and data structures

4.1.1 Linking Variables

Linking SS variables to RS variables is not trivial.
Names chosen by students have to be understood by the
matcher to associate them with RS variables. A list of pos-
sible names for each variable is included in the modeling
problem specification. We call such a list an alias. When
all the words of an alias are contained in the SS variable
name, then the SS and RS variables match, and the SS
variable is supposed to correspond with the RS variable. In
the example given in Figure 5, the aliases for the variable
current_intensity admit any combination of the intensity
and current words; also, the word curr matches with this
variable.

The teacher should take the RS variable names from the
modeling assignment, so that these names will be famil-
iar to the students. Moreover, in the case of Co-Lab these
variables could be extracted from the simulations available
in the lab rooms, in which the students can experiment
with the behavior of the models that they have to build in
their modeling tasks. KERMIT [18] avoids the problems
of name matching by forcing the student to select the name
of each entity in the modeling assignment by highlighting
it.

If there are SS variables not assigned to RS variables
after the matching, the process stops and the students are
requested to complete the linking of variables manually.

The manual linking is also required when the unit of an RS
variable does not match with the unit of the corresponding
SS variable. If the number of SS variables of a specific type
is the same as the number of obligatory RS variables, that is
to say, both solutions could potentially match, but exactly
one SS variable is not yet linked (it has been not able to
be assigned automatically to a RS variable) the matching
process applies a heuristic consisting of assigning this SS
variable to the first obligatory RS not assigned, because
this linking is likely to be successful.

Figure 7 shows the user interface to support the manual
linking of variables. The names and units for the SS and RS
variables are shown in a table giving the present linkings.
The students have to select the RS variables corresponding
to their variables from a selection field (Solution var.). The
check box Change name? allows the students to change
their SS variable name to the RS variable name. The stu-
dents can mark the check box Change Unit? to indicate
that they want to assign the correct unit to their variable.
This interface is also shown when the manual linking is not
necessary, so that the students can review the assignments
made by the system.

4.1.2 Matching Solutions

When the automatic linking has been successful or when
the students have pressed the Continue button in the user

776 SIMULATION Volume 82, Number 11
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Figure 7. The user interface for manual linking of SS variables with RS variables

interface (see Figure 7), the matching process continues to
the second stage, the matching of the solution structure,
which can generate three types of difference: RS variables
that are missing, SS variables that are unnecessary, and
other differences in relation to units, connectors, etc. As
mentioned previously, the differences are generated at two
levels. Typically, a general level difference means that the
number of variables of a specific type in the SS and RS
is not the same. A detail level difference usually implies
that a specific variable or relationship is missing or not
required, or that there are units or relationship types that
do not match. All differences detected are inserted into the
differences list (DL), which is the output of this phase and
the input of the next phase (see Figure 6).

The algorithm describing the solution matching process
is shown in Figure 8. This process works in two steps. The
first step analyzes the solution at a general level, gener-
ating only general differences. The function matchNum-
berOfObjects matches the number of objects in SS and
RS. Let #objects be a function to calculate the number of
objects of a specific type in a solution. In general, if #ob-
jects(SS) is less than #objects(RS) a difference statement
of the type “There are <variables> missing in the SS” is
inserted into the DL. In contrast, if #objects(SS) is greater
than #objects(RS) the difference statement “There are un-
necessary <variables> in the SS” is inserted into the DL.
There is a distinction between matching stocks and flows
and matching constants and auxiliaries. A stock or flow is
always obligatory, whereas a constant or auxiliary can be
obligatory or optional. Therefore, in order to determine that
constants or auxiliaries are missing in the SS, their number
must be less than the number of obligatory elements in the
RS; and to determine that there are unnecessary constants
or auxiliaries, their number must be greater than the total
number of both obligatory and optional elements. With re-
gard to flows, apart from matching their total number with
the matchNumberOfObjects function, they are matched by
the number of each flow type with the matchNumberOf-
Flows function.

The second step focuses on detecting detail level dif-
ferences regarding specific variables and relations. The
matchVariables function calculates unnecessary SS vari-

ables and missing RS variables, and inserts the appropriate
differences in the DL. A difference is detected for each SS
variable defined with a different unit than its correspond-
ing RS variable (matchUnits function). The matchSpeci-
ficFlowTypes function detects flows that do not match in
number and type in SS and RS, and also identifies miss-
ing and unnecessary flows. The technique of identifying
missing or unnecessary objects is also applied for match-
ing connectors (matchConnectors function). In this case,
connectors that are in both SS and RS but with different
connector type are identified. Finally, the matchOptional-
Variables function inserts in the DL difference statements
expressing that other variables not considered by the stu-
dents (optional variables in the RS) could also be used; this
makes it possible to give suggestions about that concern.

