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Abstract

The modeling framework of port-Hamiltonian systems is systematically extended to
linear constrained dynamical systems (descriptor systems, differential-algebraic equations)
of arbitrary index and with time-varying constraints. A new algebraically and geometri-
cally defined system structure is derived. It is shown that this structure is invariant under
equivalence transformations, and that it is adequate also for the modeling of high-index
descriptor systems. The regularization procedure for descriptor systems to make them
suitable for simulation and control is modified to preserve the port-Hamiltonian form.
The relevance of the new structure is demonstrated with several examples.

Keywords: port-Hamiltonian system, descriptor system, differential-algebraic equation, pas-
sivity, stability, system transformation, differentiation-index, strangeness-index, skew-adjoint
operator.
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1 Introduction

Modeling packages such as modelica (https://www.modelica.org/), Matlab/Simulink
(http://www.mathworks.com) or Simpack [47] have come to provide excellent capabilities
for the automated generation of models describing dynamical systems originating in differ-
ent physical domains that may include mechanical, mechatronic, fluidic, thermic, hydraulic,
pneumatic, elastic, plastic, or electric components [1, 17, 23, 44, 45]. Due to the explicit
incorporation of constraints, the resulting systems comprise differential-algebraic equations
(DAEs), also referred to as descriptor systems in the system theory context. Descriptor sys-
tems may contain hidden constraints, consistency requirements for initial conditions, and
unexpected regularity requirements. Therefore, these models usually require further regular-
ization to be suitable for numerical simulation and control, see [11, 30, 33]. Our focus will
be on linear time-varying descriptor systems, as they typically arise from the linearization of
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nonlinear DAE systems along a (non-stationary) reference trajectory, see [10]. These have
the form

E(t)ẋ(t) = A(t)x(t) +B(t)u(t),

y(t) = C(t)x(t) +D(t)u(t), (1)

together with an initial condition x(t0) = x0. The coefficient matrices satisfy E,A ∈
C0(I,Rn,n), B ∈ C0(I,Rn,m), C ∈ C0(I,Rm,n), and D ∈ C0(I,Rm,m), where we denote
by Cj(I,X ) j ∈ {0, 1, 2, 3, . . .} the set of j-times continuously differentiable functions from a
compact time interval I = [t0, tf ] ⊆ R to a vector space X . If it is otherwise clear from the
context, the argument t of the coefficient functions is suppressed.

An important development in recent years has been to employ energy based modeling via
bond graphs [4, 12]. This has been implemented recently in 20-sim (http://www.20sim.com/),
for example. The resulting systems have a port-Hamiltonian (pH) structure, see e. g. [21, 27,
37, 40, 41], that encodes underlying physical principles such as conservation laws directly into
the structure of the system model. The standard form for pH systems appears as

ẋ = (J −R)∇xH(x) + (B − P )u,

y = (B + P )T∇xH(x) + (S +N)u, (2)

where the function H(x) is the Hamiltonian typically describes the distribution of internal
energy among energy storage elements of the system, J = −JT ∈ Rn,n is the structure matrix
describing energy flux among energy storage elements within the system; R = RT ∈ Rn,n is
the dissipation matrix describing energy dissipation/loss in the system; B ± P ∈ Rn,m are
port matrices, describing the manner in which energy enters and exits the system, and S+N ,
with S = ST ∈ Rm,m and N = −NT ∈ Rm,m, describes the direct feed-through from input to
output. It is necessary that

W =

[
R P

P T S

]
≥ 0, (3)

where we write W > 0 or W ≥ 0 to assert that a real symmetric matrix W is positive defi-
nite or positive semi-definite, respectively. Port-Hamiltonian systems generalize Hamiltonian
systems, in the sense that conservation of energy for Hamiltonian systems is replaced by the
dissipation inequality:

H(x(t1))−H(x(t0)) ≤
∫ t1

t0

y(t)Tu(t) dt. (4)

In the language of system theory, H(x) is a storage function associated with the supply rate,
y(t)Tu(t). The inequality, (4), describes a conservation property of the dynamical system that
is termed passivity [8]. Note that H(x) defines a Lyapunov function for the unforced system,
so minimal pH systems are implicitly Lyapunov stable [24]. Inequality (4) is an immediate
consequence of (3) and holds even when the coefficient matrices J , R, B, P , S, and N depend
on x or explicitly on time t, see [34], or when they are defined as linear operators acting on
infinite dimensional spaces [27, 43].

The physical properties of pH systems are encoded in the algebraic structure of the coeffi-
cient matrices and in geometric structures associated with the flow of the differential equation.
This leads to a remarkably robust modeling paradigm that greatly facilitates the combina-
tion and manipulation of pH systems. Note in particular that the family of pH systems is
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closed under power-conserving interconnection (see [28]); model reduction of pH systems via
Galerkin projection yields (smaller) pH systems [2, 22, 39]; and conversely, pH systems are
easily extendable in the sense that new state variables can be included while preserving the
structure of (2). Thus, the range of application of the model can be increased while ensuring
that basic conservation principles, as encoded in (4), remain in force.

When time-varying state constraints are included in a pH system, the resulting system is a
port-Hamiltonian descriptor system (differential-algebraic equation) (pHDAE). Such pHDAE
systems arise also in singularly perturbed pH systems when small parameters are set to
zero, see [42]. Significantly, there is no systematic way that has yet emerged to describe
this problem class consistently, in a way that reflects both the pH structure and the time-
varying DAE structure appropriately from the point of view of DAE modeling. For implicit
pH systems, implicit formulations have been studied in [19] relating to Dirac’s work from
1950s [14]. However, we will allow general DAE system formulations and the first main
topic of this paper is to propose such a systematic pHDAE approach. This is a challenging
task, in particular when constraints of the DAE are ‘hidden’, which is often signaled with
the terminology ‘high-index DAE’ [5, 30, 33]. Such DAEs are not well-suited for numerical
simulation and control and so, either a reformulation or a regularization of the model must
first be carried out, [11, 30]. We will briefly summarize the fundamentals of this technique in
Section 4.

Often Port-Hamiltonian DAEs are expected to be of differentiation-index at most one (see
e.g., [42]). Such systems do not contain hidden constraints arising from derivatives. By way of
contrast, we describe here a class of pHDAEs that arise from common modelling approaches
that yield differentiation-indices higher than one, making regularization procedures necessary.
Unfortunately, the usual regularization strategies do not preserve pHDAE model structure
and so, the second main topic of this work paper is how one should accomplish regularization
while respecting the pHDAE structure.

The paper is organized as follows. In Section 2 we give a definition of linear port-
Hamiltonian differential-algebraic systems and demonstrate that this is a relevant class for
many applications. The main properties of this new class of pHDAE systems (such as stability
and dissipativity) are discussed in Section 3. Section 4 recalls the index reduction procedure
for DAEs. The analysis of ‘index at most one’ pHDAEs is discussed in Section 5 while the
structured regularization procedure for higher index systems is discussed in Section 6.

