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Quasi-birth-and-death (QBD) processes with infinite “phase spaces” can
exhibit unusual and interesting behavior. One of the simplest examples of
such a process is the two-node tandem Jackson network, with the “phase”
giving the state of the first queue and the “level” giving the state of the second
queue.

In this paper, we undertake an extensive analysis of the properties of
this QBD. In particular, we investigate the spectral properties of Neuts's
R-matrix and show that the decay rate of the stationary distribution of the
“level” process is not always equal to the convergence normk.dh fact,
we show that we can obtain any decay rate from a certain range by controlling
only the transition structure at level zero, which is independe. of

We also consider the sequence of tandem queues that is constructed by
restricting the waiting room of the first queue to some finite capacity, and
then allowing this capacity to increase to infinity. We show that the decay
rates for the finite truncations converge to a value, which is not necessarily
the decay rate in the infinite waiting room case.

Finally, we show that the probability that the process hits levbefore
level O given that it starts in level 1 decays at a rate which is not necessarily
the same as the decay rate for the stationary distribution.

1. Introduction. A quasi-birth-and-death (QBD) process is a two-dimensio-
nal continuous-time Markov chain for which the generator has a block-tridiagonal
structure. The first component of the QBD process is calledetet, the second
component thehase.

A comprehensive discussion of the properties of QBD processes with finitely
many possible values of the phase variable can be found in the monographs of
Neuts [11] and Latouche and Ramaswami [7]. In particular, it is known that
the level process of a positive-recurrent QBD process with a finite phase space
possesses a stationary distribution which decays geometrically as the level is
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increased. The decay parameter is equal to the spectral radius of Neutsifix,
which is strictly less than 1. Similarly, the probability that a QBD process hits
leveln before level O given that it starts in level 1 is known to decay geometrically
with the same parameter.

For QBD processes with aimfinite phase space the situation becomes more
complicated. The&r-matrix is now infinite-dimensional, and its spectral properties
are not obvious. Also, the relationship between various decay parameters is
different from the finite-dimensional case. A start in the study of such processes
was made by Takahashi, Fujimoto and Makimoto [17]. They gave conditions under
which the infinite-dimensionaR is «-positive (see Section 2 for a definition).
Under a further condition on the stationary distribution at level O, they were then
able to infer that the stationary distribution decays at satedowever, as we shall
see in Section 4, there are many circumstances where the conditions of [17] are
not satisfied.

The purpose of this paper is to make a contribution to the study of the behavior
of infinite-phase QBD processes by considering a special case which exhibits
interesting behavior. This special case is a two-node tandem Jackson network, in
which the number of customers in the first queue gives the phase variable and the
number of customers in the second queue gives the level variable. This system
was studied via simulation in [6], where the authors used some of the results of
the current paper to calculate the relevant decay rates. It is also a special case of
the system studied in [3].

We show that, when the first queue has an infinite waiting room, the decay rate
of the stationary distribution of the “level” process (the state of the second queue)
may not be equal to the convergence nornRofwhich can be thought of as the
analogue of the spectral radius in the infinite-dimensional case. In fact, we show
that we can construct a range of decay rates for the stationary distribution of the
second gqueue by controlling only the transition structure when the second queue is
empty, that is, at level 0. Futhermore, the decay rate,-asoo, of the probability
that the number of customers in the second queuerhiiefore 0 given that it
starts at 1 may not be the same as the decay rate of the stationary distribution.
Such behavior does not occur in finite-phase QBD processes.

We also consider the limiting behavior of the tandem queue when the waiting
room of the first queue is finite, and increases to infinity. We show that the
eigenvalues of th&-matrix converge to a continuurpossibly with one additional
isolated point—the latter being the case when the second buffer is the bottleneck.
A consequence of this is that the decay rate in the infinite waiting room case
may not be the same as the limiting value of the decay rates in the finite waiting
room case.

The rest of the paper is organized as follows. In Section 2 we present some
general results for QBD processes. We consider processes with both finite and
infinite phase spaces. In Section 3 we formulate the two-node tandem Jackson
network as a QBD process. In Sections 4 and 5, we discuss the decay rate of
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the stationary distribution when the capacity of the first queue is infinite and finite,
respectively. These sections make heavy use of the properties of certain orthogonal
polynomials. In Section 6, we show how we can obtain any decay rate for the
stationary distribution of the second queue by controlling the transition structure
when the second queue is empty. In Sections 7 and 8, we turn to the question of the
decay rate of the probabilities that the process hits levedfore level 0. Section 7
deals with general QBD processes; Section 8 deals with the specific case of the
tandem Jackson network.

2. QBD processes. A level-independent QBD process is a continuous-time
Markov chain(Y;, J;,t > 0) on the state spacf, 1,...} x {0, ..., m}, whose
generatorQ has a block tridiagonal representation

01 Qo
02 01 Qo
(1) Q= Q2 01 Qo

Q02 01 Qo

Here, the matricego, 01, Q2 and Q1 are (m + 1) x (m + 1) matrices. The
parametem may be finite or infinite. The random varialifeis called thdevel of
the process at timeand the random variablé is called thephase of the process
at timer.

To avoid complications, we assume that the following condition is satisfied.
A discrete-time version of this condition appeared in [9].

CONDITION 2.1. The continuous-time Markov chain on the getx {0,
..., m}, with generator

02 01 0o
@ 0 01 00 |’

is irreducible.

There are a number of consequences of Condition 2.1, which we shall use later.
This condition is satisfied in the QBD process model for the tandem queue which
is presented in Section 3.