The differences calculated play the role of activation
conditions from which to generate advice. However, these
can also be used to measure the quality of the SS compared
to the RS. In order to evaluate the quality of SD models,
Löhner et al. [17] have proposed a calculation consisting
of giving a positive score for each correct relationship and
subtracting a penalty for each redundant relationship. Sim-
ilarly, positive and/or negative scores can be assigned to all
types of difference. Thus, the solution quality can be es-
timated simply by summing the scores of the differences
occurring in a specific matching. This quality estimation
can be challenging and motivating feedback for students,
especially for success-oriented students.

4.2 Giving Advice

The second phase of the advice method is the advice
procedure itself. It takes the differences detected between
the SS and RS (DL) as well as the differences and advice
that have been detected or generated in previous checks
(ARCH), and generates a list of advice messages as out-
put (AMS). This procedure is performed in two sequential
stages (see Figure 6). The first stage consists of the gener-
ation of advice statements based on the differences. This
is carried out by the advisor process. In the second stage,
the advice messages are sorted and selected according to
different criteria and then presented to the students. This
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// step 1: match number of objects 
matchNumberOfObjects(STOCK,SS,RS)
matchNumberOfObjects(CONSTANT,SS,RS)
matchNumberOfObjects(AUXILIAR,SS,RS)
matchNumberOfObjects(FLOW,SS,RS)
matchNumberOfFlows(SS,RS)

// step 2: match specific variables and relationships 
matchVariables(SS,RS)
matchUnits(SS,RS)
matchSpecificFlowTypes(SS,RS)
matchConnectors(SS,RS)
matchOptionalVariables(SS,RS)

Figure 8. Algorithm for solution matching

is carried out by the advice selector process. These two
stages are commonly used in tutoring or coaching systems
that offer advice (see, for example, Constantino-González
et al. [24] and Paolucci et al. [25]).

4.2.1 Advice Generation

Before designing the advice method, we first performed
an empirical study to identify the way students approach
a modeling task within Co-Lab, with a remote teacher
who gave advice when asked. We saw that students build
an initial understanding of the modeling assignment and
of the model that solves it and think in terms of general
structures at the beginning. When their understanding pro-
gresses, they add elements to their general structure, so
that they build a more detailed model and start running
simulations in order to complete it. Finally, they refine
their solution by adding small details. Therefore, we have
concluded that the advice should consist of general mes-
sages related to students’ general structures in the begin-
ning, and more detailed messages at the end of the tasks,
when students can experience difficulties reaching a good
solution. Accordingly, the advisor has three modes of op-
eration: initial, intermediate, and final. The mode of oper-
ation changes depending on the model’s specific structure
or on the amount of students’work (the number of changes
made to the model in a specific time).

The advice generation is based on an advice knowledge
base (AKB) that contains a set of rules. Table 2 shows a
subset of advice rules from the AKB. Upon each advice re-
quest, the advisor analyzes all the rules from the AKB and
calculates which rules to activate. When a rule is activated,
its associated advice message is considered for presenta-
tion to the student. The texts of the advice messages were
selected taking into account the suggestions of experts and
teachers and the aforementioned study. Similar to Paolucci
et al. [25], the advice style consists of suggestions and ques-
tions, so that the students have to think about the advice
instead of simply executing it.

A rule is defined by a text message, a list of activa-
tion conditions (ACL) for each advice mode, and three at-
tributes: type, level, and matchingType. The type (error (E),
warning (W), comment (C)) refers to the importance of the
advice. The level (general (G) or detailed (D)) classifies
the advice. The advisor analyses the ACL corresponding to
its current mode. Each list includes a number of activation

conditions (ACs). The matching type indicates whether all
ACs must be activated to activate the rule (ALL value) or
if it is only necessary that at least one AC be activated to
activate the rule (SOME value).

AnAC is defined by the identification of a difference, the
definition of the activation as occurring when this differ-
ence is present or when it is not present (called presence at-
tribute), and information indicating which rules must obli-
gatorily have been activated in past checks (called after-
AdviceMessages attribute) or which rules must have not
been activated in past checks (called beforeAdviceMes-
sages attribute) as a requirement to activate the present
rule. In Table 2, the symbols Not, <, and > are used in the
definition of the presence, beforeAdviceMessages, and af-
terAdviceMessages attributes, respectively. The beforeAd-
viceMessages and afterAdviceMessages attributes make it
possible to have several different messages for the same dif-
ferences in the same mode, facilitating the presentation of
many different messages depending on the prior sequence
of messages received, which enriches the advice process
and makes the advisor flexible and dynamic.