2 Linear Port-Hamiltonian Differential-Algebraic Equations

In this section we introduce a new definition of linear port-Hamiltonian descriptor systems
(pHDAEs). As discussed in the introduction we would like to be able to combine the pH
structure and the DAE structure in a systematic way. Our first observation to achieve this
goal is that for a quadratic Hamiltonian H(x) = 1

2x
TQ(t)x with Q = QT , the operator

d
dt − J(t)Q(t) : Ω ⊂ C1(I,Rn) → C0(I,Rn) is skew-adjoint, so in order to extend this con-
cept we first introduce linear skew-adjoint differential-algebraic operators, see [32] for the
corresponding self-adjoint case.

Definition 1 A linear (differential-algebraic) operator

L := E d
dt
−A : Ω ⊂ C1(I,Rn)→ C0(I,Rn)
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with coefficient functions E ∈ C1(I,Rn,n), A ∈ C0(I,Rn,n) is called skew-adjoint, if ET (t) =
E(t) and Ė(t) = −(A(t) +AT (t)) for all t ∈ I.

To further motivate this definition, observe that starting with vector functions x1(t), x2(t) that
are absolutely continuous on the interval I = (t0, tf ) each with square integrable derivative

and xi(t0) = xi(tf ) = 0 for i = 1, 2, and letting 〈x1, x2〉 =
∫ tf
t0
xT2 x1 dt denote the usual L2

inner product, we have

〈x1,L(x2)〉 = 〈x1, E ẋ2 −Ax2〉 = 〈x1,
d

dt
(Ex2)−Ax2 − Ėx2〉

= xT2 ETx1|
tf
t0
− 〈ET ẋ1, x2〉 − 〈(AT + ĖT )x1, x2〉

= 〈−ET ẋ1 − (AT + ĖT )x1, x2〉 = 〈−E ẋ1 +Ax1, x2〉.

So, the adjoint operator L∗ formally satisfies L∗ = −L. Note that boundary terms arising
in partial integration will vanish under a wide variety of conditions that may replace the
requirement of zero end conditions on x1(t) and x2(t).

Remark 2 In the context of densely-defined unbounded operators, recall that symmetric
operators are those with adjoints that are extensions of the original operator, so one might
use analogously the terminology skew-symmetric operator instead of skew-adjoint operator
here. To be consistent with the terminology in [32] where self-adjoint DAE operators were
introduced, we prefer to use its natural cousin, skew-adjoint operator.

One further motivation for introducing skew-adjoint operators in this way is that we would
like to consider time-varying changes of basis and time-varying Galerkin projections. We
show in the following result that linear skew-adjoint operators remain skew-adjoint under
time-varying congruence transformations and Galerkin projections.

Lemma 3 Consider a linear skew-adjoint differential-algebraic operator

L := E d
dt
−A : Ω ⊂ C1(I,Rn)→ C0(I,Rn)

with coefficient functions E ∈ C1(I,Rn,n) and A ∈ C0(I,Rn,n). Then for every V ∈ C1(I,Rn,r),
the operator LV defined by

LV(x) := VTEVẋ− (VTAV − VTEV̇)x

is again skew-adjoint, i.e., LV : Ω ⊂ C1(I,Rr)→ C0(I,Rr) and L∗V = −LV .

Proof. Since VTEV = (VTEV)T , it remains to consider the coefficient of x. Using ET = E
and Ė = −(A+AT ), we have

d

dt
(VTEV) = V̇TEV + VT ĖV + VTEV̇

= V̇TEV − VT (A+AT )V + VTEV̇
= −(VTAV − VTEV̇)− (VTAV − VTEV̇)T .

Note that for any t ∈ I and x ∈ C1(I,Rn) we have LV(x(t)) = VT (t)L(V(t)x(t)).

4



Remark 4 In Lemma 3, V need be neither invertible nor square, and in particular a time-

varying compression V =

[
Ir
P (t)

]
will produce a permissible skew-adjoint operator.

Skew-adjoint operators provide a natural extension of linear Hamilton operators with
variable coefficients, so we may now incorporate dissipation terms and ports that leads us
to a new definition of linear time-varying pHDAEs, which will be shown to be invariant
under time-varying changes of basis. Our new definition somewhat extends related concepts
discussed in [42].

Definition 5 A linear variable coefficient descriptor system of the form

Eẋ = [(J −R)Q− EK]x+ (B − P )u,

y = (B + P )TQx+ (S +N)u, (5)

with E,Q ∈ C1(I,Rn,n), J,R,K ∈ C0(I,Rn,n), B,P ∈ C0(I,Rn,m), S = ST , N = −NT ∈
C0(I,Rm,m) is called port-Hamiltonian descriptor system (port-Hamiltonian differential-algebraic
system) (pHDAE) if the following properties are satisfied:

(i) the differential-algebraic operator

L := QTE
d

dt
− (QTJQ−QTEK) : D ⊂ C1(I,Rn)→ C0(I,Rn) (6)

is skew-adjoint, i. e. we have that QTE ∈ C1(I,Rn,n) and for all t ∈ I,

QT (t)E(t) = ET (t)Q(t), and

d

dt
(QT (t)E(t)) = QT (t)[E(t)K(t)− J(t)Q(t)] + [E(t)K(t)− J(t)Q(t)]TQ(t);

(ii) the Hamiltonian function defined as

H(x) :=
1

2
xTQTEx : C1(I,Rn)→ C1(I,R) (7)

is bounded from below by a constant, H(x(t)) ≥ h0 ∈ R, uniformly for all t ∈ I and all
solutions x of (5);

(iii) the matrix function

W :=

[
QTRQ QTP

P TQ S

]
∈ C0(I,Rn+m,n+m) (8)

is positive semidefinite, i. e., W (t) = W T (t) ≥ 0 for all t ∈ I.

Note that in Definition 5 no further properties of the differential-algebraic operator are as-
sumed. In particular it is not assumed that it has a certain index as a differential-algebraic
equation.

Remark 6 The presence of the matrix function K in (5) and subsequent expressions may
be disconcerting, but note that a time-varying change of basis, x = P (t)x̃, will produce an
additional term, ĖP , in the transformed system that must be accommodated in order to
retain the dissipation inequality. The matrix function K(t) allows for this, and we include
such a term from the beginning.
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Remark 7 Note that in the special case that K(t) = 0 and QTJQ is skew-symmetric, the
skew-adjointness of L in (6) implies that E(t)TQ(t) is constant in time, which is in accordance
with the usual fact that for classical Hamiltonian systems ẋ = J(x, t)∇xH(x) with quadratic
Hamiltonian H(x) = 1

2x
TQx the matrix Q is constant in time. The reason that we allow

time-varying E,Q is that these would arise when performing time-varying changes of basis,
which will furthermore introduce a term K 6= 0 and make the coefficients time-varying.