We set the stage by mentioning some well-known results, at the same time
fixing some notation. By Theorem 3.2 of [13], the limiting probabilitieg :=
lim; . P(Y; =k, J; = j) exist. Let us define the vectors, = (o, ..., Tim),
fork=0,1,..., andnr = (wg, ®1,...). Then

®3) mr=moRY, k>0,
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whereR is the minimal nonnegative solution to the equation

(4) Qo+ RQ1+ R?Q>=0.

The matrixR has a probabilistic interpretation. Lgt be the mean sojourn time
in state(k, i), for k > 1. ThenR(, j) is u; times the total expected time spent in
state(k + 1, j) before first return to level, starting from statek, i).

Before turning to the relation between the matixand the decay rates of
interest, we discuss the issue of ergodicity, bothhiot oo andm = oo, noting
a small inaccuracin the literatwe regarding the latter case.

THEOREM 2.2. The QBD process is ergodic, that is, x is positive and has
components which sumto unity, if and only if there exists a probability measure yg
such that

(5) yo(O1+RQ2) =0
and
(6) Yov < 00,

wherev = (I + R + R2+ ---)1. Inthiscase
(7) 7o =Yo/Yov.

The matrixQ1 + RQ3 in (5) is the generator of the process(df, J;) filtered
so that it is observed only when it is in level 0. Thus, the condition that there exists
a probability measure satisfying (5) states that the filtered process at level 0 must
be ergodic.

In [13], condition (6) is replacely the elementwise condition

8 v < o0,

For the casen < oo, both conditions are equivalent. However, whea= oo, the
latter condition isnot sufficient, since it does not guarantee thatis nonzero;
we may have/ov = oo even wherv is finite.

Specializing to the case < oo, inequality (6) is satisfied if and only if

9) Sp(R) <1,

with sp(R) denoting the spectral radius &f
If m is finite and there exists a vectomwith x1 = 1 such that

(10) X(Qo+ Q1+ 02) =0

and

(12) XQol < xQ21,
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then the QBD is positive recurrent; see [11] or [10]. Under the additional
assumption tha@l = Q1 + Q2, this was proved for the infinite case by
Tweedie [18]. Equation (11) can be interpreted as requiring that “the average drift
of the level process is negative.”

We now turn to the decay rate of the stationary distribution, assuming that the
QBD process is ergodic. This decay rate is sometimes also referred tocasdak
characteristic. We start with a known result for the case< oo, stating that the
geometric decay rate is given by the spectral radiug.dh [7], page 205, it was
shown that

i YiTKi

im ——— =,

K—oo (SP(R)X)

wherek is a constant. In other words, the marginal stationary probability that
the QBD is in levelK decays geometrically with rate @).

Turning to the casern = oo the situation becomes more complicated, and
we come to the core of one of the problems that are dealt with in this paper. We are
looking for an “infinite-dimensional” analogue of the limiting result (12), and in
particular for the role of the spectral radius ®fin it. Clearly, R is now a square
matrix of sizeoo.

There are at least two candidates to consider for this analogue. One approach
would be to consider to be a linear operator from the Banach spét® itself.

We could then hope that the decay rate we are looking for is given by the spectral
radius of this operator, if it exists. We shall take a different approach, and use the
infinite-dimensional analogue of the Perron—Frobenius eigenvalue dhis is

the convergence norm of R.

Some relevant concepts about the Perron—Frobenius theory of nonnegative
matrices are recalled below. For details we refer to [15, 16].

For a finite-dimensional, square, irreducible and nonnegative matrikere
exists a strictly positive eigenvalue which is simple and is greater than or equal to
the modulus of all the other eigenvalues. To this eigenvalue corresponds a strictly
positive eigenvector. The eigenvalue is called Beeron—Frobenius eigenvalue
of A.

To a large extent, this result can be extendedhfimite-dimensional matrices.

Let A be a nonnegative, aperiodic and irreducible matrix. We would like to prove
the existence of a strictly positiveand a strictly positive vectot such that

(23) XA = EX.

The power series

(12)

o0
3 AkG, jZF
k=0

has a convergence radius 0 < o < oo, independent of i and j. This common
convergence radius is called tenvergence parameter of the matrix A. When
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Yo AX(i, j)a* converges, the matrix is calledtransient. Otherwise it is called
a-recurrent. An a-recurrent matrixA is a-null if lim;_ o, A¥(, j)a* = 0 and
a-positive otherwise.

The quantity Y« is called theconvergencenormof A. It can be shown to satisfy

(14) 1/a = lim (A%, j)M*

independently of andj. This implies, in particular, that if the dimension afis
finite, then the convergence norm is exactly the Perron—Frobenius eigenvalue of
([16], pages 200 and 201).

For 8 > 0, a nonnegative vectaris called ag-subinvariant measure of A if

(15) BXA <X
and a nonnegative vectgiis called ag-subinvariant vector of A if

(16) BAY <.

The measur and vectory are calledg-invariant when equality holds in (15)
and (16), respectively.

The infinite-dimensional analogue of the Perron—Frobenius result is the follow-
ing (see, e.g., [16], Theorems 6.2 and 6.3):

No B-subinvariant measure can exist for> «. If A is a-recurrent, then there
exists a strictly positive-invariant measure. lA is ¢-transient, then there exists

an «-subinvariant measure that is not invariant: there may or may not exist
an a-invariant measure. By applying the above to the transpose, gimilar
conclusions can be reached abatitivariant vectors.

It is a common misconception to believe thdtvdis the largest “eigenvalue”of.
This is true in the finite-dimensional case, but not in the infinite-dimensional case.
The result above states only that there cannot be any nonnegatatisfying (13)
with € < 1/«. In fact, in this paper we shall encounter examples of matrices
such that (13) is satisfied by a positive vectdor & > 1/«.

