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Abstract

A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions
in a gas–liquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual
bubble is tracked in a Lagrangian framework, while accounting for bubble–bubble and bubble–wall interactions via an encounter model.
The mass transfer rate is calculated for each individual bubble using a surface renewal model accounting for the instantaneous and local
properties of the liquid phase in its vicinity. The distributions in space of chemical species residing in the liquid phase are computed from
the coupled species balances considering the mass transfer from bubbles and reactions between the species. The model has been applied
to simulate chemisorption of CO2 bubbles in NaOH solutions. Our results show that apart from hydrodynamics behavior, the model is
able to predict the bubble size distribution as well as temporal and spatial variations of each chemical species involved.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Bubble columns are used in a variety of industrial pro-
cesses including large-scale production of base chemicals
and synthetic fuels. Many processes involve gas–liquid mass
transfer with accompanying reactions between the gas and
the liquid phase itself or with components dissolved or sus-
pended in it. Despite the widespread application of bubble
columns and substantial research efforts devoted to under-
stand their behavior, detailed knowledge on the fluid flow,
mass transfer and chemical reactions as well as their inter-
actions are still lacking.

The coupling between these phenomena is illustrated in
Fig. 1. The chemical reaction rate depends on the local avail-
ability of the species which is determined by the interphase
mass transfer process and the mixing induced by the bubbles.
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The interphase mass transfer depends on the mass transfer
coefficient, the specific interfacial area and chemical reaction
rate. The mass transfer parameters are a function of the local
prevailing hydrodynamics (Cents et al., 2003), which in its
turn are affected by the bubble behavior and variation of
physical properties due to inhomogeneous chemical species
distributions. It is these complex interactions that makes the
overall prediction of performance and scale-up of this type
of reactor very difficult.

In recent years, computational fluid dynamics (CFD) has
emerged as a powerful tool for both scientists and engi-
neers. CFD modelling of dispersed gas–liquid two-phase
flows has shown remarkable progress over the last decade.
Two models are widely used for describing hydrodynamics
of bubble columns, i.e. the Euler–Euler (E–E) model and
Euler–Lagrange (E–L) model. The E–E model employs the
volume-averaged mass and momentum conservation equa-
tions to describe the time-dependent motion of both phases
(Deen et al., 2001; Sokolichin and Eigenberger, 1994;

http://www.elsevier.com/locate/ces
mailto:n.g.deen@utwente.nl


3384 D. Darmana et al. / Chemical Engineering Science 60 (2005) 3383–3404

Chemical reaction

db
kl

E

a Fluid flowMass transfer

Fig. 1. Inter-dependency diagram of fluid flow, mass transfer and chemical
reaction.

Pan and Dudukovic, 2000). The number of bubbles present
in a computational cell is represented by a volume fraction
and the information of the bubble size distribution is of-
ten obtained by incorporating population balance equations
which take into account break-up and coalescence of bubbles
as well as growth or shrinkage of bubbles as a consequence
of mass transfer. The E–L model, on the other hand, adopts
a continuum description for the liquid phase and addition-
ally tracks each individual bubble using Newtonian equa-
tions of motion. This allows for a direct consideration of ad-
ditional effects related to bubble–bubble and bubble–liquid
interaction. Mass transfer with and without chemical reac-
tion, bubble coalescence and re-dispersion can be incorpo-
rated directly (Tomiyama et al., 1997; Delnoij et al., 1997;
Sokolichin and Eigenberger, 1994). Unlike the E–E model,
the E–L model does not require additional models to predict
the bubble size distribution since this information is already
part of the solution. A drawback of the E–L model com-
pared to the E–E model is its limitation on the number of
bubbles that can be handled (i.e. less thanO(105)) since for
each individual bubble one equation of motion needs to be
solved. This makes this method less attractive in handling
large scale bubble columns.

Based on the E–E model,Fleischer et al. (1996)have pio-
neered to combine hydrodynamics, mass transfer and chem-
ical reactions into a one-dimensional plug flow model ac-
counting for axial dispersion and heat effects. The model
consists of a liquid mass balance for each chemical species
involved and momentum and energy balances for the liq-
uid phase. The mass transfer rate is calculated from the two
film theory based on the bubble size predicted by a popu-
lation balance model. This model has been used to predict
transient behavior of chemisorption of carbon dioxide into
an aqueous solution of sodium hydroxide in a gas-lift reac-
tor. A similar method was used byMárquez et al. (1999a,b)
to study the coupling between hydrodynamics and chemical
reaction without mass transfer in an external-loop gas liquid
reactor. This model also has been adopted in several CFD
software packages, which are used to solve a wide variety of
practical two phase problems (Al-Rashed and Jones, 1999;
Buwa and Ranade, 2002; Ranade and Tayalia, 2001).

The model of Fleischer is able to qualitatively predict the
transient behavior of a chemisorption process in a slender
cylindrical bubble column. However, for more general ge-

ometries, experimental investigations byBecker et al. (1994)
andChen et al. (1994)indicate that bubble columns gener-
ally show an unsteady flow with considerable spatial vari-
ation of the key hydrodynamic quantities. Numerical sim-
ulations reported byDelnoij et al. (1999), Sokolichin and
Eigenberger (1994)and Deen et al. (2001)also show that
unsteady vortical structures appear in 2D and 3D simula-
tions. These results suggest that a 1D plug flow model as
was used in Fleischers model is not able to capture the un-
steady hydrodynamics behavior of a bubble column.

In this paper we present a detailed 3D model for the hydro-
dynamics, mass transfer and chemical reactions in an isother-
mal bubble column operated in the homogeneous regime.
The E–L model is adopted to solve the hydrodynamics since
incorporation of the bubble size distribution and interphase
mass transfer calculation is relatively straightforward. The
model is applied to study the coupling of hydrodynamics,
gas–liquid mass transfer and chemical reactions in a square
bubble column. First we will focus on the hydrodynamics
of the column and compare our results with experimental
and numerical results obtained byDeen et al. (2001). The
mixing characteristics of the column will subsequently be
studied with the use of hydrodynamics and species tracking
models. Next the physical absorption of CO2 into water will
be addressed and finally the complete model will be used to
investigate chemisorption of CO2 bubbles into an aqueous
solution of sodium hydroxide.