Remark 8 Typically, pH systems are introduced via a Dirac structure D, and for (f, e) ∈ D
one has eT f + fT e = 0 if there is no dissipation. Typically, linear dynamics is determined
by choosing e = Qx, and f = ẋ. In the context of our new definition, then efforts and flows
are defined as e = Qx and f = Eẋ, respectively and, if there is not dissipation and ETQ is
constant in time, then this would lead still to d

dt(x
TETQx) = eT f + fT e = 0. Notice that

in contrast to the usual formulation, we allow for the possibility that both E and Q can be
singular matrices.

Assumption (ii) in Definition 5 can be refined as follows:

Lemma 9 Assumption (ii) in Definition 5 is equivalent to the assertion that H(x(t)) ≥ 0
uniformly for all t ∈ I and all solutions x of (5). In particular, the lower bound h0 can be
replaced by 0.

Proof. One direction is obvious. For the other direction suppose thatH(x) is semibounded
for all solutions x of (5), but say with h0 < 0. Then there is t̂ ∈ R and a consistent initial

condition x̂ for (5) at t = t̂ with u(t) ≡ 0, such thatH(x̂(t̂)) < 0. By scaling x̂ by κ >
√

h0
H(x̂(t̂))

,

κx̂(t̂) is also a consistent initial condition for (5) at t = t̂ with u(t) ≡ 0, and we find that
H(κx̂(t̂)) = κ2H(x̂(t̂)) < h0 giving a contradiction, so it must be that h0 ≥ 0.

Lemma 9 shows that Assumption (ii) implies that QTE is positive semidefinite on the
solution set of (5), and so Q(t)TE(t) ≥ 0 for all t ∈ I is a sufficient condition for Assumption
(ii) to hold.

We proceed to illustrate the generality of this new definition with some examples.

Example 10 Consider the model of a simple RLC network, see e. g. [13, 18], given by a
linear constant coefficient DAE GcCG

T
c 0 0

0 L 0
0 0 0


︸ ︷︷ ︸

:=E

 V̇

İl
İv

 =

 −GrR−1r GTr −Gl −Gv
GTl 0 0
GTv 0 0


︸ ︷︷ ︸

:=(J−R)I

 V
Il
Iv

 , (9)

with real symmetric constant matrices L > 0, C > 0, Rr > 0 describing inductances, ca-
pacitances, and resistances, respectively that are present in the network. Here, Gv is of full
column rank, and the subscripts r, c, l, and v refer to edge quantities corresponding to re-
sistors, capacitors, inductors, and voltage sources. V collects voltage drops across network
branches, while I collects the current fluxes through corresponding network branches. This
model has a pHDAE structure with vanishing B,P, S,N,K; the matrix Q is the identity;
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E = ET , J = −JT , QTRQ = R ≥ 0, and

H =

 V
Il
Iv

T E
 V
Il
Iv

 =

[
V
Il

]T [
GcCG

T
c 0

0 L

] [
V
Il

]
.

Note that the associated DAE has differentiation index 2, see [30].

Example 11 In [15, 16] the propagation of pressure waves on acoustic time scales through
a network of gas pipelines is considered and an infinite-dimensional pHDAE is derived. A
structure-preserving mixed finite element discretization leads to a block-structured constant
coefficient pHDAE system

Eẋ = (J −R)Qx+Bu,

y = BTQx, (10)

x(t0) = x0,

with Q = I, P = 0, S +N = 0,

E =

M1 0 0
0 M2 0
0 0 0

 , J =

 0 −G̃ 0

G̃T 0 ÑT

0 −Ñ 0

 , R =

0 0 0

0 D̃ 0
0 0 0

B =

 0

B̃2

0

 , x =

x1x2
x3

 ,
where the vector valued functions x1 : R → Rn1 , x2 : R → Rn2 represent the discretized
pressure and flux, respectively, and x3 : R → Rn3 represents the Lagrange multiplier for
satisfying the space-discretized constraints. The coefficients M1 = MT

1 , M2 = MT
2 , and

D̃ = D̃T are positive definite, and the matrices Ñ and
[
G̃T ÑT

]T
have full row rank. The

Hamiltonian is given by H(x) = 1
2x

TETQx = 1
2(xT1M1x1 + xT2M2x2).

The associated DAE in this case also has differentiation index 2, see [16, 30].

Definition 5 brings the pH modeling framework and the DAE framework together in a struc-
tured way. It should be noted, however, that in a DAE we may have hidden constraints that
arise from differentiation, which are not explicitly formulated and the representation of the
DAE that is used in simulation and control is not unique. One can for example add derivatives
of constraints which leads to an over-determined system, then one can add dummy variables
or Lagrange multipliers to make the number of variables equal to the number of equations
or one can remove some of the dynamical equations to achieve this goal, see [5, 17, 30, 33]
for detailed discussions on this topic. To rewrite these different formulations in the pHDAE
formulation is not always obvious. Let us demonstrate this with an example from multi-body
dynamics.

Example 12 A benchmark example for a DAE system is the model of a two-dimensional
three-link mobile manipulator, see [6, 25], which after linearization around a stationary solu-
tion takes the form

Mp̈ = −Dṗ− Sp+GTλ+B1u,

0 = −Gp, (11)

with symmetric positive definite matrices M,S and symmetric and positive semidefinite D.

7



Besides the explicit constraint this system contains the first and second time derivative of
−Gp = 0 as hidden algebraic constraints, see e. g. [17, 30]. There are several regularization
procedures that one can employ to make the system better suited for numerical simulation and
control. One possibility is to replace the original constraint by its time derivative 0 = −Gṗ.
In this case the model equation can easily be written in a pHDAE formulation. Adding a
tracking output of the form y = BT

1 ṗ, see e. g., [26], and then transforming to first order form
by introducing

x =

 x1
x2
x3

 :=

 ṗ
p
λ

 ,
one obtains a linear pHDAE system Eẋ = (J −R)Qx+Bu, y = BTQx, with

E :=

 M 0 0
0 I 0
0 0 0

 , R :=

 D 0 0
0 0 0
0 0 0

 , Q :=

 I 0 0
0 S 0
0 0 I

 ,
J :=

 0 −I GT

I 0 0
−G 0 0

 , B :=

 B1

0
0

 , P = 0, S +N = 0.

The Hamiltonian in this case is given by H(x) = 1
2

[
x1
x2

]T [
M 0
0 S

] [
x1
x2

]
.

Since the Lagrange multipliers in the multibody framework can be interpreted as external
forces, it is also possible to incorporate them in the input (B − P )u to achieve a pHDAE
formulation as in Definition 5, but also other formulations are possible. For example, we may
keep the original algebraic constraint as well and use an extra Lagrange multiplier for the
first time derivative.

Besides explicit constraints, pHDAEs arise as a limiting situation in a singularly perturbed
problem which has pH structure. Typical examples are mechanical multibody systems where
small masses are ignored.