The matching and the advice generation constitute a
production-rule model. The advice rules described above
work like the rules for recognizing both errors and correct
steps in building the solutions as in cognitive tutors [5].

The change of advice mode acquires importance in
this rule-based advice generation method, as the messages
given depend on the mode (see Table 2). The basic idea
is to advance the mode (from initial to intermediate or
from intermediate to final) if the students are not building
a correct solution or if they have spent too much time in a
specific mode. The mode can also move back, as when the
model becomes worse from check to check. To implement
the change of mode, we define two types of model struc-
ture: basic structure, representing a model whose stocks
and flows match with those in the RS, and complete struc-
ture, which consists of a model with a basic structure and
whose auxiliaries, constants and connectors match with
those in the RS. TI and TF are the time that has to pass
to change from initial to intermediate and from interme-
diate to final modes, respectively; CKI and CKF are the
number of checks to change from initial to intermediate
and from intermediate to final modes, respectively; and CI
and CF are the number of changes in the model to ad-
vance from initial to intermediate and from intermediate
to final modes, respectively. The mode is calculated before
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Table 2. A subset of advice rules from the AKB

Advice Advice Advice Matching Activation Conditions
Rule Message Type Level Type Initial Mode Intermediate Mode Final Mode

R1 This is a nice basic structure
for your model! Try running it
and compare the results with
your experiments

C G ALL Not(STOCK-),
Not(STOCK+),
Not(FLOW-),
Not(FLOW+),
Not(FLOW_TYPE),
Not(FLOWX_TYPE),
Not(FLOWXSD-)

Not(STOCK-),
Not(STOCK+),
Not(FLOW-),
Not(FLOW+),
Not(FLOW_TYPE),
Not(FLOWX_TYPE),
Not(FLOWXSD-)

Not(STOCK-),
Not(STOCK+),
Not(FLOW-),
Not(FLOW+),
Not(FLOW_TYPE),
Not(FLOWX_TYPE),
Not(FLOWXSD-)

R2 You may consider adding or
removing flows (revise your
flow–stock structures)

E G SOME FLOW-, FLOW+,
FLOW_TYPE,
FLOWX_TYPE,

– –

FLOWXSD-

R3 Think about what “things”
flow in and out and from/to
where

E G SOME STOCK-, STOCK+,
STOCKX-, STOCKX+

– –

R29 You do not need all the links
in your model

W G ALL – CONN+ –

R31 <variable> does not depend
on <variable>

W D ALL – – CONNSD+ < R33

R33 You should remove the con-
nector between <variable>
and <variable>

W D ALL – – CONNSD+ > R31

generating advice, each time the students request advice.
In order to advance from a given mode to the following
mode at least one of the two following conditions should
be verified: (i) that a specific period of time (TI and TF)
passed and the number of checks and of changes in the
model (insertions, deletions, etc.) was greater than some
minimum (CKI, CKF, CI, and CF); or (ii) that the model
had a specific structure (basic or complete).

The existence of three advice modes makes the advice
more progressive (from general to detailed, from sugges-
tions to imperative messages) than other approaches. For
instance, SYPROS [10] basically considers a state in which
the students have made many errors; if it seems clear that
they are not able to find a solution, it gives more concrete
explanations.

A high-level algorithm that formalizes the advice gen-
eration described is shown in Figure 9. The advice mode
is calculated at each advice request with the calculate-
Mode function. For each advice rule (AR) in the AKB,
the advisor checks whether the rule should be activated
(ruleIsActivated function) starting from its definition, the
DL and the adviceMode (see Figure 6). If it is activated,
an instance of an advice message (AMI) is created, con-
taining the text, type, and level of the advice message, and
some parameters to replace some marks in the message
text. These parameters are extracted from the difference
corresponding to the first AC that is activated. Then, the
AMI is inserted in the advice message list (AML). Finally,
the differences and advice messages generated are stored
in a database for later analysis, as well as in an archive in

AML=
adviceMode=calculateMode()
for each AR in AKB do 
  if ruleIsActivated(AR, adviceMode, DL) then 
    AMI=createAdviceInstance(AR, DL) 
    insertInList(AML, AMI) 
  end-if 
end-for
registerInDB(AML, DL) 
registerInArchive(AML, DL, ARCH)

Figure 9. Algorithm for advice generation

memory (ARCH) to be taken into account in subsequent
advice requests.