2. Model formulation

The three-dimensional model described in this paper is
an extension of the hydrodynamic E–L model ofDelnoij
et al., 1999, which is applicable to disperse (homogeneous)
regimes, which are characterized by low gas velocities and
relatively small spherical bubbles that do not coalesce nor
break-up. The interphase mass transfer is calculated for each
bubble using the surface renewal theory which takes into
account both physical and chemically enhanced mass trans-
fer. The spatial distributions of chemical species residing
in the liquid phase are computed from the coupled species
conservation equations formulatedd in the Eulerian frame-
work. Moreover, the numerical implementation of direct
bubble–bubble interaction and the two-way coupling be-
tween phases will be addressed in Section 3.

2.1. Bubble dynamics

The motion of for each individual bubble is computed
from the bubble mass and momentum equations. The liquid
phase contributions are taken into account by the interphase
mass transfer ratėm and the net force

∑
F experienced by

each individual bubble. For an incompressible bubble, the
equations can be written as

�b
d(Vb)

dt
= (ṁl→b − ṁb→l ), (1)
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Table 1
Overview of forces acting on a bubble

Force Closure

FG = �bVbg —
FP = −Vb∇P —
FD = − 1

2CD�l�R
2
b
|v − u|(v − u) CD = 2

3

√
Eö

FL = −CL�lVb(v − u)× ∇ × u CL = 0.5

FVM = −CVM�lVb
(
Dbv
Dbt

− Dlu
Dlt

)
CVM = 0.5

�bVb
dv
dt

=
∑

F −
(
�b

dVb
dt

)
v. (2)

The interphase mass transfer terṁm is calculated using a
method, which will be describe in Section 2.4. The net force
acting on each individual bubble is calculated by considering
all the relevant forces. It is composed of separate, uncoupled
contributions such as: gravity, pressure, drag, lift and virtual
mass∑

F = FG + FP + FD + FL + FVM . (3)

Expressions for each of these forces can be found in
Table 1 (seeDelnoij et al., 1997for a discussion on the
forces experienced by a bubble). Note that the closure mod-
els used in this article is for model demonstration only,
more sophisticated closure models may be used to obtain
better results.

2.2. Liquid phase hydrodynamics

The liquid phase hydrodynamics is represented by the
volume-averaged Navier–Stokes equation, which consists of
continuity and momentum equations. The presence of bub-
bles is reflected by the liquid phase volume fraction�l , the
source term that accounts for the interphase mass transfer
Ṁ, and the total interphase momentum transfer due to forces
and mass transfer�

�
�t
(�l�l )+ � · �l�lu = (Ṁb→l − Ṁl→b), (4)

�
�t
(�l�lu)+ � · �l�luu = −�l�P − � · �l�l + �l�lg+ �.

(5)

The liquid phase flow is assumed to be Newtonian, thus the
stress tensor�l can be represented as

�l = −�eff,l[((�u)+ (�u)T )− 2
3I (� · u)], (6)

where�eff,l is the effective viscosity. In the present model
the effective viscosity is composed of two contributions, the
molecular viscosity and the turbulent viscosity

�eff,l = �L,l + �T ,l . (7)

Deen et al. (2001)did extensive work on the implemen-
tation and verification of a model that could account for
the sub-grid scale turbulence. They concluded that the large

eddy simulation (LES) turbulence model implemented in
the E–E framework outperforms thek–� model in predicting
the experimentally observed dynamic behavior of the flow
in a square bubble column. Recentlyvan den Hengel et al.
(2003)andLáin and Sommerfeld (2004)have successfully
employed LES in combination with the E–L model and ob-
tained good agreement with experimental data in a square
and cylindrical bubble column. Following them, the turbu-
lent viscosity�T ,l represents the contribution of the sub-
grid scales. In the present study�T ,l is described by the
Smagorinsky (1963)model, which is expressed as

�T ,l = �l
(
CS$

)2|S|, (8)

whereCS is a model constant with a typical value of 0.1, S
the characteristic filtered strain rate and$ = (Vcell)

1/3 the
SGS length scale.

2.3. Chemical species

The fraction of a chemical speciesj in the liquid mixture
is represented by mass fractionY jl . The presence of various
chemical species are modeled through a transport equation
for each species given by

�
�t
(�l�lY

j
l )+ � (�l (�lulY

j
l − �jeff�Y

j
l ))

= (Ṁb→lY
j
b − Ṁl→bY

j
l )+ �lSj , (9)

whereSj is the source term accounting for production or
consumption of speciesj due to homogeneous chemical re-
action and

�jeff = �eff,l

Scj
. (10)

For a mixture, which consists ofNS chemical species, we
only have to solveNS − 1 transport equations represented
by Eq. (9). The remaining species mass fraction can be cal-
culated from the overall species balance using the following
relation:

NS∑
j=1

Yj = 1. (11)

For a mixture consisting ofNS species, the liquid density
and viscosity are taken as the average of properties of each
species as follows

1

�l
=

NS∑
j=1

Y
j
l

�jl
, (12)

�L,l =
NS∑
j=1

Y
j
l �jl . (13)
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Fig. 2. Schematic representation of gas–liquid mass transfer.

2.4. Mass transfer

The interphase mass transfer in a bubble with radiusRb
is considered to be driven by mass fraction gradients. The
mass fraction of a chemical speciesj in the liquid phase and
bubble are represented byY jl and Y jb , respectively, while
the value of both quantities at each side of the bubble–liquid
interface is given byY j∗l andY j∗b (seeFig. 2).

The mass transfer in a bubble due to a mass fraction gra-
dient of speciesj is represented as

ṁ
j
b = Ekjl Ab�l (Y j∗l − Y jl ), (14)

whereE is the enhancement factor due to chemical reactions,
Ab is the surface area of the bubble andkjl is the mass
transfer coefficient for speciesj, which is determined using
a Sherwood relation for a moving bubble (Bird et al., 2002):

Sh= 2 + 0.6415(ReScj )1/2. (15)

When the mass transfer resistance lies in the liquid phase,
the mass fraction on the liquid side of the interface can be
determined using a Henry constant

Y
j∗
l =HjY jb

�b
�l

, (16)

whereHj is the Henry constant for the speciesj.
The total mass transfer rate is the sum of the mass transfer

rates of all speciesj, thus

ṁb =
NS∑
j=1

ṁ
j
b. (17)

The mass transfer from the liquid to a bubble can be written
asṁl→b=max(ṁb,0), while the mass transfer from a bubble
into the liquid isṁb→l = max(−ṁb,0).

3. Numerical implementation

In this section the numerical implementation of the model
described in Section 2 will be described briefly.