Example 13 Finite element modeling of the acoustic field in the interior of a car, see e. g.
[36], leads to (after several simplifications) a large scale constant coefficient differential-
algebraic equation system of the form

Mp̈+Dṗ+Kp = B1u,

where p is the coefficient vector associated with the pressure in the air and the displacements
of the structure, B1u is an external force, M is a symmetric positive semidefinite mass ma-
trix, D is a symmetric positive semidefinite matrix, and K is a symmetric positive definite
stiffness matrix. Here M is only semidefinite, since small masses were set to zero, so M is
a perturbation of a positive definite matrix. The resulting first-order formulation yields the
state equation of a pHDAE system, Eż = (J −R)Qz +Bu, where

E :=

[
M 0
0 I

]
, J :=

[
0 −I
I 0

]
, R :=

[
D 0
0 0

]
, z :=

[
ṗ
p

]
,

Q :=

[
I 0
0 K

]
, B :=

[
B1

0

]
, P := 0,
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and the Hamiltonian is

H =
1

2
(zTETQz) =

1

2
(ṗTMṗ+ pTKp).

Note that this model is nonlinear originally, but simplifications carried out in the modeling
process, e. g. linearization and omission of nonlinear terms with small coefficients, lead to a
linear model. In this example, as long as M is invertible the implicit pH formulation of [19]
could be employed to transform the system to a usual pH system, however, this approach
would not be possible in the limiting situation and in the context of numerical methods, the
small masses problem behaves just as the singular case.

Remark 14 A special case of (5) takes the following form:

Eẋ = (J −R)x+ (B − P )u,

y = (B + P )Tx+ (S +N)u, (12)

where E = ET ∈ C1(I,Rn,n), R = RT , J ∈ C0(I,Rn,n), B,P ∈ C0(I,Rn,m), S = ST , N =
−NT ∈ C0(I,Rm,m) as before but now we require that

(i) the differential algebraic operator

L := E
d

dt
− J : D ⊂ C1(I,Rn)→ C0(I,Rn) (13)

is skew-adjoint, so that we have for all t ∈ I,

d

dt
E(t) = −

[
J(t) + J(t)T

]
;

(ii) E(t) is bounded from below by a constant symmetric matrix E0.

(iii) W (t) :=

[
R(t) P (t)

P T (t) S(t)

]
≥ 0 for all t ∈ I.

The effective Hamiltonian is now

H(x) :=
1

2
xTEx : C1(I,Rn)→ R. (14)

Notice that in this model description we have merged the roles of Q and E. This is always
possible when Q is pointwise invertible, see Section 3, but this formulation may not be possible
when Q is singular, see [35].

Our new definition of pHDAEs allows for somewhat greater flexibility in modeling port-
Hamiltonian systems with constraints. The non-uniqueness in the factorization of the Hessian
ETQ of the Hamiltonian allows one to incorporate singularities which may otherwise be hard
to deal with. In the next section we will show that the classical properties of pH systems are
retained and that the pH structure remains invariant under time-varying transformations.
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3 Properties of pHDAE systems

To analyze the properties of pHDAE systems, we first derive the dissipation inequality.

Theorem 15 Consider the linear time-varying system (5) and assume that this system sat-
isfies condition i) of Definition 5. Then its (classical) solutions satisfy

d

dt
H(x) = uT y −

[
x
u

]T
W

[
x
u

]
, (15)

where W is defined in (8).
Furthermore we have the following properties.

i) If W ≡ 0, then d
dtH = uT y.

ii) If W ≥ 0 for all t ∈ I, then the system satisfies the dissipation inequality (4).

Proof. By Definition 5 we have

d

dt
H =

1

2

[
ẋT (QTE)x+ xT

d

dt
(QTE)x+ xT (QTE)ẋ

]
=

1

2
xT

d

dt
(QTE)x+ xTQT (Eẋ)

=
1

2
xT

d

dt
(QTE)x+ xTQT ([JQ−RQ− EK]x+Bu− Pu)

=
1

2
xT

d

dt
(QTE)x+ xTQTJQx− xTQTRQx− xTQTEKx− xTQTPu+ uTBTQx

=
1

2
xT

d

dt
(QTE)x+ xTQTJQx− xTQTRQx− xTQTEKx− xTQTPu

+uT (y − P TQx− Su−Nu)

= uT y +
1

2
xT

d

dt
(QTE)x+ xTQTJQx− xTQTRQx− xTQTEKx

−xTQTPu− uTP TQx− uTSu

= uT y +
1

2

(
xT

d

dt
(QTE)x+ xT [QT (JQ− EK) + (JQ− EK)TQ]x

)
−
[
x
u

]T
W

[
x
u

]
.

From the skew-adjointness of L we then have that

d

dt
H = uT y −

[
x
u

]T
W

[
x
u

]
.

Part i) then follows immediately from the assumption W ≡ 0, while in Part ii) the fact that
W (t) ≥ 0 for all t ∈ I implies that for any t1 ≥ t0,

H(x(t1))−H(x(t0)) =

∫ t1

t0

d

dt
H dt ≤

∫ t1

t0

yTu dt.

10



Remark 16 Theorem 15 connects structural features of pHDAEs with the assertion that
uT y bounds the instantaneous rate of change of the Hamiltonian function H(x), implying
in turn that the dissipation inequality (4) holds. This is a conservation principle that must
hold notwithstanding particular interpretations ofH(x) as system “energy” (an interpretation
which might otherwise require further qualification if there is time variation in E(t)TQ(t)).
Indeed, the strength of this new formulation is that it allows retention of a general conser-
vation principle even in the face of time-varying changes of basis, which arise naturally in
considering nonlinear systems that are linearized along nonstationary solutions, when the
solution manifold or constraints are moving in time.

Remark 17 It follows from Theorem 15 with the formulation of flows and efforts as in
Remark 8 that if W = 0, then we have the usual relationship for Hamiltonian systems that
eT f + yTu = 0.

Another important feature of our definition of pHDAE systems is that a change of basis
and a scaling with an invertible matrix function preserves the pHDAE structure and the
Hamiltonian.

Theorem 18 Consider a pHDAE system of the form (5) with Hamiltonian (7). Let U ∈
C0(I,Rn,n) and V ∈ C1(I,Rn,n) be pointwise invertible in I. Then the transformed DAE

Ẽ ˙̃x = [(J̃ − R̃)Q̃− ẼK̃]x̃+ (B̃ − P̃ )u,

y = (B̃ + P̃ )T Q̃x̃+ (S +N)u,

with

Ẽ = UTEV, Q̃ = U−1QV, J̃ = UTJU,

R̃ = UTRU, B̃ = UTB, P̃ = UTP,

K̃ = V −1KV + V −1V̇ , x = V x̃

is still a pHDAE system with the equivalent Hamiltonian H̃(x̃) = 1
2 x̃

T Q̃T Ẽx̃ = H(x).

Proof. The transformed DAE system is obtained from the original DAE system by setting
x = V x̃ in (5), by pre-multiplying with UT , and by inserting UU−1 in front of Q. The
transformed operator corresponding to L in (6) is

LV := Q̃T Ẽ
d

dt
− Q̃T (J̃Q̃− ẼK̃).

Because

Q̃T Ẽ = V TQTEV, Q̃T J̃Q̃ = V TQTJQV, Q̃T ẼV −1V̇ = V TQTEV̇ ,

by Lemma 3, LV is skew-adjoint, since L defined in (6) is skew-adjoint. Hence,

Q̃T Ẽ = ẼT Q̃,

d

dt
(Q̃T Ẽ) = −Q̃T (J̃Q̃− ẼK̃)− (J̃Q̃− ẼK̃)T Q̃.