For infinite-dimensional matrices it is useful to know when the convergence
parametery can be found as a limit of convergence paramefet®} from a
sequencg AN} of finite-dimensional matrices. For example, in Theorem 6.8
of [16], it is shown that the convergence parameters ofiihen) northwest corner
truncations ofd converge to the convergence parametet of he following result
will be of use to us in Sections 7 and 8.

LEMMA 2.3. Let {A®} be a sequence of nonnegative matrices that increases
elementwise to an irreducible matrix A, as k — oo. Let «® denote the
convergence parameter of AX) and let o be the convergence parameter of A. Then
the sequence ¥ is decreasing with limj_, o «© = a.
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PROOFE By (14) and the fact that ® (i, j) < A®+D(;, j), we have

@D < ®)

Therefore the sequend¢e®} is decreasing and its limit> must exist. Also,
by (14) and the fact that © (i, j) < A(i, j) for all k, we have

a <o,

Now let y® = (y(k),yék),. )T be ana®-subinvariant vector ofA®, with
v =1, and lety* = liminf, y®, elementwise. Then we know that
MCYXCNCIVO)

Taking liminf,_, o, of both sides and using Fatou’s lemma, we have, for @ach

(e e]
(17) a D AGL Y <P
j=1

Iterating this, we find that, for > 1,

(e e]
VN AL )y < v
j=1

Sincey] =1 andA is irreducible, this shows that < oo for all j and, by (17),

thaty* is an«®-subinvariant vector ofA. Since nog-subinvariant vector can
exist for g > o, we must haver™ < ¢ and thusx™ = . O

Now let us turn back to the problem of determining the decay rai’ofrom
the definition, it follows that iy "> 5 R" (i, j) is convergent for all andj, then the
convergence norm a&@ must be less than or equal to 1. It is thus tempting to think
that the decay rate of the stationary distribution must be given by the convergence
norm. However, we have to be careful. As we noted above, it is a common
misconception to believe that the convergence norm is the largest “eigenvalue.”

Assume thatv is az~l-invariant measure oR such thatw >"2°, R is finite.
Then z must be less than 1. To see this, note that the monotone convergence
theorem implies thaw Zf:o R' converges elementwise ) °, R'. This means
thatw Y"-%_, z' converges elementwise to a finite vector, which can be the case only
whenz < 1. This leads to the following result.

THEOREM2.4. Consider an irreducible QBD processwith a finite or infinite
phase space. If there exists a nonnegative vector w e ¢! and a nonnegative number
z < 1 suchthat

(18) wW(Q1+ RQ2) =
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and
(29) WR = zW,
then the QBD is ergodic, and, for all fixedi =0, 1, ...,
TKi
20 =W;
(20) K
for all K.

Theorem 2.4 shows thatifq is az~1-invariant measure ok for somegz, then
the stationary distribution ofY;, J;) has thelevel-phase independence property
(see [8]) and decays at ratelf ng is a (finite) linear combination of more than
onew (not necessarily nonnegative) that satiste® = &w for some¢, then the
stationary distribution does not have this property. The decay rate is then given by
the value of in the linear combination for whiclg| is the largest.

For the casen < oo, any np is a finite linear combination of eigenvectors
of R. The left eigenvector of the eigenvalue(&p must always be in this linear
combination. To see this, recall thag must be positive, and the Perron—Frobenius
right-eigenvectov of R must be nonnegative and nonzero, which implies that
oV > 0. Now write

m
o= Zaiwh
i=1

wherews is the Perron—Frobenius eigenvector. Since;j for2, thew; correspond
to eigenvalues o distinct from sgR), we know thatw;v = O for these values
of i. Thereforergv = a1wyv, which shows thati; # 0. This explains why the
stationary distribution decays at ratg Bp whenm is finite.

As a final topic in this section, we quote a result that helps us to determine
z~Linvariant measures at. In the general case < cc it is easy to see from (4)
that, if the row vectow and scalar, satisfywR = zw, then

(21) W(Qo 4201 +2°Q2) =0

whenever the change of order of summation involved in using the associative law
of matrix multiplication is permitted.

More important, under certain conditions the converse is true as well, again
irrespective of whethem < oo or m = co. This is shown in the next theorem,
which is a statement of Theorem 5.4 of Ramaswami and Taylor [14]. See also [4]
for a more detailed analysis for the case where oc.

THEOREM 2.5. Consider a continuous-time ergodic QBD process with
generator of the form (1). Let g, = —Q1(k, k). If the complex variable z and the
vector w = {wy} aresuchthat |z| < 1and ) ; |wilgx < oo, then (21)implies (19).
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Specializing to the finite case < oo, we obtain the following corollary.

COROLLARY 2.6. For anirreducible QBD process with a finite phase space,
satisfying (11), the eigenvalues of R are all the zeros of the polynomial

(22) det(Qo + 201+ 2%02)

that lie strictly within the unit circle.

PrROOF From the discussion above it follows that all eigenvaluesrof
lie within the unit circle. Each such eigenvalue with corresponding left
eigenvectorw satisfies (21). Conversely, by Theorem 2.5, all solutiénswv)
to (21) withz within the unit circle must be eigenvalue—left-eigenvector pai®,of
because the condition;, |wk|qx < oo is automatically satisfied. In particular, the
eigenvalues ok are the zeros of (22) within the unit circled

3. The tandem Jackson network seen as a QBD process. We now turn
to a specific class of QBD processes which may have infinitely many phases.
It models a simple Jackson network consisting of two queues in tandem (see
Figure 1). Customers arrive at the first queue according to a Poisson process with
ratei. The service time of customers at the first queue is exponentially distributed
with parameteyp1. On leaving the first queue, customers enter the second queue,
where their service time has an exponential distribution with parameter
The capacity of the first queue is denotedrdywhich may be finite or infinite.
In the case whem is finite, customers that arrive to find the first queue full are
rejected. Foi =1, 2 let

A
Pi = —

i
and letJ; andY; denote the number of customers in the first and second queue at
time, respectively.