3.1. Time marching

To resolve the time-dependent motion of the bubbles and
the liquid phase, as well as the chemical species, four dif-
ferent time scales are considered. The biggest time step
(�tflow) is employed in solving the Navier–Stokes equations
to obtain the macroscopic liquid flow field. The interphase
mass and momentum transfer are resolved on the scale of
the bubble time step(�tbub). To account for the possible
encounters (collisions) between bubbles and the displace-
ment of the bubbles an even smaller time step(�tab) is
used. The chemical species transport equation is solved us-
ing a time step�tspec similar to the�tflow. However, for
chemical species, which undergo fast chemical reactions a
smaller time step is required, in order to prevent numerical
instability.

3.2. Bubble tracking and direct bubble–bubble interaction

The mass and momentum conservation equation of the
bubbles are ordinary differential equations. These equa-
tions are integrated numerically using a first-order explicit
scheme. For a general time integrable variable	 the formula
can be written as

	t+1 = 	t +
(

d	
dt

)t
�tbub. (18)

The mass and momentum balance equations for each bub-
ble are solved sequentially. First, the mass transfer rate is
calculated explicitly using the method describe in Section
2.4 to obtain the bubble volume rate of change. Using the
numerical scheme described in Eq. (18), the bubble volume
rate of change is integrated to obtain a new bubble size.

Subsequently the bubble momentum equation is solved by
first calculating the interphase momentum and mass transfer
term explicitly. The acceleration of each individual bubble is
obtained in a straight forward manner using Eq. (2). The new
bubble velocity is obtained by integrating the acceleration
using Eq. (18).

The collision between bubbles is modeled using the so-
called hard sphere model following the work ofHoomans
et al. (1996). In this method a constant time step�tbub is
used to account for the forces acting on a bubble. Within
this time step, the velocity of bubbles is assumed to change
only due to binary collisions between the bubbles. A se-
quence of collisions is then processed, one collision at a
time.

To predict the collision between bubbles, we extend the
model that is widely used in the field of molecular dynamics
(Allen and Tildesley, 1987) by taking into account the rate
of change of the bubble size. Consider two bubbles,a and
b, of radiusRa andRb, respectively. At timet the bubbles
are located atra andrb with velocity va andvb and bubble
growth rates (in terms of bubble radius growth rate)Ṙa and
Ṙb. If those bubbles are to collide at timet + �tab then the
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following equation must be satisfied:

|rab(t + �tab)| = |rab + vab�tab|
= (Ra + Rb)+ (Ṙa + Ṙb)�tab, (19)

whererab = ra − rb andvab = va − vb and�tab is the time
until the collision. The second and third term in Eq. (19) can
be written in the quadratic equation in�tab as follows:

A�t2ab + 2B�tab + C = 0 (20)

with

A= v2
ab − (Ṙa + Ṙb)2,

B = rab · vab − (Ra + Rb)(Ṙa + Ṙb),
C = r 2

ab − (Ra + Rb)2.

If B >0 then the two bubbles are moving away from each
other and they will not collide. Otherwise (ifB <0) there
is a chance in a certain period that the bubbles will be col-
lide. Provided that Eq. (20) has a positive discriminant, two
positive roots will arise and the smaller will correspond to
the impact:

�tab=
−B − √

B2 − AC
A

. (21)

In order to calculate the collision time efficiently we use
the so-called bubble neighbor region. Only bubbles located
inside this region are considered to be possible collision
partners.Hoomans et al. (1996)and Delnoij et al. (1999)
use a rectangular shape to represent the neighbor region,
however in this work we choose a spherical shaped neighbor
region since this shape is more natural with respect to the
bubble shape. For all the bubbles inside the neighbor area
of a certain bubblea (seeFig. 3), we calculate the collision
time�tab between bubblea and the possible collision partner
b using Eq. (20) . Note that the collision partner may also
be one of the column walls or the top surface.

For all the possible collision pairs, the smallest�tab is
selected. This�tab will be used to update both size and po-
sition of all bubbles. However for bubblesa andb, which
correspond to the smallest�tab, a collision procedure is car-
ried out and new velocities are determined.

A pair of colliding bubbles will bounce during the colli-
sion event. The velocities of both bubbles after the bounce
are determined by splitting the initial velocities into a nor-
mal and tangential component with respect to the line con-
necting the centers of mass of both bubbles. The tangential
component does not change due to a collision, while the new
normal component is calculated from

vaftercollision
n,a = 2

mavn,a +mbvn,b
ma +mb − vn,a , (22)

where the new velocity of bubbleb is calculated in a similar
way.

a

Fig. 3. Area scanned for possible neighbors. Thick circle represent the
neighbors boundary for bubblea. All bubble which has distance between
its perimeter and bubblea perimeter smaller than the boundary perimeter
belongs to this neighbors.

3.3. Liquid flow field

A finite difference technique was adopted to discretize
the governing equations of the liquid phase. The volume-
averaged Navier–Stokes equations have been solved with
a semi-implicit method for pressure linked equations
(SIMPLE-algorithm). A staggered grid is employed to
prevent numerical instability. First-order explicit time dif-
ferencing is applied for the time derivative. The convective
terms of the mass and momentum conservation equations
are treated implicitly using a second-order accurate Bar-
ton scheme (Centrella and Wilson, 1984). Moreover, the
pressure gradient is treated implicitly, while the interphase
mass and momentum transfer and all other terms are treated
explicitly. The resulting set of linear equations yields a
discretized pressure-Poisson equation, which is solved it-
eratively using the incomplete Choleski conjugate gradient
(ICCG) method, which is incorporated in the PETSc library
(Balay et al., 2001).

3.4. Chemical reactions and species transport equations

All the terms in the species transport equation are dis-
cretized using a fully implicit method, except for the
interphase mass transfer and chemical reaction rate, which
appear as source terms and are treated explicitly. The con-
vective flux is treated using a first-order accurate upwind
scheme which is corrected using deferred correction method
(Ferziger and Peric, 1999) in order to be consistent with
the second-order Barton scheme method, which is used
in solving the Navier–Stokes equation. The resulting dis-
cretized equations for all species are solved simultaneously
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using an algorithm similar to that used byHjertager (1998)
in solving the mass conservation equations in a multi-fluid
model. Using this technique, the algebraic constraint for
the species equation (Eq. (11)) is automatically imposed,
yielding mass fractions for each species which are bounded
between 0 and 1.

3.5. Interphase coupling

The coupling between the liquid phase and the bubbles is
accomplished through the liquid phase volume fraction�l ,
the interphase momentum transfer rate�, as well as the mass
transfer rate from and to the bubbles. Since the liquid phase
and the bubbles are defined in different reference frames
(i.e. Lagrangian and Eulerian), a mapping technique which
correlates the two reference frames is required. This mapping
technique translates the Lagrangian bubble quantities to the
Eulerian grid, which are required as closure for the liquid
phase equations and vice versa.