11



It is straightforward to show that H̃(x̃) = H(x) and

d

dt
H̃(x̃) = yTu−

[
x̃
u

]T
W̃

[
x̃
u

]
,

where

W̃ =

[
Q̃T R̃Q̃ Q̃T P̃

P̃ T Q̃ S

]
=

[
V TQTRQV V TQTP
P TQV S

]
=

[
V 0
0 I

]T
W

[
V 0
0 I

]
,

and W is defined in (8). Because W (t) is positive semidefinite for all t ∈ I, so is W̃ (t).
Therefore, for any t1 ≥ t0,

H̃(x̃(t1))− H̃(x̃(t0)) ≤
∫ t1

t0

yT (t)u(t)dt,

which establishes the dissipation inequality.
An important point to note is that the Hamiltonian stays invariant under time-varying

changes of basis and the operator LV , the Hamiltonian H̃(x̃), and the matrix function W̃ are
independent of the choice of the matrix function U .

As we have already pointed out, our definition of pHDAE systems has the extra term
−EKx on the right hand side which is needed to incorporate time-varying changes of basis.
Even if K = 0 in the original system, after the transformation given in Theorem 18 the extra
term −ẼK̃ with K̃ = V −1V̇ will appear. Note that if an orthogonal change of basis is carried
out in a system with K = 0 then the resulting K̃ = V −1V̇ is skew-symmetric. However,
even if K 6= 0, this term can be removed via a change of basis transformation which does not
change the Hamiltonian.

Lemma 19 Consider a pHDAE system

Ẽ ˙̃x = [(J̃ − R̃)Q̃− ẼK̃)]x̃+ (B̃ − P̃ )u,

y = (B̃ + P̃ )T Q̃x̃+ (S +N)u

with Hamiltonian H̃(x̃) = 1
2 x̃

T Q̃T Ẽx̃, where K̃ ∈ C(I,Rn,n). If VK̃ ∈ C
1(I,Rn,n) is a point-

wise invertible solution of the matrix differential equation V̇ = V K̃ (e. g. with the initial
condition V (t0) = I), then defining

E = ẼV −1K , Q = Q̃V −1k ,

J = J̃ , R = R̃, B = B̃,

P = P̃ , x̃ = V −1K x,

the system

Eẋ = (J −R)Qx+ (B − P )u,

y = (B + P )TQx+ (S +N)u

is again pHDAE with the equivalent Hamiltonian H(x) = H̃(x̃) = 1
2x

TQTEx.

12



Proof. For a given matrix function K̃, the system V̇ = V K̃ always has a solution VK
that is pointwise invertible. The remainder of the proof follows by reversing the proof of
Theorem 18 with U = I and using that V̇KV

−1
K = −VK d

dt(V
−1
K ).

Note again that if K is real and skew-symmetric, then the matrix function VK in Lemma 19
can be chosen to be pointwise real orthogonal.

Remark 20 Following Theorem 18, if E is pointwise invertible, then the original system
can be transformed into one with Ê = I, and so, into a standard port-Hamiltonian system.
Whenever Q is pointwise invertible, then the original system can be transformed into the one
with new Q̂ = I, see Remark 14. Which of these formulations is preferable will depend on
the sensitivity (conditioning) of these transformations. In the context of numerical simulation
and control methods, these transformations should be avoided if they are ill-conditioned. The
representation with E and Q also has the advantage that it is more robust to perturbations as
has been shown recently for the constant coefficient case in [20] in the context of computing
stability distances and that it leads to structured canonical and condensed forms [35, 46].

4 Regularization of DAEs

To study the DAE properties of pHDAES, in this section we briefly recall the index reduction
and reformulation procedure for DAE systems and then modify these results to pHDAEs.
We follow the general procedure derived in detail in [30] and rewrite our system as a general
descriptor system of the form

F (t, x, ẋ, u) := Eẋ−Ax−Bu = 0,

x(t0) = x0

y = G(t, x, u) := Cx+Du. (16)

Note that here, in contrast to the more general case in [11], we assume square systems with
an equal number of equations and variables and with an equal number of inputs and outputs.

For the analysis and regularization procedure we make use of the behavioral approach [38],
which introduces a descriptor vector v = [xT , uT ]T , and the behavioral formulation

F(t, v, v̇) = 0, (17)

together with a set of initial conditions c(v(t0)) = v0 which results from the original initial
condition. Then one forms a derivative array, see [9],

Fµ(t, v, v̇, . . . , v(µ+1)) = 0, (18)

stacking the equation and its time derivatives up to level µ into one large system. We denote
partial derivatives of Fµ with respect to selected variables ζ from vµ := (t, v, v̇, . . . , v(µ+1)) by
Fµ;ζ , and the solution set of the algebraic equation associated with the derivative array Fµ
for some integer µ (considering variables as well as their derivatives as algebraic variables) by
Lµ.

The main assumption for the analysis is that the DAE satisfies the following hypothesis,
which in the linear case under some constant rank assumptions can be proved as a theorem,
see [30].
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Hypothesis 21 Consider the system of nonlinear DAEs (17). There exist integers µ, r, a,

d, and ν such that Lµ is not empty and such that for every v0µ = (t0, v0, v̇0, . . . , v
(µ+1)
0 ) ∈ Lµ

there exists a neighborhood in which the following properties hold.

1. The set Lµ ⊆ R(µ+2)(n+m)+1 forms a manifold of dimension (µ+ 2)(n+m) + 1− r.

2. We have rankFµ;v,v̇,...,v(µ+1) = r on Lµ.

3. We have corankFµ;v,v̇,...,v(µ+1) − corankFµ−1;v,v̇,...,v(µ) = ν on Lµ, where the corank is
the dimension of the corange and the convention is used that corank of F−1;v is 0.

4. We have rankFµ;v̇,...,v(µ+1) = r − a on Lµ such that there exist smooth full rank matrix
functions Z2 and T2 of size (µ+1)n×a and (n+m)×(n+m−a), respectively, satisfying
ZT2 Fµ;v̇,...,v(µ+1) = 0, rankZT2 Fµ;v = a, and ZT2 Fµ;vT2 = 0 on Lµ.

5. We have rankFv̇T2 = d = n − a − ν on Lµ such that there exists a smooth full rank
matrix function Z1 of size n× d satisfying rankZT1 Fv̇T2 = d.

The smallest µ for which Hypothesis 21 holds is called the strangeness-index of (17), see
[30]. It generalizes the concept of differentiation-index [5] to over- and under-determined
systems but in contrast to the differentiation-index, ordinary differential equations and purely
algebraic equations have µ = 0 and for other systems the differentiation-index (if defined) is
µ + 1, see [30]. The quantity ν gives the number of trivial equations 0 = 0 in the system.
Of course, these equations can be simply removed and so for our further analysis we assume
that ν = 0.