Figure 10 shows an excerpt of the XML-based defini-
tion of two example rules. The first (left) is for a general
comment to be shown in the initial mode that indicates
that the structure of the student’s model is right. This oc-
curs when any stock is missing (ruleError label), etc. The
second (right) is a warning that exemplifies the use of pa-
rameters: the values of the difference parameters replace
the marks (“%1” and “%2”) in the advice text. In the case
of the UNIT difference, parameters 3 and 4 are the names
of the units.

4.2.2 Sorting and Selection of Advice Messages

Because the number of advice messages generated can
be large, it would not be effective to show all of them.
According to Paolucci et al. [25], the advice is often more
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<adviceKnowledgeBase>
  ... 
  <adviceRule> 
    <adviceId>BasicStructureNice1</adviceId> 
    <adviceText>This is a nice basic structure for 
your model! Try running it and compare the results 
with your experiments 
    </adviceText> 
    <adviceDescription> 
      <type>comment</type> 
      <level>general</level> 
      <errorMatching>all</errorMatching> 
    </adviceDescription> 
    <ruleErrors> 
      <ruleError> 
        <errorId>STOCK-</errorId> 
        <isPresent>false</isPresent> 
        <adviceState>initial</adviceState> 
      </ruleError>... 
    </ruleErrors> 
  </adviceRule> 
  ... 

  <adviceRule> 
    <adviceId>UseUnitToMeasure</adviceId> 
    <adviceText>Use '%2' to measure '%1' 
    </adviceText> 
    <adviceDescription> 
      <type>warning</type> 
      <level>detailed</level> 
      <errorMatching>all</errorMatching> 
    </adviceDescription> 
    <parameters> 
      <parameter>3</parameter> 
      <parameter>4</parameter> 
    </parameters> 
    <ruleErrors> 
      <ruleError> 
        <errorId>UNIT</errorId> 
        <isPresent>true</isPresent> 
        <adviceState>final</adviceState> 
      </ruleError> 
    </ruleErrors> 
  </adviceRule> 
  ... 
</adviceKnowledgeBase>

Figure 10. An excerpt of the XML-based specification of the AKB

than a student can be expected to absorb and respond to at
one time. Moreover, it would be difficult for the student to
approach their resolution in an organized way. In line with
this, we have designed a procedure for sorting and selecting
advice messages. Comments are always shown, but errors
and warnings are chosen by this selection process.

With respect to sorting, we identified five ordering cri-
teria: (i) the frequency of the difference that activates the
advice; (ii) the advice type; (iii) the type of the objects to
which the advice refers; (iv) the name of the objects; and
(v) the advice level. The first criterion allows the students to
focus on the most frequent differences and to develop skills
in relation to the area of knowledge in which they seem to
be failing. The second criterion leads the students to ap-
proach the more serious advice messages first. The third
and fourth criteria organize the advice messages around the
objects and relationships and their types. This facilitates the
students’ understanding, as they can focus on model parts
or mini-models (concrete objects and relationships). The
fifth criterion presents first the general advice messages
referring to structural aspects of the model, which should
be solved in the first place.

Once sorted, the messages on the AML can be fil-
tered. When the filtering function is activated, the selector
chooses the advice messages with the first (highest) value
according to the sorting category specified. Thus, if the
first sorting criterion is the advice level, only the general
messages will be shown.A second complementary filtering
functionality consists of selecting the first n messages.

This sorting and selection approach is more com-
plete than those incorporated in KERMIT [18] and
BELVEDERE [9]. KERMIT shows an advice message
only for each solution submission. BELVEDERE calcu-
lates several advice statements, but it selects only the first

in priority order. An interesting approach found in COLER
[24] is sorting the advice messages by preference. This
preference can change during the session according to the
group’s performance. COLER also selects one advice mes-
sage (the most preferred) from the advice list, whereas
the remaining messages can be given on demand. Suthers
[26] sorts advice messages using selection heuristics. Two
example heuristics are “say something you haven’t said
before” and “minimize the amount of information to be
processed”. Our selection process supports the former by
means of the before and after attributes of an advice rule.
The latter has been implemented in the two aforementioned
filtering functionalities.