Most of the mapping techniques in literature are devel-
oped for bubbles, which are much smaller than the grid size
(Delnoij et al., 1999; Tomiyama et al., 1997). However, in
order to allow for changes in bubble size due to coalescence
and mass transfer processes, it is desirable that bubbles can
become larger than the computational grid size.

In this section we propose a new mapping technique,
which allows us to simulate bubbles, which can be smaller
as well as bigger than the Eulerian grid size.

3.5.1. Porosity mapping
The bubble volume fraction�b in a computational cell is

calculated from the volume occupied by the bubbles present
in the cell under consideration

�b = 1

Vcell

∑
∀i∈cell


icellV
i
b (23)

with 
icell is the volume fraction of theith bubble included
in the cell under consideration.

The liquid volume fraction�l is calculated using the al-
gebraic expression

�l = 1 − �b. (24)

Eq. (23) requires a value
icell which unfortunately depends
on the shape of the bubbles. The prediction of the bub-
ble shape is a tedious task, since it depends on various pa-
rameters such as fluid properties, bubble size and the time-
dependent flow field around the bubble. Even for a simple
shape such as a sphere or ellipsoid, the calculation of
icell re-
quires significant computational effort, especially if the size
of bubble is larger than the size of the computational grid.
For this reason, we use a cubic shape to represent the bubble
following the work ofTomiyama et al. (1997)with the argu-
ments: (1) the calculation of
icell is easy and takes little CPU
time; and (2) since the actual bubbles take time-dependent
complex shapes, there may be little difference between the
cubic approximation and other, more sophisticated approx-
imations such as spherical and ellipsoidal shapes.

Fig. 4 shows how we can map portion of a bubble into
the involved computational cells. Special attention should be
given to cells, which are entirely occupied by a bubble and
do not allow for the solution of the liquid phase conserva-
tion equations. To overcome this problem the liquid phase
porosity has been forced to have the lowest value�l = �low.
The value of�low that we choose will influence the accuracy
as well as the computational cost to solve the problem. We
found that by taking�low = 0.05 both aspects are treated in
a satisfactory manner.

3.5.2. Lagrange to Euler mapping
In order to close Eqs. (4)–(9) a relation between a La-

grangian quantity of bubbles� and the respective Eulerian
value� is required. Since� is given as a volume-averaged
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Fig. 5. Notation used for mapping Eulerian data at pointsA–H to La-
grangian pointQ (after Tomiyama et al., 1997).

value of� in a unit volume, let us consider a computational
cell in 3−D Cartesian coordinates which has volumeVcell.
For all bubblesi in this cell, the relation between� and�
can be written as

� = 1

Vcell

∑
∀i∈cell


icellV
i
b�, (25)

where
icell is calculated with the cubic shape representation,
which was introduced earlier.

3.5.3. Euler to Lagrange mapping
To evaluate forces experienced by each bubble, we need

information of liquid quantities which are defined on the
Eulerian grid. For this purpose we adopt the volume weigh-
ing method, which was used byDelnoij et al. (1999)and
Tomiyama et al. (1997). As shown inFig. 5, the value of
any physical quantities� at pointQ (denotes as�) can be
calculated as

� = 
1
2
3�A + 
1
2
6�B + 
1
5
6�C
+ 
1
5
3�D + 
4
2
3�E + 
4
2
6�F
+ 
4
5
6�G + 
4
5
3�H , (26)

where 0�
k�1 and
1 + 
4 = 
2 + 
5 = 
3 + 
6 = 1.

3.6. Computational sequence

The complex phenomena involving hydrodynamics, mass
transfer and chemical reactions are solved in a sequential
manner. A diagram of the computational sequence is pre-
sented inFig. 6. For every flow time step�tflow, first, the in-
terphase mass and momentum transfer are calculated explic-
itly for each individual bubble. The liquid quantities required
to calculate these terms are obtained from the Euler to La-
grange mapping technique (Section 3.5.3). Using the inter-
phase mass and momentum transfer, the bubbles size and po-
sition are updated taking into account direct bubble–bubble
and bubble–wall interaction (Section 3.2).

The available bubble size and positions are mapped to
the Eulerian mesh using the porosity mapping method
(Section 3.5.1) to obtain the liquid phase porosity in ev-

Initialization

Finalization

Update bubbles size and position

if t < tend

Resolve direct bubble-bubble interaction

Solve chemical species and reactions

Solve interphase mass and momentum transfer for bubbles

Save the solutions to file

Solve liquid hydrodynamics

Fig. 6. Computational sequence diagram of the DBM.

ery Eulerian computational cell. The interphase mass and
momentum transfer rate, which was previously calculated
from every individual bubble is also mapped to the Eulerian
cell using the Lagrangian to Eulerian mapping technique
(Section 3.5.2). Using the new liquid porosity as well as
the interphase mass and momentum transfer rate, the liquid
hydrodynamics are solved to obtain the liquid phase hydro-
dynamics at the new time level (Section 3.3). Finally, the
chemical reactions and species transport equation are solved
to obtain a chemical species distribution at the new time
level (Section 3.4). This sequential procedure is repeated
until a specified simulation end time is reached.

4. Geometry and boundary condition

Deen et al. (2001)performed particle image velocimetry
(PIV) measurements in a 3D bubble column filled with dis-
tilled water. The column has a square cross-section(W×D)
of 0.15 × 0.15 m2 and a height(L) of 0.45 m. Air with a
superficial gas velocity of 4.9 mm/s was introduced into the
system through a perforated plate. The plate contained 49
holes with a diameter of 1 mm, which were positioned in
the middle of the plate at a square pitch of 6.25 mm.

The column is modeled using the DBM code, which was
described in the preceding section. The computational grid
consists of 30×30×90 cells and the flow time step(�tflow)

is 1.0 × 10−3 s. Preliminary calculations revealed that this
configuration gives a grid and time step independent solu-
tion. The boundary conditions are imposed to the column
using the flag matrix concept ofKuipers et al. (1993)as can
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Fig. 7. Typical boundary conditions used in simulations with the discrete bubble model. The vertical plane is atj = NY/2 while a slit is defined at
k =NZ − 1.