If Hypothesis 21 holds then, in the original variables x and u locally (via the implicit func-
tion theorem) there exists, see [29, 30], a reformulation of the system (in the same variables)
and a partitioning of the projection matrix Z2 into two parts, so that the system takes the
form

F̂1(t, x, ẋ, u) = 0,

F̂2(t, x, u) = 0, (19)

F̂3(t, x) = 0,

in which the first set of d equations (with F̂1 = ZT1 F) form a (linear) projection of the
original set of equations representing the dynamics of the system, while the second and third
sets of equations contain all explicit and hidden algebraic constraints that can be used to
parameterize the solution manifold and to characterize when an initial condition is consistent.

It should also be noted that although formally also derivatives of u have been used to form
the derivative array, no derivatives of u appear in the regularized system (19). This has been
shown in various contexts [7, 30, 31] and is due to the fact that only derivatives of algebraic
equations that cannot be influenced by the control (non-impulse controllable equations) are
needed to generate (19) leading to the third equation of (19).

System (19) has the property that it can be made to be of differentiation index at most
one by an appropriate feedback.

As mentioned in the introduction, it is a common expectation that port-Hamiltonian DAEs
will have a differentiation-index at most one (i.e., they satisfy Hypothesis 21 with µ = 0).
Example 10 gives a typical illustration of a system that violates this expectation, in this case
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modeling a simple electrical circuit. Indeed, in Example 10 we have ZT2 =
[

0 0 I
]

and
obtain

Ē =

 GcCG
T
c 0 0

0 L 0
−GTv 0 0


which is clearly not invertible, except if the last row and column is empty. The same matrix
Z2 can be used in Example 11 and yields

Ē =

M1 0 0
0 M2 0

0 Ñ 0


which is also not invertible except if the last row and column is empty. Due to this special
structure both systems have µ = 1, i. e., both have differentiation-index two, when the input
is chosen to be 0. The analysis of Example 12 with the original constraint 0 = −Gp has
µ = 2 (differentiation-index three) and the formulation as pHDAE in Example 12 has µ = 1
(differentiation-index two) if GGT is invertible, see e. g. [5, 30].

Adding the output equations to the system, in the linear time varying case (and also
locally in the nonlinear case), we obtain a system of the form

Ê1ẋ = Â1x+B1u,

0 = Â2x+B2u,

0 = Â3x, (20)

x(t0) = x0,

y = Cx+Du.

Note that the first two equations in (20) can be obtained directly from the original system
and, as stated before, they contain the ordinary differential equations as well as the equations
for which one can find an initial feedback u = Kx+ ũ so that the matrix function Ê1

Â2 +B2K
Â3


is pointwise invertible; the resulting system is strangeness-free (of differentiation-index one)
considered as a system with input ũ = 0, see [3, 11] for a detailed analysis and regularization
procedures. In the following we assume that this reinterpretation has been done, see [30].

Furthermore, there exists a partitioning of the variables so that the first three equations
in (20) take the form Ê11 Ê12 Ê13

0 0 0
0 0 0

 ẋ1
ẋ2
ẋ3

 =

 Â11 Â12 Â13

Â21 Â22 Â23

Â31 Â32 Â33

 x1
x2
x3

+

 B̂1

B̂2

0

u (21)

with the special property that Â33 is invertible and the reduced system obtained by solving
for x3 is strangeness-free (of differentiation index at most one) when setting u = 0.

The regularization procedure described here holds for general DAEs but it does not reflect
or maintain the underlying port-Hamiltonian structure, so in the next two sections we modify
this approach for systems with a pHDAE structure to rectify this shortcoming.
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5 PHDAEs of differentiation-index at most one

In this section we characterize linear time-varying pHDAE systems of differentiation-index
at most one (µ = 0). In this case Hypothesis 21 implies that the matrix function E(t) has
constant rank. Then, see e. g., Theorem 3.9 in [30], there exist pointwise orthogonal matrix
functions Ũ and Ṽ such that

ŨTEṼ =

[
E11 0
0 0

]
=: Ẽ,

where E11 is pointwise invertible. Because QTE is real symmetric, setting

ŨTQṼ =

[
Q11 Q12

Q21 Q22

]
,

one has QT11E11 = ET11Q11 and also Q12 = 0. Partition in the same way

ŨTJŨ =

[
J̃11 J̃12
J̃21 J22

]
, ŨTRŨ =

[
R̃11 R̃12

R̃T12 R22

]
,

ŨT (J −R)Ũ =

[
J̃11 J̃12
J̃21 J22

]
−
[
R̃11 R̃12

R̃T12 R22

]
=:

[
L̃11 L̃12

L̃21 L22

]
,

K̃ = Ṽ T (KṼ + ˙̃V ) =

[
K̃11 K12

K̃21 K22

]
.

Since the system has differentiation-index at most one, the block L22Q22 either does not
occur (in this case we have an implicitly defined standard pH system) or it must be pointwise
invertible, see [30], i. e., both L22 and Q22 are pointwise invertible. Let U = ŨT , where

T :=

[
I 0
T21 I

]
, T21 = −L−T22 (L̃12 − E11K12Q

−1
22 )T .

Then a transformation of the original pHDAE with U and Ṽ yields a transformed pHDAE
system, where K̃ is defined above,

Ẽ = UTEṼ = ŨTEṼ , Q̃ = U−1QṼ =

[
Q11 0

Q̃21 Q22

]
, S̃ = S, Ñ = N,

J̃ = UTJU =

[
J11 J12
J21 J22

]
, R̃ = UTRU =

[
R11 R12

RT12 R22

]
,

L̃ = J̃ − R̃ =

[
J11 J12
J21 J22

]
−
[
R11 R12

RT12 R22

]
=

[
L11 L12

L21 L22

]
,

and

L̃Q̃− ẼK̃ =

[
L11Q11 + L12Q̃21 − E11K̃11 0

L21Q11 + L22Q̃21 L22Q22

]
,

That is,
(J12 −R12)Q22 − E11K12 = 0. (22)

Performing another change of basis to make Q̃ (block) diagonal with a transformation matrix

T̃ :=

[
I 0

−Q−122 Q̃21 I

]
,
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then setting V = Ṽ T̃ and transforming the original system with U, V we obtain that any
pHDAE of differentiation-index one can be transformed to the form[

E11 0
0 0

] [
ẋ1
ẋ2

]
=

([
L11 L12

L21 L22

] [
Q11 0

0 Q22

]
−
[
E11K11 E11K12

0 0

])[
x1
x2

]
+

[
B1 − P1

B2 − P2

]
u, (23)

y =
[

(B1 + P1)
T (B2 + P2)

T
] [ Q11 0

0 Q22

] [
x1
x2

]
+ (S +N)u,

where (22) holds, with

K11 = K̃11 −K12Q
−1
22 Q̃

−1
21 ,

[
B1 P1

B2 P2

]
= UT

[
B P

]
.