We shall examine the behavior of the two-dimensional Markov chginJ;),
viewed as a QBD process in whidh represents the level anf] represents the
phase. The transition intensities of this QBD process are depicted in Figure 2.
When the capacity of the first queue is infinite, the phase space of this QBD process
is infinite and the boundary denoted fayin the figure is not present.

Queue 1 Queue 2

2
— - @——» n,

Fic. 1. A tandem Jackson network.
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second

buffer

0 1 2 first buffer m

FiIG. 2. Thetransition intensities for the tandem network.

For the case where < oo, the(m + 1) x (m + 1)-matricesQq, Q1, Q2 and Ql
in (1) are given by

o ... %)
w1 0 ... n2
Qo= ur 0 .. , 0s= %) ’
ur O w2
—(A+ p2) A
—(A+p1+p2) A
Q1= —(A+p1+pu2) A
—(p1+ p2)
and
—A A
—(A + p1) A
le _()\+/’L1) A
—[1

Obviously, Condition 2.1 is satisfied inithcase and the stability condition (11)
translates into

1— pm+1

i p1#1,

(23) p2 <

1
(24) p2<1+—, p1=1
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For the case where: = oo, the tridiagonal blocks are given by the infinite-
dimensional matrices

o ... U2
mr 0 L. 2
Qo= ur 0 ... ) Q2= u2 )
—(A 4+ u2) A
—(A+p1+ p2) A
Q1= —(htpu1+pu2 A
and
—A A
~ —(A+ ) A
01=

—(A+pn1) A

In this case, the well-known condition under which both queues are stable is

(25) A < min{ug, pa}.

For both finite and infiniten, we are interested in the decay rate of the stationary
distribution of the tandem network as the number in the second queue becomes
large and its relation to the spectral properties of the ma&ritt will be convenient
to index this matrix with the size of the waiting room at the first queue. Thus we
shall write R,, for the situation where the size of this waiting roomnisand,
in particular,R», when the waiting room at the first queue is unlimited.

For infinitem, under condition (25), it follows from the results of Burke [1] that
the arrival process to the second queue is a Poisson process with paramueder
so the second queue behaves likevghV /1 queue with arrival raté and service
rate u2. Thus the stationary distribution of the second queue is geometric with
parametelp, and its decay rate is simply,. However, it is not at all clear how
this decay rate corresponds to the spectral properties of the infinite-dimensional
matrix Reo.

To study the spectral properties &, we shall make use of Theorem 2.5.
To facilitate our developmeniye introduce some notation.

For eachy with |z] < 1,z # 0, let Q(z) be the infinite-dimensional tridiagonal
matrix (Qo + 201 + z2Q2) /z, that is,

—A— M2+ p2z A
(26) Q@)= 11/z A — 1 — otz A |

and letQ™(z) denote thén x n) northwest corner truncation @ (z).
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For the finite case, define thie x n)-matrix Q(”)(z) as

0™ (z)

—A — 2+ 2z A
ni/z —A—pu1— 2+ p2z A

(27)

H1/z  —p1— p2+ p2z
The significance of these matrices follows from Theorem 2.5. The infinite-

dimensional row vectow satisfieswR,, = zw for z # 0 with |z] < 1, if
>k lwklgx < oo andw satisfies

(28) wQ(z) =0.

For the tandem queuey. is constant fork > 1 and so the condition that
> lwilgr < oo is equivalent to requiring that e ¢*.

For the case: < oo, the(m + 1)-dimensional row vectow is a left eigenvector
of R,, corresponding to eigenvalue# 0 with |z| < 1, if and only if it satisfies

(29) wQ "t (7) =0,

REMARK 3.1. Readers may note that (28) and (29) are not exactly equivalent
to (21). The latter follow from the former only i # 0. In fact, for the tandem
network model, the vectdd, 0, 0, .. .) satisfies (21) withy = 0.

By using the physical interpretation @,,, we can see that the interesting
z~Linvariant measures ak,, are the ones for which (28) and (29) are satisfied.
For the tandem Jackson network, the expected time spent in any state atfevel
before the process returns to lettdas nonzero if the process starts in a st@tg)
with i > 0. Thus we know immediately from its physical interpretation that
R, (i, j) is strictly positive for alli > 1 andj > 0. On the other hand, it is
impossible to visit levek + 1 starting in staték, 0) without visiting a staték, i)
with i > 1 first, and soR,, (0, j) = 0 for all j. ThusR,, decomposes its indices
into two communicating classe€; = {0} andC2 = {1, 2, ...}. The eigenvector
(1,0,0,...) of R, with corresponding eigenvalue 0 has support@nAll other
z L-invariant measures dt,, have the formwog, w1), wherew, is az~1-invariant
measure of the positive submate, corresponding t@®,. These are thes andz
for which (28) and (29) are satisfied.

4. Thecasewherem isinfinite. Before we start studying (28), we first give
some preliminaries. In this and the following sections, we shall frequently use
the function

(30) T(Z)E—k—m—uz(l—z)+2,/%-
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It is easy to see that(z) is convex on(0,1) with lim,_ot(z) = oo, and
() =—(v/A— M)Z. Thus there is a unique valuge (0, 1) with t(n) =0,
and, forz € (0,1), 7(z) < Oifand only ifz > 7.

We shall also frequently refer to the relationship betweem, and p2 in
the respective cases when < u»> and i > u2. These are summarized in the
following lemma.

LEMMA 4.1. (@Whenu1 <u2, 0<n=<p2<p1<1.
(b) When w1 > 2, 0< p1 <n < p2 <1

PROOF Observe that (p2) <0, which immediately gives us thap > n, and
t(p1) = (1 — A/pm1)(n1 — p2), which gives us thaps > n whenuy < uz and
01 < n whenuy > us. Together with the fact thad; > po if and only if w1 < uo,
this proves the lemma.]