Table 2
Cell flags and corresponding cell types used in defining boundary condi-
tions

Flag Boundary conditions

1 Interior cell, no boundary conditions specified
2 Impermeable wall, free slip boundary
3 Impermeable wall, no slip boundary
4 Prescribed pressure cell, free slip boundary
5 Corner cell, no boundary conditions specified
6 Neumann boundary for species transport equation(∇Y j · −→n = 0)

be seen inFig. 7. The definition of each boundary condi-
tion can be seen inTable 2. The configuration of boundary
conditions used in the simulations has been carefully inves-
tigated. The prescribed pressure cells close to the column
surface wall are required as inlet as well as outlet channel to
compensate for the change of liquid volume due to bubbles
entering and leaving the column. The width of this pressure
cell slit is one third of the total width of the column and
located in the middle. It was found that this configuration
avoids hydrodynamic instabilities developing at the top sur-
face of the column. Furthermore, for the species transport
equations, a Neumann boundary condition is used in all of
the boundary cells.

Each hole in the perforated plate is modeled as a position
in the bottom of the column where bubbles with specific
size enter the column with a fixed velocity. All the bub-
bles entering the column have a diameter of 4 mm as has
been experimentally observed byDeen et al. (2001). The
distance between the center of two consecutive bubbles re-
leased from a single hole�b is set to 2.5 × Rb. This ar-
rangement is made to avoid unnecessary collisions between
two consecutive bubbles immediately after they enter the
column. The velocity of bubbles entering the column is de-
termined from the superficial velocity through the following

formula:

vz,enter= vs�bW ×D
NhVb

(27)

with vs the superficial gas velocity,W×D the cross sectional
area of the column andNh is number of holes.

For all of the holes, the vertical position of the bubbles
underneath the bottom plate is generated in such way that
none of the bubbles enters the column at the same time. This
was implemented in order to prevent (artificial) pulsing be-
havior of the incoming bubbles, which would occur if bub-
bles enter the column through all holes simultaneously. By
doing so, the occurrence of undesired pressure fluctuations
at the top of the column was prevented.

When a bubble hits the top boundary of the column, the
bubble is marked to be removed from the column. The re-
moval procedure is very important since it can influence the
overall flow inside the column and in some case may in-
duce instabilities in the numerical solution. When a bubble
is marked to be removed from the column, its velocity and
interphase mass and momentum transfer to the liquid phase
are no longer updated. The bubble is still however, moving
with a constant velocity using the last velocity value calcu-
lated immediately before it touches the top boundary. Using
this velocity, the bubble is passing the top boundary accord-
ing to the normal bubble time step. The portion of bubble
which still resides in the column is still accounted for in
the calculation of the liquid phase volume fraction. When
the entire bubble is completely above the top boundary, the
bubble is disposed from the bubble list which concludes the
bubble removal procedure.

For a typical bubble size used in the simulation, the whole
process of removing a bubble takes around 10−2 s and within
this interval the liquid phase gradually adapts the change
in the volume fraction. Compared with the instantaneous
bubble removing technique used byDelnoij et al. (1999),
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the method presented here can eliminate numerical insta-
bilities at the top boundary especially when removing a
bubble which has bigger size than the computational grid
cell.

5. Verification

To verify the method for calculating liquid phase porosity,
the Lagrangian to Eulerian mapping as well as the Eulerian
to Lagrangian mapping, we consider a case in which a bubble
rises through a quiescent liquid. The terminal rise velocity of
the bubble resulting from our simulations is compared with
the analytical solution. For a bubble rising with a constant
velocity through a quiescent liquid the buoyancy force equals
the drag force. The drag coefficient is calculated based on
Eötvös number as given inTable 1.

When the terminal rise velocity is reached the buoyancy
force is equal to the drag force, hence the terminal rise
velocity can be determined as

vterminal=
(

8(�l − �b)Rbg
3CD�l

)1/2

=
(

4
(
�l − �b

)
�g

�2
l

)1/4

. (28)

Using�l=1000 kg/m3, �b=1 kg/m3, g=9.81 m/s2 and�=
0.073 N/m we obtain a terminal rise velocity of 0.2312 m/s.
Note that by calculating the drag coefficient using relation
reported inTable 1, the terminal rise velocity of the bubble
is independent of its size.

In the simulation, a bubble is released at the bottom of the
column and because of the buoyancy, the bubble will start
to rise. Simulations were conducted for bubble diameters of
4 and 10 mm, with computational cells of 5 and 10 mm.

The comparison between the analytical terminal rise ve-
locity and the simulations are shown inFig. 8. As we can
see from this figure, the model can reproduce the termi-
nal rise velocity accurately. For the 10 mm bubble how-
ever, the terminal rise velocity shows small wiggles. These
(very small) wiggles can be attributed to the mapping tech-
nique and occur when the bubble crosses the face of a com-
putational cell. The order of this wiggle however is very
small compared to the magnitude of the terminal rise ve-
locity, thus we can conclude that the proposed mapping
method performs satisfactory and can be used for further
simulations.

Another simulation was performed to verify the time in-
tegration procedure that has been implemented to track the
bubble size as well as bubble mass due to mass transfer. The
verification was carried out by simulating the rise of a sin-
gle bubble with mass transfer. The mass transfer rate was
set to be constant by selecting the initial conditions of the
speciesY jl , kl andY j∗l in such a way thatkl(Y

j
l − Y j∗l ) =

4×10−6 m/s. With this arrangement, the analytical solution
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of the bubble size becomes

Rb(t)= kl
(
Y
j
l − Y j∗l

) �l
�b
t + Rb(0). (29)

A bubble with an initial diameter of 4 mm is released at
the bottom of the column. The bubble size is tracked in
time and the result is compared with the analytical solution.
Fig. 9 shows the comparison of the analytical solution and
single bubble simulation with grid sizes of 5 and 10 mm. This
figure shows that the simulation results and the analytical
solution practically coincide. These results verify that the
time integration of the bubble size is correctly implemented
and can be used for further simulations.
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As mentioned in the previous section, the terminal rise
velocity is independent of the bubble size. This fact can also
be observed inFig. 10. As can be seen from this figure,
after the bubble reaches its terminal velocity, the velocity
remains constant, despite the fact that the bubble size is
increasing. When the bubble diameter exceeds the size of the
computational cell, small wiggles start to develop. However,
the order of these wiggles is again very small and does not
increase as the bubble size increases.

6. Results

In order to demonstrate the capabilities of the model four
case studies are presented in this section. The square bubble
column introduced in Section 4 is used as a base configu-
ration. The hydrodynamics part of the model is compared
with PIV measurements ofDeen et al. (2001).