4.3 Configuration of the Advice Method

One of our aims when we designed the advice method
was that it should be flexible enough to allow the teacher
to adjust it. In line with this, many parameters are config-
urable. These parameters are included in the XML-based
modeling assignment specification (see Figure 5) and can
be easily modified by the teacher according to his/her pref-
erences, resulting in different ways of generating advice,
each with different results for the students’error correction
process and for their learning.

The teacher can configure the advice at the modeling
assignment level. The configuration areas (see the sections
checkParameters, modeChangeParameters, and adviceSe-
lectionParameters in the specification given in Figure 5)
are as follows.

• Constraints for advice request. The advice works on
demand, which means that if students use it very
frequently the advice more or less solves the mod-
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eling problem for them. To avoid this situation, two
parameters are available: the minimum number of
model elements that need to be present and the time
that has to pass between checks in order to give
advice.

• Change of the advice mode. The change of mode is
implemented with the TI, TF, CKI, CKF, CI, and CF
parameters previously described.

• Sorting and selection of advice messages. In order to
define a specific sorting, the priority of each sorting
criterion has to be indicated. The activation of the
filtering must also be defined.

The complete AKB is specified in a separate XML file.
In this way, by making use of a suitable tool, the teacher
can adjust and extend the rules. An initial configuration
containing 44 advice rules is included in Co-Lab.

4.4 Integration in Co-Lab

The models, data structures, and algorithms that make
up the advice method have been implemented and inte-
grated in Co-Lab. Figure 11 shows a session of modeling
with Co-Lab. The system that needs to be modeled ac-
cording to the modeling assignment is a water tank level
system. In the example user interface shown, the student
has requested advice. Therefore, besides the model editor,
there are two open windows: the advisor console and the
variable assigner table for linking variables.

The student has to press the check button to request
advice. Because the processing of the advisor may take a
few seconds, the State label indicates whether the advi-
sor is working (Active) or not (Inactive). The advisor pro-
cess triggers the matcher process. The matcher can require
the students to manually link their own variable names to
variable names present in the reference model (for those
variables not assigned automatically), using the variable
assigner window as described above (see Figure 7). This
window also opens when all variables are linked automat-
ically, so students can check the linking the matcher has
made. After the linking of variables (manual or automatic)
the advisor generates the relevant advice messages, and
their texts and types are shown in the advice console.

The three advice messages in the example in Figure 11
(“Think about the constant ‘Const_1’ is really necessary”,
“You don’t need ‘water’ to calculate ‘speed’ ”, “Think
about the ‘Flow_1’ depends on ‘speed’ ”) highlight some
differences between the student’s model and the reference
model: on the one hand, the flow should be connected to
an auxiliary; on the other hand, a constant and a connector
are not necessary.

5. Evaluation

In order to validate the advice approach, we carried out
a summative evaluation. This type of evaluation aims at

assessing the effectiveness of the system [27]. In doing so,
we performed two studies. A more detailed description of
these studies can be read in Bravo et al. [28].

The first study consisted of applying the advice method,
integrated in Co-Lab, to some final student solutions for a
specific modeling problem. The objective of this assign-
ment was to model the behavior of a tank that lost water
by a hole. Three experienced teachers evaluated the ad-
vice that was generated. A total number of 21 solutions
were analyzed in this study. However, only six of these
were syntactically and semantically correct, so that advice
could only be generated in six cases. A total of 36 advice
messages were generated for these six cases, distributed
over eight errors, 26 warnings, and two comments. No fil-
tering criterion was selected and the sorting criterion was
the advice importance (error, warning, and comment).

The main results of this evaluation were as follows.

• The aliases approach for students’ variables was
promising, as the method was able to link 74% of
the students’variables automatically to the reference
solution variables in this real modeling task. This is
a positive result, as a simple technique for matching
variable names is used, instead of using complex nat-
ural language processing techniques. In addition, the
student will always have the capability to complete
the linking of variables manually.

• The teachers said that the general approach as well as
the advising style was “fine”. However, they agreed
on the necessity of considering a wider variety of
reference solutions, as there are many different ways
of modeling the behavior of a given system. They
also highlighted that students should be helped more
to think about the system in the initial phase.

The second study consisted of using the system to build
a model of a physics system. In this case, the model being
studied was the discharge process of a condenser. 12 stu-
dents took part in the study. They had previously received
instruction in the use of the modeling tool. The modeling
task took one hour. During this time they requested advice
102 times, receiving 396 advice messages. There were an
average of 8.5 checks and 33 advice messages per user,
and an average of 3.9 advice messages per check.

The main results of our analysis were the following.

• All students used the advisor frequently. They be-
came used to making checks and they took into ac-
count the different advice messages shown in the
majority of the cases.