Now consider the system of equations (28) wheras fixed such that
z € (-1, 1), z # 0. Writing out the system, we have
(31) — (A + p2(1 - 2))zwo + pawy =0,
(B2)  Azwp—1— (A4 p1+ p2(l—2))zwk + piwey1 =0, k> 1.
After substitutingw; = u* in (32), we derive the characteristic equation,
(33) pau? — (A + p1 + p2(l — 2))zu + 1z = 0.

Since the discriminant of (33) is positive if and onlyik 0 or 7 (z) < 0, the form
of the solution now depends on the locationzaklative to 0 and;. We proceed
by giving the solution fotwy in the cases-1 < z <0 andn <z < 1. This is

(34) wi = c1ul + coub,
where
(A +u1+ p2(l—2))z £ \/(/\ + p1+ p2(l—2))%z2 — dhpaz
(385) wuiz= 5 .
n1
The coefficientg1 andco can be derived from
(36) c1t+cr=1,
1
(37) ciuy + coup = M—(k+uz(l—z))z,
1

where the first equation is due to the (arbitrary) normalizing assumption that
wo = 1, and the second equation follows from boundary equation (31). Thus,
we find

1 A= p1+up2(l—12))z
C1’2 = E :l: .
2,/ + 1 + a1 — 2)%2 — 4z
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Whenz = n, the vectow is given by
(38) wi = uk (1 + ck),

with u = /p1n andc = 1 — /n/p1, while for 0 < z < 5 the real solution is
given by

(39) wy, = (Cogke) + csintke))|ulk,
with |u| = \/p1z,

¢ = arcta

\/4/\M12 — (4 p1 + pa(l — )%
A+ p1+p2(l—2)z

and

oo Pt el —2)Vz/Auy — COS9)
B sin(¢) ‘

As we pointed out after equation (28), in order to use Theorem 2.5 to establish
whetherw is indeed az~1-invariant measure oR, we need to verify whether
we ¢t

LEMMA 4.2. Thevector w isan element of ¢1 if and only if

21 <2< p1/m2,

where zq = (2% + 1 + 12 — V(24 + 1 + u2)? + duapz)/(2u2) < O.

PrROOF First note that, for G< z < 5, the form of (38) and (39) shows that it is
certain thatv € ¢1. Thus we need only consider the case when the nootdu,
are real. Thisoccurs whenl <z <0orp <z <1.

Unlessz = 1 or z = py both ¢ ande are nonzero, so fow to be in¢l it is
necessary and sufficient that bathandu, are in(—1, 1). To study when this is
the case, lelf (u) be the left-hand side of (33). Then the statement that the roots
u1 anduo are in(—1, 1) is equivalent to saying that both(—1) > 0, (1) > 0O,
f'(=1) <0andf’(1) > 0.

When -1 < z < 0, f(1) is always positive and the condition thgt—1)
is positive reduces tuy + (22 + u1 + u2(l — z))z > 0, which is the same
as saying that; < z. Furthermore,f’(1) is always positive andf’(—1) can
be written as— (1) — w1 + Az, which is negative if f(1) is positive. When
n<z<1, f(—1) is always positive and the condition th#(1) is positive is
(1—2z)(n1 — zu2) > 0, which reduces te < u1/u2. Furthermoref’(1) is always
negative andf’(1) = f(1) — A + w1, which is positive whery (1) is positive by
the stability condition (25).

The observations that < u1/u2, established by verifying that(u1/u2) < 0,
and—1 < z1 < 0 complete the proof. [
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COROLLARY 4.3. When u1 < uo, the system of equations
(40) WRoo = ZW

has solutionsw € ¢1 for all z € (z1, 1/ 12).
When 1 > o, the system (40) has solutionsw e ¢1 for all z € (z1, 1).

Note that if w1 < uo2, it is not certain whether (40) has solutions for
z € [u1/u2, 1), but any such solutions will not be it. In Remark 6.3 we show
that such solutions exist only far= w1/u2.

For us to be able to apply Theorem 2.4, the vestomust be nonnegative.
To investigate this, we start by generalizing (31) and (32) to

(41) Po(x;z) =1,
(42) %Pl(X; ) =x+Ar+p2l—72),

ML b (xi2) = (x + A+ 1+ 2l — 2) Pa_1(x1 2) — A Pa_a(x; 2),
(43)

n>2.

For any given real and positive value ef (41)—(43) define a sequence of
orthogonal polynomials P,(x; z). Whenx = 0, they reduce to (31) and (32),
from which we deduce the fact that, = P,(0; z). Moreover, we shall see that
P,(0; z) is positive for alln if and only if the zeros of all thé®, (x; z) are less than
zero. Thus we can study conditions for the positivitywo¥ia the properties of the
polynomialsP, (x; z).

LEMMA 4.4. For z > 0, the sequence { P, (x; z)} satisfies the orthogonality
relationship

/ Po(: 2) P (3 29 (dx) = (ﬁ) S
suppv) M1

where
[o(2), T(2)], ifz <p1,

suppy) = { [0(2), T(D)]1U {x(2)}, ifz > p1,

7(z) isgiven by (30),

A
(44) a<z>=—x—m—uz<1—z>—2,/%

and

(45) 1@ = (- u2)a-2.
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The measure v is given by

21— (4 1+ pa(l— 2)% /4

w(dx)=n 1-(+ A+ pn20l—2)z/A

X, 0O =X=T,

A .
v({x@})=1-— if z> p1.
K1

PrRoOF For fixedz > 0, let

8 A
46)  T,(x)= (/’;‘—71) Pn<2x,/% — = g — pa(1— 2):; z>.

It follows that Tp(x) = 1, T1(x) = 2x — b and T,,(x) = 2xT,—1(x) — T,—2(x),

where
p— [ZHL
A

The T,,’s are perturbed Chebyshev polynomials, for which the orthogonalizing
relationship is given (see [2], pages 204 and 205) by

2/1T<>T<> 1=
7)o T e o ¢

+1 T<b+ 1)T <b+ 1)(1 1)—5
{|b|>1}Ln 2 2 m 2 2 b2 = On,m>

wherel ;-1 = 1if |b| > 1 and O otherwise. Substituting (46) and rewriting yields
the result. O

As a consequence we have the following.