6.1. Hydrodynamics

In this case study, the hydrodynamics of an air–water sys-
tem are investigated. The gas–liquid flow in a square bub-
ble column is simulated using the hydrodynamic model as
described in Section 2.1 and 2.2. Air is injected into an ini-
tially quiescent liquid as indicated inFig. 11. Shortly after
the bubbles are released into the column, a bubble plume
rises through the column and creates a typical mushroom
like shape. Due to the gas–liquid momentum coupling, some
motion is induced in the liquid phase, and after a while the
entire bulk liquid starts to move. The first bubbles escape
from the column after 1.5 s simulations. After some time
the motion inside the bubble becomes unstable. Strong cir-
culation patterns appear with up flow in the center region
and down flow in the corners of the column. Due to the liq-

uid down flow, some bubbles close to the wall are dragged
downwards to the lower region of the column before being
dragged again to the column surface by the upward flow.

The bubble plume is meandering in a random fashion.
Using animation representation of our simulation results as
suggested byDelnoij et al. (1997)we can see that this mean-
dering behavior is due to random formation of vortices close
to the column surface. The vortices generate strong down
flow, which pushes the bubbles near the inlet region to one
side when they reach the bottom of the column. The bubble
plume will then move close to one side of the column. This
process is repeated, but the vortex formation appears in an-
other location, which will make the bubble plume move in
another direction.

A time history plot of the vertical liquid velocity at one
point in the column is shown inFig. 12. As can be seen
in this figure, the DBM simulation is able to reveal the
highly dynamic nature of the bubble column hydrodynam-
ics. As compared to the experimental measurements using
laser Doppler anemometry (LDA) technique byDeen et al.
(2001), the DBM results are in agreement for both time and
velocity scales.

A more quantitative comparison with the experimental
measurement is obtained through the long term (i.e. the sta-
tistical averaged) quantities. In the present study the time-
averaged mean velocity and velocity fluctuations of the sim-
ulation are calculated during a 10–120 s interval. The mean
velocity is calculated as follows:

u = 1

Nt

Nt∑
i=1

ui , (30)

whereNt is the number of time steps used in the averaging.
The large scale velocity fluctuation is calculated as

u′ = 1

Nt

√√√√ Nt∑
i=1

(ui − u)2. (31)

The time averaged quantities are compared with the PIV
measurements ofDeen et al. (2001), who also conducted
two fluid simulations of this column with a two fluid model
using the commercial CFD package CFX.Fig. 13shows the
profile of the average liquid velocity in the vertical direc-
tion while the liquid phase vertical and horizontal velocity
fluctuations can be seen inFig. 14. As can be seen in these
figures, the simulation results show good agreement with
the experimental data. The average velocity profile gives a
maximum value in the center of the column and a negative
value close to the wall, which resembles a liquid flow pat-
tern with liquid up-flow in the center region of the column
and down flow near the walls.

Compared to the PIV measurements, the DBM simula-
tions generally slightly overpredict the average and fluctua-
tion velocities in the center region of the column, while the
two-fluid simulations shows the opposite tendency. The ver-
tical velocity fluctuations, measured with PIV, show a local
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Fig. 11. Series of corresponding velocity fields and bubble position obtained from simulation of air–water bubble column at different time after the air
was switched on. Gas superficial velocity= 4.9 mm/s.

minimum in the middle, which is also predicted nicely in
the DBM simulation. The velocity fluctuations predicted by
the two fluid model, however, do not show this feature.

6.2. Mixing

The liquid velocity induced by the motion of the bubbles
generates mixing in the bubble column. The characteristics
of the mixing is very important, since it will determine the
homogeneity of chemical species present in the reactor. The
mixing rate is normally determined by injecting a pulse of
tracer containing a specified amount of tracer and by mon-
itoring tracer concentrations within the reactor at single or
multiple points (Ranade and Tayalia, 2001).

In the present study, the mixing mechanism of the
air–water bubble column system is investigated immediately

after bubbles are injected by making use of three different
tracers. The column is divided into three equal regions in
the vertical direction. Initially, only one tracer is present in
each region as can be seen inFig. 15. The tracer is treated
as a passive scalar, which is described by Eq. (9), where the
source terms are all set to zero.

Fig. 16shows the mixing sequence immediately after bub-
bles are introduced into the column. As can be seen, the
tracers that are initially separated are pushed upward in the
center region of column, because of the bubble motion. This
upward motion is balanced by downward motion close to
the column wall. The tracers, which come from the three
regions then hit the top and bottom part of the column. The
vortices present in these regions mix the tracers even fur-
ther. The process is continued until all the tracer is mixed
evenly.
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vertical average velocity(uz), at a height ofz/H = 0.56 and a depth
y/W = 0.5.

The mixing time is quantified by monitoring the mass
fractions of the three tracers at the centerline axis, at a height
of z/H = 0.5 (seeFig. 17). As can be seen from this figure,
a homogeneous mixture is reached after 8 s. This figure also
shows that the mass fraction is bounded between 0 and 1 and
the sum of all species is conserved during the simulation.

6.3. Physical absorption

In this case study the physical absorption of CO2 in water
is simulated. CO2 gas is fed into the column filled with

water. A species transport equation is utilized to track the
mass fractions of CO2 in the liquid phase. Initially there is
no dissolved CO2 present in the column. During the process
of the physical absorption, a relatively low mass transfer rate
is experienced by the bubbles.

Fig. 18shows the transient behavior in the column after
the CO2 bubbles are injected into the column.As can be seen,
the hydrodynamics are relatively similar to the air–water
case as described in the previous test cases. The size of the
bubbles is only slightly changed during their presence in the
column. A high fraction of dissolved CO2 can be found in
the vicinity of the bubbles. The dissolved CO2 is convected
by the liquid to other parts of the column.

The overall mass transfer rate can also be estimated by
integrating Eq. (14) over the entire column. In the case of
no mass transfer enhancement, this yields the following ex-
pression for the mean dissolved CO2 concentration in the
column at timet:

[CO2(aq)](t)
H[CO2(g)] = 1 − exp

−tNbklAb
Vl

(32)

with Nb the (averaged) total number of bubble andVl the
(averaged) liquid volume of the column. The mass transfer
coefficientkl is calculated using the theoretical terminal rise
velocity as explained in Section 5 while the interfacial area
Ab is calculated by assuming constant bubble size.