• The advice guided the students to correct solutions.
After one hour of working, 83.3% of the students
were able to complete the model. Therefore, we be-
lieve that the advice was successful.

• The students had a positive view of the advice sup-
port. In a questionnaire with a five-point Likert
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Figure 11. Example of a model and the advice generated

scale ranging from 1 (completely disagree) to 5 (to-
tally agree), they expressed their opinion about (i)
whether the language used by the advisor in its ad-
vice messages was understandable and clear, (ii)
whether the advice or help they had received was ap-
propriate for their model and its state, (iii) whether
they thought that the help they had received was
good, (iv) whether the advice they had received was
similar to that a teacher would give, and (v) whether
they believed that the advisor had made them work
and reflect. The average scores for answers to these
questions are shown in Table 3.

6. Conclusions and Future Work

In this paper we have dealt with M&S-based learning
environments. In these environments, students can have
difficulty building models for a number of reasons. There-
fore, supportive measures to scaffold the modeling tasks
are required. Our initiative for such support has been the de-
sign of an intelligent advice method to be integrated in these
environments. The main characteristics of this method are
the following.

• Each modeling problem in the memory of the learn-
ing environment includes a family of solutions (ref-
erence solution).

• The student’s solution for a modeling problem is
compared to the reference solution. In this matching
a set of differences are generated. We have proposed
a heuristic to tackle the problem of matching variable
names.

• The strategy for generating advice is based on an
AKB containing a set of advice rules that define
which advice messages to give based on the differ-
ences detected and the present advice mode.

• This strategy is completed with the definition of dif-
ferent criteria to sort and filter the advice messages.

The aim has been to design a type of advice that makes
students work and reflect instead of looking at the advice
and mindlessly executing the indicated behavior. However,
because some students can require more directed help, the
detail level and imperative tone of the advice increase if
time goes by without improvement of the model’s quality.
The method is flexible and configurable to fit the require-
ments of different teaching styles, modeling problem types
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Table 3. Average scores for answers to the questions on the post-test

Arithmetic Standard
Question Mean Deviation

Do you think that the language used by the advisor in its advice messages was understandable
and clear?

3,81 0,81

Do you think that the advice or help you have received was appropriate for your model and to
its state?

3,67 0,73

Do you think that the help received was good? 3,61 0,70

Do you think that the advice you received was similar to what a teacher would give you? 3,00 0,84

Do you think that the advisor has helped you to improve your model making you reflect and
work so that you can reach a solution?

4,10 0,62

and learning goals. All method parameters are included in
XML files for an easy configuration.

We have carried out some studies with this method to
validate the approach. The results confirm that the method
is promising and can produce good results in specific con-
tent areas and for specific modeling problems, guiding the
students to correct solutions. Some teachers stated that the
advice approach and style were good, although they rec-
ommended a greater variety of reference solutions to ap-
proach a wider problem area. Students highlighted that the
advisor made them reflect and work on the model, pushing
them to improve it. However, more work is required for
the advice to become more similar to the natural advice
of a teacher (see Table 3). The method used also presents
some limitations that need to be addressed. For example,
we should find a solution for the case where a modeling
problem has more than one family of possible solutions,
allowing the application of this method to more complex
problems. The advice procedure should also be able to
generate advice even when the model contains syntactic or
semantic errors.

We believe that this advice can improve and scaffold the
modeling process. The advice challenges students to im-
prove their models, and, in collaborative sessions, to dis-
cuss the advice and the best way of proceeding. Although
the advice system was designed to work within Co-Lab,
a collaborative environment, its working does not depend
on this collaborative nature. Whereas the advice given in
a collaborative setting may stimulate discussion between
students, in an individually oriented working environment
a student may also be stimulated to reflect on the model
and modeling process, based on the feedback generated by
the advice system.

We are also studying other domain and application ar-
eas in which this approach can be applicable and useful.
The matching procedure is domain-specific, as its compar-
ison process depends on the domain represented as a set
of specific object classes and relationships, although this
matching algorithm, as described in Section 4.1.2, can be
easily adapted to other domains. In contrast, the advice
generation procedure is domain-independent. It uses a list
of differences to generate advice messages without know-

ing anything about the domain. Thus, this approach could
be applied to other areas for which a domain model and
a matching algorithm can be devised. Along this line, the
next step is to make the solution matching process domain-
independent by means of appropriate formalisms for de-
scribing domains, solutions and matching algorithms in a
more abstract and declarative way.
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