LEMMA 4.5. For each value of z > 0, P,(x;z) has n distinct real ze-
ros x,1<---<x,, and these zeros interlace. That is, for all » > 2 and
i=1....,n—-1,

Xn,i <Xpn—-1,i < Xpn,i+1-

PrRoOOF The lemma follows from a well-known result for orthogonal polyno-
mial sequences (see [2], Theorem 5.3)]

The support of the measutg is intimately related to the limiting behavior of
the zeros of the?, (x; 7). Some results are stated in the lemma below.
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LEMMA 4.6. The sequences of smallest, second-largest and largest zeros of
the P, (x; z) possess the following properties:
{xn,1)52 1 isastrictly decreasing sequence with limit o (z);
{xn,n—1},2 4 isastrictly increasing sequence with limit 7 (z);
{xnn}o2 4 isastrictly increasing sequence with limit x1(z),
where
7(2), ifz < p1,

X1(z) = SUHsUppy)) = { x(2) if z > p1.

For a proof, see [2], Section 11.4.

LEMMA 4.7. Let z > 0. Then P,(x;z) is positive for all » if and only if
x = x1(2).

PrRooF The leading coefficient ab, (x; z) is positive for allz, which implies
that P, (x; z) is positive forx > x, ,. Sincex, , is strictly increasing, we know
that P, (x; z) is positive for alln if x > x1(z). Conversely,P(x; z) is negative
for x € (xx—1.x, xx.x) and so the interleaving property given in Lemma 4.5 implies
that, for everyx < x, ,, Px(x; z) is less than zero for at least oke= {1, ..., n}.
Thus, ifx < x1(2), Px(x; z) is less than zero for at least ohe Z . [

Next, let us return to the question of when the vectorwhich solves
(31) and (32) is positive.

LEMMA 4.8. Thevector w ispositiveif and only if x1(z) <O.

PrRoOOF This follows immediately from Lemma 4.7 and the fact that, for
a given value ot, w, = P, (0;z). [

Lemma 4.8 implies that, to decide whetheis positive, it is important to know
for which values ot the corresponding1(z) is less than or equal to 0. Since

7(2), forz < p1,
x(2), forz > p1,
the statement thaty (z) < 0 implies that, forz < p1,

x1(z) =max(x (z), 7(z)) = {

1(z) <0 andso z>1p
and, forz > p1,

x(z) <0 andso z> po.
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Whenu < 2, we know from Lemma 4.1 that

n=p2=p1

and sow is positive for allz € [5, 1). Whenu1 > u2, Lemma 4.1 tells us that

p1 <1 < p2.

Thusw is positive only forz € [p2, 1).
Summarizing this and Corollary 4.3, we have the following theorem.

THEOREM 4.9. When u1 < u2, the system of equations (19) has positive
solutionsw e ¢ for all z € [, n1/w2).
When 11 > uo, the system (19) has positive solutionsw € ¢1 for all z € [p2, 1).

Theorem 4.9 states a very interesting result. Together with Theorem 2.4, it
indicates that it might be possible to have level-phase independent stationary
distributions of the tandem queue for a range of differenThe key point is
whether the vectow that satisfies (19) also satisfies (18).

In fact it has been well-known since the work of Burke [1] and Jackson [5] that
the decay rate of the stationary humber of customers in the second queue is
irrespective of whetheq < w2 or n1 > u2, and not any of the other possible
values ofz. Why should this be the case? The answer is #atthe distribution
of J at level 0 satisfying (18), is precisely the vecterthat satisfies (19) with
z = p2. In other words, the decay ratettsat valuez for which R, which has the
properz~L-invariant measure.

This leads us to ask the question that if we varigd and thus (18), can we get
a vectorw that satisfies (19) for a value o&= py. If we can do this, we shall have
changed the decay rate of the stationary distribution of the number in the second
gqueue by changing the transition structure only when the second queue is empty.
In Section 6, we shall see that it is indeed possible to do this.

Before we move on, we shall briefly discuss how the results of Takahashi,
Fujimoto and Makimoto [17] apply to the tandem network example. An appli-
cation of Corollary 1 of [17] shows that if there exists a scaland vectow e ¢1
that satisfy (28) and a vectgrthat satisfies

(47) Q(z2)y=0

with wy < oo andz~1wApy # zwAyy, then (19) is satisfied is z-positive and the
right eigenvector oR is dominated elementwise lyy Furthermore, by Corollary 2
of [17], if mgis such thair gy < 0o, then the decay rate of the QBD process is equal
toz.

After some calculation, we see that, when > u», the conditions of
Corollary 1 of [17] are satisfied with = pp, W such thatwy = p¥ andy such

that y, = ,02_". Becauserg = w, we can then derive the fact that the decay rate
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is p2. However, this reasoning does not workuif < w» and, even ifuy > uo2, by
altering Ql, we can create the situation wherg is az1-invariant measure oR
for a different value ot. In this caser must necessarily be such thagy = oco.
We give an example of such a construction in Section 6.