According to Eq. (32), the dissolved CO2 is accumu-
lated exponentially in time. The interphase mass transfer
decreases as the dissolved CO2 concentration increases and
eventually diminished when the equilibrium condition as
prescribed by the Henry constant is reached.
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Fig. 19shows the concentration of CO2 at the centerline
of the column, at a height ofz/H = 0.5 resulting from the
DBM simulation compared with the macro balance calcula-

tion given by Eq. (32) within the time interval 0–500 s. As
can be seen in this figure, the macro balance shows good
agreement with the DBM results. The discrepancy observed
is less than 5%, which might come from the fact that DBM
employs the exact number of bubbles as well as the bub-
bles and liquid properties in calculating the mass transfer,
in contrast with the average value and constant size used in
the macro balance model. Furthermore, in the macro bal-
ance model it is assumed that the transferred components
are ideally mixed in the liquid, which is in contrast to the
findings of the DBM.

6.4. Bubble column under reactive conditions

In this case study, we combine all the models described in
Section 2 to obtain a complete, comprehensive model for a
bubble column under reactive conditions. The chemisorption
of CO2 into aqueous NaOH solution is chosen as a test
case, since it accounts for important phenomena that are
encountered in practice.

The reaction mechanism of the chemisorption of carbon
dioxide in an aqueous solution of sodium hydroxide is well
understood and the reaction kinetics are well documented.
The reaction sequence comprises several steps, which are
given below

CO2(g) −→ CO2(aq), (33)

CO2(aq)+ OH− ⇀↽ HCO−
3 , (34)

HCO−
3 + OH− ⇀↽ CO2−

3 + H2O. (35)

At high pH the second reaction is considered to be instan-
taneous. Thus in the present study the overall reaction can
be simplified into

CO2(aq)+ 2OH− ⇀↽ CO2−
3 + H2O. (36)

Since the first reaction is rate determining, the rate of the
overall reaction is taken from the first reaction. The forward
and backward reaction rate can, respectively, be formulated
as

R1,1 = k1,1[CO2(aq)][OH−], (37)

R1,2 = k1,2[HCO−
3 ], (38)

wherek1,1 andk1,2 are the forward and backward reaction
rate constants, respectively.

The influence of the chemical reaction on the gas absorp-
tion process is usually accounted for by an enhancement
factor,E. This factor can be calculated numerically by solv-
ing the (coupled) diffusion equations in the boundary layer
surrounding the bubbles. The equations should be solved
for each individual bubble, hence in the case where a large
number of bubbles is present this method becomes imprac-
tical. In the present study, an approximate solution of the
enhancement factor is used. The enhancement factor takes
a simple algebraic form as a function of the Hatta number
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Fig. 16. Set of corresponding velocity fields (top), bubble position (middle) and isosurface of 30% tracer mass fraction (bottom) obtained from simulation of
air–water bubble column with additional three passive scalar act as tracer at different time after the air was switched on. Gas superficial velocity= 4.9 mm/s.
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(Westerterp et al., 1998)

E =




− Ha2

2(E∞−1)

+
√

Ha(4

4(E∞−1)2
+ E∞ Ha2

E∞−1 + 1; E∞>1,

1; E∞ �1,

(39)

where

E∞ =
(

1 + DOH−[OH−]
2DCO2H [CO2(g)]

)√
DCO2

DOH−
, (40)

Ha =
√
k1,1DCO2[OH−]

kl
. (41)

This approach provides a much cheaper solution for the en-
hancement factor for each individual bubble. The variation
of the enhancement factor,E, for pH ranging from 7 to 14
can be seen inFig. 20. As we can see the physical mass
transfer rate is significantly enhanced by the chemical re-
action at pH>12. Compared to the detailed simulation re-
sult using the two-film model byFleischer et al. (1996), the
approximate relation can represent the enhancement factor
quite well. Small discrepancy is observed at high pH range.
However, since this is only a test case to demonstrate the
capabilities of the E–L model, the approximate relation for
the enhancement factor given by Eq. (39) is considered to
be adequate to describe the physical phenomena.

During the chemisorption process, due to the high inter-
phase mass transfer rate, it is possible that bubbles are com-
pletely dissolved in the liquid. In our model a bubble is con-
sidered to be completely dissolved in the liquid when the
bubble radius is less than 1�m, while the bubble growth rate
is negative (i.e. the bubble is still dissolving). If a bubble

meets this criteria, it will be disposed from the column and
no longer being tracked.

The chemisorption problem is simulated using the DBM
model. CO2 gas is fed into the column filled with NaOH
solution with an initial pH of 14. Three species transport
equation are utilized to track mass fractions of CO2(aq),
OH− and CO2−

3 . A summary of the initial conditions and the
source terms used in each transport equation is presented in
Table 3.

Fig. 21shows the transient behavior in the column imme-
diately after the CO2 bubbles are injected into the column.
Shortly after bubbles are released into the column, a typ-
ical mushroom like shape appears. This shape is however,
less pronounced compared to the case without absorption as
described in Section 6.1. Due to the chemically enhanced
mass transfer, the bubbles are completely dissolved within
0.15 m from the bottom and remain in that position for quite
a while. Although the bubbles only appear in the lower part
of the column, the liquid circulation induced by the bubbles
extends to the top portion of the column. Compared to the
case without absorption, the liquid phase oscillation is only
observed in the higher part of the column. Since no bubbles
are present in this region, these oscillations do not interact
with bubbles, which makes them less pronounced.

Fig. 22shows the transient behavior of chemical species
distribution in the column. Since bubbles are only present
in the lower part of the column, the mass transfer and reac-
tions only take place close to the gas inlet. CO2 gas, which
dissolves into the liquid from the bubbles immediately re-
acts with hydroxide to produce carbonate, hence only very
small traces of dissolved CO2 can be found in the vicinity
of the bubbles. The hydroxide ions that have been consumed
by the reaction as well as the newly formed carbonate ions
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Fig. 18. Set of corresponding velocity fields (top), bubble position (middle) and distribution of dissolved CO2 concentration (mol/l) (bottom) obtained from
simulation of the physical absorption of CO2 gas in water at various time after the CO2 gas was switched on. CO2 gas superficial velocity= 4.9 mm/s.
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two-film model of Fleischer et al. (1996).

will be transported by the circulation flow to the top of the
column in the center region and return back again through
the downflow zone close to the column walls. This behav-
ior suggests that the reactions taking place in the bottom
part of the column are always supplied with relatively fresh
reactant, since the product of the reaction is immediately
transported by the liquid flow.