Following Theorem 18 this transformation will not change the Hamiltonian, and (23) is still
a pHDAE of index at most one. Note that these transformations should not be performed in
a numerical integration or control design technique, since the inversion of the matrices Q22

and L22 may be highly ill-conditioned. However, from an analytic point of view we have the
following theorem.

Theorem 22 Suppose that the pHDAE system (5) is of differentiation-index at most one
(i.e., it satisfies Hypothesis 21 with µ = 0) that ν = 0, and that E(t) has constant rank.
Assume further that the system is transformed to the form (22)–(23). Then for any input
function u and x1(t0) = x1,0 the first component of the solution and the output of (23) are
given by reduced implicit pHDAE system

E11ẋ1 = [(J11 −R11)Q11 − E11K11]x1 + (B̂ − P̂ )u, x1(t0) = x1,0,

y = (B̂ + P̂ )TQ11x1 + (Ŝ + N̂)u, (24)

with Hamiltonian Ĥ(x1) = 1
2x

T
1Q

T
11E11x1 = H(x), and coefficients

B̂ = B1 −
1

2
(JT21 −R12)L

−T
22 (B2 + P2),

P̂ = P1 −
1

2
(JT21 −R12)L

−T
22 (B2 + P2),

Ŝ = S − 1

2
[(B2 + P2)

TL−122 (B2 − P2) + (B2 − P2)
TL−T22 (B2 + P2)],

N̂ = N − 1

2
[(B2 + P2)

TL−122 (B2 − P2)− (B2 − P2)
TL−T22 (B2 + P2)].

Furthermore, the second part of the state x2 is uniquely determined by the algebraic constraint

L22Q22x2 = −L21Q11x1 − (B2 − P2)u, (25)

and there is a consistency constraint for the initial condition

L22(t0)Q22(t0)x2(t0) = −[(L21(t0))Q11(t0)]x1(t0)− (B2(t0)− P2(t0))u(t0). (26)
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Proof. Equation (25) follows directly from the second state equation in (23). Since B̂−P̂ =
B1 − P1, we see that x1 satisfies the state equation in (24). The output equation is obtained
directly by substituting (25) in the output equation of (23).

It remains to prove that (24) is port-Hamiltonian. Since (23) is a pHDAE system, it
follows that

QT11E11 = ET11Q11 (27)

and

d

dt
QT11E11 = QT11[E11K11 − J11Q11] + [E11K11 − J11Q11]

TQ11,

0 = −QT11(J12 + JT21)Q22 +QT11E11K12, (28)

0 = QT22J22Q22 +QT22J
T
22Q22.

Combining (27) with the first equation of (28) gives that the operator QT11E11
d
dt−Q

T
11(J11Q11−

E11K11) is skew-adjoint.
Furthermore, since Ŝ is symmetric and N̂ is skew-symmetric, system (24) is of the form

(5), and thus Theorem 15 gives that (15) is satisfied. So

d

dt
Ĥ(x1) =

d

dt
xT1Q

T
11E11x1 = yTu−

[
x1
u

]T
Ŵ

[
x1
u

]
(29)

with

Ŵ =

[
QT11R11Q11 QT11P̂

P̂ TQ11 Ŝ

]
.

On the other hand, since (5) is a pHDAE system, we have that

d

dt
H(x) = yTu−

[
x
u

]T
W

[
x
u

]
, (30)

where

W =

 Q11 0 0
0 Q22 0
0 0 I

T  R11 R12 P1

RT12 R22 P2

P T1 P T2 S

 Q11 0 0
0 Q22 0
0 0 I

 .
We know that for the same input and initial state with x2(t0) satisfying (26) the solutions of
the two systems are the same, and furthermore we have that

H(x) = xTQTEx = xT1Q
T
11E11x1 = Ĥ(x1),

and that (25) holds. Thus, from (29) and (30) we obtain that

[
x1
u

]T
Ŵ

[
x1
u

]
=

 x1
x2
u

T W
 x1
x2
u

 =

[
x1
u

]T
WX

[
x1
u

]
, (31)

where WX = XTWX with

X =

 I 0

−Q−122 (L−122 (J21 −RT12)Q11) −Q−122 L
−1
22 (B2 − P2)

0 I

 .
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Since (31) has to hold for all x1 and u, we find that Ŵ = WX , which could also be obtained
by straightforward (but tedious) calculation. Since W is symmetric positive semidefinite, so
is Ŵ , and hence the reduced system in x1 is still port-Hamiltonian with Hamiltonian Ĥ(x1).

Note that for the numerical integration or in the control context, as for general DAEs, it
is sufficient to carry out the transformation with pointwise orthogonal Ũ from the left and the
insertion of I = Ũ ŨT before Q. In this way a differentiation of a computed transformation
matrix can be avoided and the pHDAE structure is preserved nonetheless. However, no
explicit separation of the parts x1 and x2 would be obtained in this way and this separation
has to be carried out by the numerical solver in the context of the numerical integration
method.

Remark 23 For nonlinear pHDAE systems with differentiation-index at most one (µ = 0),
the corresponding local result follows directly via the implicit function theorem and applica-
tion of Theorem 22 to the linearization.

6 Regularization of higher index pHDAE systems

In this section we discuss how to modify the regularization procedure discussed for general
DAEs in Section 4 to preserve the pHDAE structure. Again, we consider the linear time-
varying case (5) and set L := J − R. Suppose that the state equation with u = 0 already
satisfies Hypothesis 21, so that as discussed in Section 4, no reinterpretation of variables or
initial feedbacks are necessary. It has been shown in [7] that the extra constraint equations
(hidden constraints) that arise from derivatives are uncontrollable, because otherwise the
index reduction could have been done via feedback. This means that these extra (uncontrol-
lable) constraint equations are of the form Â3x = 0 which corresponds to F̂3(t, x) = 0 in the
nonlinear case, see (20). We add just these constraint equations to our original pHDAE and
obtain an overdetermined strangeness-free system, see [30].

Let us make the weak assumption that E(t) has constant rank. This is a restriction
that, however, holds in all examples that we have encountered so far, and it can be removed
by considering the system in a piecewise fashion, see [30]. Then there exist real orthogonal
matrix functions U1, V1 ∈ C1(I,Rn,n) such that

UT1 EV1 =

[
Ẽ11 0
0 0

]
=: Ẽ

with pointwise invertible Ẽ11.
Perform a transformation of the pHDAE (5) as in Theorem 18 and also form Â3V1 =[

Â31 Â32

]
partitioned accordingly. Since the equations Â3x = 0 do not have a control,

they cannot contribute to making the system strangeness-free via feedback, so these equations
include all the equations that are needed to make the system strangeness-free. Since Ẽ11 is
invertible these extra equations must arise from the full row-rank part of Â32, which we
assume to be of constant rank (by considering the problem piecewise if necessary). Then
there exist real orthogonal matrix functions U3 and V2 such that

UT3 Â32V2 =

[
0 A33

0 0

]
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with A33 pointwise invertible. The equations in UT3 Â3x = 0 corresponding to the second row of
this factorization cannot contribute to making the system strangeness-free, so they can be just
omitted. We may therefore assume that Â32 has full row rank, and that Â32V2 =

[
0 A33

]
with A33 pointwise invertible. Performing a change of variables of the pHDAE with U1 and

V := V1

[
I 0
0 V2

] I 0 0
0 I 0

−Â31A
−1
33 0 I


we obtain a pHDAE of the form

Ẽ

 ẋ1
ẋ2
ẋ3

 = L̃Q̃

 x1
x2
x3

− ẼK̃
 x1
x2
x3

+ (B̃ − P̃ )u, (32)

y = (B̃ + P̃ )T Q̃

 x1
x2
x3

+ (S +N)u,

where K̃ = V −1(KV + V̇ ), L̃ = UT1 LU1, Q̃ = UT1 QV , B̃ = UT1 B, and P̃ = UT1 P , together
with the constraint 0 = A33x3, i. e. x3 = 0.