5. The case where m is finite. In the case where: is finite, because the
tandem queue is assumed to be stable, we know by Corollary 2.6 that the nonzero
eigenvalues oRR,, are given by the values af within the unit circle for which
detQ(’"”) (z) = 0. Thus(z, w) is an eigenvalue—eigenvector pairRyf if and only
if zero is an eigenvalue @ "+ (z) with corresponding eigenvectat. In the first
part of this section, we shall explore the relationship between the value$oof
which detxl,+1 — 0™+D(z)) = 0 and the zeros of a sequence of orthogonal
polynomials closely related to th@, (x; z).

Let the sequence of polynomiaE,(x; 2), be defined such thaly(x; 72)=1
and, forn > 1,

~ AZ
Py(x;2) = Py(x;2) — — Py_1(x; 2).
1

The polynomialsf’n (x; z) satisfy the recursion
48)  Po(x;2)=1,
(49) TPixin)=x+uz(l-2),

(50) %E(x; )= (x+ A+ p1+ u2(l —2))Pr(x; 2) — A1 —2),

ML B (i) = (x 4+ A+ 1+ pal — 2)) Py_1(x: 2) — APy_a(x; 2),
(51)

n>3.

LEMMA 5.1. For each value of z > 0, ﬁn(x;z) has n distinct real zeros
Xn1 < -+ <X, Whichinterlace. Moreover, x,, , > x, , and

(52) Xn,i <)2n,i < Xn,i+1, i =1,...,I’l—1.
PROOF The statement of the lemma follows from Exercise 1.5.4 of [2]]

LEMMA 5.2. (a)The eigenvalues of 0™ (2) arethe zerosof P,(x; z).
(b) The eigenvalues of Q" (z) are the zeros of P,(x;z) and for each such
eigenvalue x, the corresponding left eigenvector is given by

(Po(x; 2), Pr(x;2), ..., Puo1(x;2)).
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PrROOF We have already observed [after (43)] that O is an eigenvalue
of 0™ (z) if and only if it is a zero of P,(x;z). For the general case, let
I,, denote the identity matrix of dimensian Write Q™ for Q0 (z) and similarly
for 0™ (z). The characteristic polynomial @@ is

def(xl; — Q) =x + A + p2(1—2).
Because the™ are tridiagonal, we have

de(xlz — Q@) = (x + A+ p1 + n2(1 - 2)) defx /3 — V) — %x

and, forn > 3,
def(x 1, — Q(n)) =(x+A+pu1+p2l—2z))detxl,—1 — Q(”_l))

~ L detxl,_o — Q02).
Z

Hence, we see thaju1/z)" P,(x; z) is the characteristic polynomial @™, and
thus, for eachn > 1, the eigenvalues 0©" are the zeros of,(x; z). This
proves (a).

To show the first part of (b), observe that the characteristic polynomiél(’éf
satisfies

det(xl, — 0™) = (x + p1+ p2(1—2)) det(xf, 1 — Q")

— B detxfy_2 — 072
Z

=detxl, — Q™) — rdet(xl,_1 — Q")

= (&) (Pn(x; 7)) — 2 n—1(X; Z))-
Z n1

Hence, the eigenvalues @f(”) are the zeros oﬁn (x; 2).
To prove the second part of (b), it is readily checked that for each eigenvalue
of 0™, for which P, (%; z) = Az P,—1(%; z) /11, we have

(Po(R:2), PL(R:2). ..., Pa1(%:2))(R1, — O™) =0. O

Since R,, is positive (see Remark 3.1), an eigenveatos (wo, W1) Of R,
can be positive if and only ifv; is the Perron—Frobenius eigenvector &y,
By Theorem 2.5w is an eigenvector oD+ (z) with eigenvalue zero and,
because ™tV (z) is an ML-matrix (see [16])w can be positive if and only if zero
is thelargest eigenvalue o0+ (7). In Lemma 5.3, we shall show that there is
exactly onez € (0, 1) such that the largest eigenvalue@qm”) (z) is zero.

LEMMA 5.3. For m > 1 there exists a unique number Z,,11 in the inter-
val (O, 1) such that J%m-l—l,m-l—l(zm-i—l) =0.
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PrROOF Consider the nonnegative matrix

2O A 14 p2) 1 + 20" (2)
A+ p1+p2

and let &,,11(z) denote its largest eigenvalue. Fare (0,1), E,11(z) is

a substochastic matrix, which is stochastic wheal. Thus Lemma 1.3.4 of [11]
can be applied. Specifically, under the appropriate stability condition (23) or (24),
the equationr = §,,11(z) has exactly one solutiof),; 1 € (0, 1). It is readily seen
thatz = &,,+1(z) if and only if the maximum eigenvalue @t (z) is equal to
zero and the result follows.[d

(53) Emt1(z) =

We have now proved the following theorem.

THEOREM 5.4. When m is finite, the maximal eigenvalue of R,, is given
by the unique Z,,+1 € (0, 1) such that x,,+1,m+1(Zm+1) = 0. The corresponding
eigenvector is strictly positive. The eigenvectors corresponding to any other
nonzero eigenvalue of R,, cannot be nonnegative.

In view of (12), it is obvious that Theorem 5.4 determines the geometric decay
rate of the level process we were looking for. The following corollary concerns
the limiting behavior of this decay rate as the size of the first buffer, tends
to infinity.

COROLLARY 5.5. Let r, be the Perron—Frobenius eigenvalue of R, for
finite m.

If w1 < o, thenry, ro, ... strictly increasesto ».

Onthe other hand, if 1 > w2, thenry, ro, ... strictly increasesto p».

PROOF It was stated in Lemma 4.6 thét, ,(z)} strictly increases tg1(z).
To prove that{x, ,(z)} also increases tq1(z), the interlacing property ensures
that we need only to show, (x1(z); z) > 0 forn > 1.