With time, the pH is decreasing and the carbonate con-
centration is continuously increasing. As the pH decreases,
the enhancement factor, as shown inFig. 20, also decreases,
resulting in a lower mass transfer rate. In time the posi-
tion where the bubbles are completely dissolved will slowly
move upward. This behavior has been experimentally ob-

Table 3
Initial conditions and source terms used in the species transport equations

j Species Y
j
l
(t = 0) Sj /M

j
w (kmol/m3 s)

0 CO2(aq) 1 × 10−50 −R1,1 + R1,2
1 OH− Y1(pH) 2(−R1,1 + R1,2)

2 CO2−
3 1 × 10−50 R1,1 − R1,2

served byFleischer et al. (1996). To investigate whether our
model is capable to predict such behavior, a series of simu-
lations with an initial pH varying from 13 up to 14 has been
conducted. This technique is used to save calculation time,
since the rate of change of pH is very low.Fig. 23 shows
that the aforementioned behavior is nicely predicted by the
current model. As the pH decreases the position where bub-
bles are completely dissolved moves upward and since the
model is also able to predict the decrease of pH in time we
can conclude that this behavior can also be captured if we
would proceed the simulation for a sufficiently long period.

7. Conclusions

A model that combines hydrodynamics, mass transfer and
chemical reaction in a bubble column has been success-
fully formulated and implemented. The simulation results
obtained shows that the model can be used to investigate
those phenomena in more detail than before.

Simulation of a single rising bubble in a quiescent liquid
shows that the model is able to predict the terminal rise ve-
locity correctly. In combination with a constant mass trans-
fer rate, the model also accurately produces the bubble size
as a function of time.

The hydrodynamics model has been validated using the
experimental data ofDeen et al. (2001). Both instantaneous
and time-averaged liquid velocities predicted by the model
are in good agreement with the experimental data. The ex-
perimentally observed meandering of the bubble plume is
also nicely predicted by the present model.

By combining the hydrodynamics and chemical species
transport equations, the mixing mechanism in the column
can be studied in more detail. Our simulations indicate that
intense mixing prevails at regions where sudden changes in
flow direction occur.

One of the key features of the model presented in this pa-
per is its capability to track individual bubbles in time. By
calculating the mass transfer rate for each individual bub-
ble and combining this information with a chemical species
transport equation, gas absorption in reactive liquids can be
described.

In the case of the physical absorption of CO2 bubbles in
water, it was found that the distribution of dissolved CO2
is not uniform. Relatively high dissolved CO2 was found in
the vicinity of bubbles. In time the dissolved CO2 is accu-
mulated in the water until the equilibrium is attained. This
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Fig. 21. Set of corresponding velocity fields (top), bubble position (bottom) obtained from simulation of the chemisorption of CO2 gas in liquid NaOH
at various time after the CO2 gas was switched on. Initial NaOH pH= 14, CO2 gas superficial velocity= 4.9 mm/s.

behavior shows good agreement compared with theoretical
calculations.

The model was also used to investigate the chemisorption
of CO2 gas in NaOH solution. This process has been stud-
ied experimentally byFleischer et al. (1996). The model is
able to reveal liquid phase hydrodynamics, bubble size and
position as well as chemical species distribution involves in
the reaction. In simulations with initial pH= 14, bubbles are
only present close to the gas inlet. Only very small traces
of dissolved CO2 can be found in the vicinity of the bub-
bles while the hydroxide ion that have been consumed and
newly formed carbonate ions are transported through all the
column region. In time the pH is decreasing while the car-
bonate ions is increasing. The model is also able to predict
the position of completely dissolved bubbles due to chemi-
cally enhanced mass transfer. Variation of initial pH shows
that this position shifts upward in the column as the pH de-
creases.

Due to the complexity and detailed information that the
present model provides, calculation time is still the bottle-

neck especially for problems which involve a large number
of bubbles and chemical species. In the current work, co-
alescence and break up were not considered. However, ap-
propriate coalescence and break up models can readily be
implemented due to the Lagrangian treatment of the bubble
phase.

Notation

A interfacial area, m2

C model coefficient, dimensionless
d diameter, m
D diffusivity

[
m2 s−1

]
, depth, m

E enhancement factor, dimensionless
Eö Eötvös number,Eö= (�l − �b)gd

2
b /�, dimension-

less
F force vector, N
g gravity acceleration, m s−2
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Fig. 22. Set of corresponding dissolved CO2 concentration (mol/l) (top), CO2−
3 concentration (mol/l) (middle) and liquid phase pH[−] (bottom) obtained

from simulation of the chemisorption of CO2 gas in liquid NaOH at various time after the CO2 gas was switched on. pH0 =14; pure CO2 gas superficial
velocity= 4.9 (mm/s).
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Fig. 23. Snapshot of bubble position at timet = 10 s after the CO2 gas was switched on with variation of initial liquid NaOH pH. CO2 gas superficial
velocity= 4.9 (mm/s).

H Henry constant (aqueous-concentration/gas-
concentration), dimensionless

Ha Hatta number, dimensionless
k1,1 forward reaction rate constant, m3 kmol−1 s−1

k1,2 backward reaction rate constant, s−1

kl mass transfer coefficient, m s−1

I unit tensor, dimensionless
m mass, kg
ṁ mass transfer from individual bubble, kg s−1

Ṁ liquid side volume averaged mass transfer,
kg s−1 m−3

Mw molecular weight, kg kmol−1

P pressure, N m−2

R radius, m, reaction rate, kmol m−3 s−1

Re Reynolds number,Re = �l |v − u| db/�l , dimen-
sionless

S source term in the species balance equation,
kg m−3 s−1

S characteristic filtered strain rate, s−1

Sc Schmidt number,Sc = �l/(�lD), dimensionless
Sh Sherwood number,Sh= kldb/D, dimensionless
t time, s
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u liquid velocity vector, m s−1

u liquid mean velocity, m s−1

u′ liquid velocity fluctuation vector, m s−1

v bubble velocity vector, m s−1

V volume, m3

W width, m
Y mass fraction, dimensionless
[.] concentration, kmol m−3

Greek letters

� species diffusion coefficient, m2 s−1

�b distance between two consecutive bubble, m
$ subgrid length scale, m
� volume fraction, dimensionless

 volume fraction of a bubble included in a cell, di-

mensionless
� viscosity, kg m−1 s−1

� density, kg m−3

� interfacial tension, N m−1

� stress tensor, N m−2

� volume averaged momentum transfer due to inter-
phase forces, N m−3

� Lagrangian quantity
� Eulerian quantity

Indices

aq aqueous
b bubble
cell computational cell
D drag
eff effective
G gravity
j j th species
l liquid
L lift
P pressure
s superficial
S subgrid
T turbulent
VM virtual mass
∗ interfacial equilibrium value
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