Partition

Q̃ =

 Q̃11 Q̃12 Q̃13

Q̃21 Q̃22 Q̃23

Q̃31 Q̃32 Q̃33


and sssume further that the matrix function Q̃11 Q̃12

Q̃21 Q̃22

Q̃31 Q̃32


has constant rank. There exists a pointwise real orthogonal matrix function U2 such that

UT2

 Q̃11 Q̃12 Q̃13

Q̃21 Q̃22 Q̃23

Q̃31 Q̃32 Q̃33

 =

 Q11 Q12 Q13

Q21 Q22 Q23

0 0 Q33


Transforming the pHDAE (32) with U2 and I we get a pHDAE of the form E11 0 0

E21 0 0
E31 0 0

 ẋ1
ẋ2
ẋ3

 =

 L11 L12 L13

L21 L22 L23

L31 L32 L33

 Q11 Q12 Q13

Q21 Q22 Q23

0 0 Q33

 x1
x2
x3


−

 E11 0 0
E21 0 0
E31 0 0

 K11 K12 K13

K21 K22 K23

K31 K32 K33

 x1
x2
x3

+

 B1 − P1

B2 − P2

B3 − P3

u, (33)

y =
[

(B1 + P1)
T (B2 + P2)

T (B3 + P3)
T
]  Q11 Q12 Q13

Q21 Q22 Q23

0 0 Q33

 x1
x2
x3


+(S +N)u,
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together with the constraint 0 = x3.
By Theorem 18, system (33) is still a pHDAE system and the Hamiltonian is unchanged.

Furthermore, adding the constraint x3 = 0 does not change the solution since it describes
all the uncontrollable equations of higher index, and with this constraint system (33) is
strangeness-free. Thus we have that the subsystem given by the first two block rows of (33)
(which by construction is also port-Hamiltonian) is an index at most one pHDAE which
(together with output equation) has the form[

E11 0
E21 0

] [
ẋ1
ẋ2

]
=

[
L11 L12

L21 L22

] [
Q11 Q12

Q21 Q22

] [
x1
x2

]
−

[
E11 0
E21 0

] [
K11 K12

K21 K22

] [
x1
x2

]
+

[
B1 − P1

B2 − P2

]
u, (34)

y =
[

(B1 + P1)
T (B2 + P2)

T
] [ Q11 Q12

Q21 Q22

] [
x1
x2

]
+ (S +N)u,

To this system we can apply the results of the previous section and obtain that the system
can be further reduced to an implicit standard pH system.

Example 24 To illustrate the regularization procedure consider again the semidiscretized
Example 11. In this example we know directly from the structure what the constraints are
and how the procedure can be carried out analytically, since the system is almost in the form
that would be obtained from the derivative array. For this reason we present a simplified
version of the regularization procedure. It has been shown in [16] that for a (permuted)
singular value decomposition (SVD) of ÑT

ÑT = UTN

[
0
Σ

]
VN ,

with real orthogonal matrices UN , VN and a nonsingular diagonal matrix Σ ∈ Rn3,n3 . Trans-

forming (10) with U = V = diag(I, UTN , V
T
N ), and setting UNx2 =

[
xT2,2 xT2,3

]T
, VNx3 = x̃3,

as well as x02 = VN

[
x02,2

T
x02,3

T
]T

we obtain a transformed system


M1 0 0 0
0 M2,2 M2,3 0
0 MT

2,3 M3,3 0

0 0 0 0

 d

dt


x1
x2,2
x2,3
x̃3

+


0 G1,2 G1,3 0

−GT1,2 D2,2 D2,3 0

−GT1,3 DT
2,3 D3,3 −Σ

0 0 Σ 0



x1
x2,2
x2,3
x̃3

 =


0
B2,2

B3,2

0

u. (35)

In this form the noncontrollable index two constraints are given by the fourth block row and
it follows immediately that x2,3 = 0. which in particular the initial condition x02,3 has to
satisfy. The vectors x1, x2,2 are solutions of the implicit ordinary pH system[

M1 0
0 M2,2

]
d

dt

[
x1
x2,2

]
+

[
0 G1,2

−GT1,2 D2,2

] [
x1
x2,2

]
=

[
0
B2,2

]
u, (36)

with initial conditions x1(0) = x01, x2,2(0) = x02,2, so they are well-defined continuously differ-
entiable functions for any piecewise continuous u and any choice of the initial conditions.
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Finally we get the component x3 (the Lagrange multiplier) via

x3 = V T
N Σ−1(MT

2,3

d

dt
x2,2 −GT1,3x1 +DT

2,3x2,2 −B3,2u), (37)

and this is the implicit index one constraint in the DAE. Since both type of (the explicit
and the hidden) constraints have to be satisfied for the initial condition, it means that the
transformed initial condition also has to satisfy the consistency condition

x3(0) = V T
N Σ−1(MT

2,3

d

dt
x2,2(0)−GT1,3x1(0) +DT

2,3x2,2(0)−B3,2u(0)) (38)

Condition (38) leads to a relationship between the input u and the state at t = 0, which
is a constraint that has to be satisfied to have a classical solution. Furthermore, we see
immediately that to obtain a continuous x3 the function B3,2u has to be continuous and
u has to be such that B2,2u leads to a continuous MT

2,3
d
dtx2,2. The implicit ordinary pH

system (36) describes the dynamics of the system, while the other two equations describe the
constraints.

Remark 25 For nonlinear pHDAE systems satisfying Hypothesis 21 with µ > 0, the corre-
sponding local result follows directly via linearization and the implicit function theorem.

7 Conclusion

A new definition of port-Hamiltonian descriptor systems has been introduced. It has been
shown that this formulation retains the classical properties of port-Hamiltonian systems, such
as the dissipation inequality and invariance under Galerkin projection, that it is invariant
under time-varying changes of basis and that it is valid also for DAEs of differentiation-
index larger than one. It has been demonstrated that under some additional weak constant-
rank assumptions, any such pHDAE can be reformulated as an implicitly defined standard
PH system plus an algebraic constraint that describes the manifold where the dynamics of
the system takes place and that also describes the consistent initial conditions. Just as for
standard DAEs, the reformulated system is well suited for numerical integration and control,
since all constraints are available.
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