For the case > p; we haveyi(z) = x(z), and from (48)—(51) it is easily
checked by induction tha, (x (z); z) = (1 — z)(A/u1)" > 0.

For the case < p1, whereyx1(z) = 1(z), first note that

Py(7(2); 2) — /21 Pr-1(t(2); 2) > 0.
This can be shown easily by induction, using (41)—(43). Since we can write

Pu(t(2); 2) = Pu(t(2); 2) — V201 Pu-1(7(2); 2) + (v/201 — 201) Pa—1(7 (2); 2),

O0<zo1 <1 and P,_1(t(z);z) > 0 (see Lemma 4.7), we conclude that
Py (t(2);2) > 0.

Now, by Lemmas 5.3 and 4.5, the sequenge= {Z,,+1} increases strictly to
a z* € (0,1) which is the unique zero of1(z) in the interval (0, 1). Assume
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that u1 < u2. By Lemma 4.1, this can occur only when< p;. In this case
x1(z) = 7(z), which has a zero at = n. Thusr,, = {Z,+1} increases strictly
to n. On the other hand, when1 > 2, Lemma 4.1 implies that > p1 and
x1(z) = x(z), which has its zero at = p2. The sequence,, = {Z,,+1} then
increases t@,. [

The above result shows that we must clearly distinguish between two possible
regimes. These correspond with the different cases identified in Lemma 4.1.
In the first regime, whenui < uo, the first queue is the bottleneck and
lim,,— o0 SA(R») = 1. In the second regime, whem > u2, the second queue is
the bottleneck and lipp. - SP(R,,) = p2. Note also that, in this second regime,
Lemma 4.6 tells us that the limit of the sequence of the maximal eigenvaligs of
is different from the limit of the sequence of second-largest eigenvalues and so the
limiting spectrum ofR,,, has an isolated point.

We observed in Section 4 that the decay rate of the tandem Jackson network
with infinite waiting room at the first queue is always irrespective of whether
uw1 < u2 or ug > u2. We thus see that, whem > uo, the limiting decay rate of
the finite truncations is indeed that of the infinite system. However; ik 1o,
the limiting decay rate of the finite truncations is different from that of the infinite
system. We have thus provided a counterexample to the idea that the decay rate
of a QBD process with infinitely many phases can be derived by calculating the
decay rates of finite truncations and then allowing the point at which truncation
occurs to grow to infinity.

6. Varying the decay rate. An interesting question arises from the observa-
tions at the end of Section 4. By appropriately changing the transition intensities
at level zero, in other words changing the entriein can we ensure that the sta-
tionary distribution decays at a rate that is given by any of the feasible valu@s of
In changingQ; we have a great deal of freedom, so we might expect that the an-
swer is yes. In fact it is. Below, we present two examples in whighremains
a tridiagonal matrix.

EXAMPLE 6.1. Suppose > u2. We wish to have a decay ratesatisfying
the conditions in Theorem 4.9, which in this case means thafo, 1). By
Lemmas 4.2 and 4.8 the vecter given in (34) will be positive and ifl. We
now replace each in Q1 by a phase-dependeht. Specifically, we define.;
recursively by

Ao = 1122,

> x 0 wi-1
Ai =Ai-1

(54)

+ pez — pa, i=12...

]

The following proposition shows that thikefines proper transition intensities.
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PROPOSITION6.1. The sequence {X; 1720 Isstrictly positive.
PROOF Let ¢(v) be the generating function of the sequeneg wo, . ...
From (32) we find after some algebra that

n1(l—wvz)
Azv2—zO +p1+ p2(l—2)v+pa

¢(v) =

Substitutingy = 1 gives

(55) dp(H) =) w;, =
Z YT pot
Now, consider the sequenes, y1, ..., with y; = A;w;. This sequence satisfies
the recursion
yi = Yi—1+ (h2z — po)wi, i=12,...,

with yo = uoz > 0. If uoz > p1, then ally; (and hencé,;) are obviously positive.
On the other hand, ifi2z < 1, thenys, y, ... is monotone decreasing, with

o0
Iim y; = poz + (moz — 1) Z w; =0,
oo i=1

which shows that all; are positive in this case as well]

The recursion (54) ensures thatis a (u2z)~l-invariant measure oR, Q.
Moreover,w satisfieswél = —2ZW. Hencew(él 4+ R Q2) =0, so that by (5)
and Theorem 2.2 it follows that the stationary distributmn= (xg, m1,...)
of (Y, J;) is given by

Ty =CcWRL =27"cw, n>0,

for some normalizing constant Thus, it is clear that indeed is the decay rate in
this model.

This example has demonstrated the counterintuitive result that, by changing the
arrival intensity to the first queue when the second is empty, such that it becomes
dependent of the number of customers in the first queue, we can produce any decay
rate in the ranggo», 1).

EXAMPLE 6.2. Supposet; < u2. We wish to have a decay rate with
z € [, p2]. Again, the vectow given in (34) is positive and itt. This time
we leave the arrival rate unchanged, but introduce an extra transition; riaten
state(0,i) to (0,i — 1). This corresponds to removing customers from the first
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gqueue, without introducing them to the second queue. The valas recursively
defined as

(A — p2z)wo
vp=——",
w1q
(Vi + A+ p1— pez)w; — Aw;_1
Vi+1 = .
Wi41

PROPOSITIONG.2. The sequence {v;}°, positive.

PrROOF The proof is similar to the proof of Proposition 6.1. First, we
claim that

(56) A+ p1 — p2z)w; < Aw;_1, i=12,....

To see this, consider the sequence of polynonji@lg, defined by®,, (x) = (A +
w1 — w2z) Py(x) —AP,_1(x), n > 1, with the polynomial§ P, } given in (41)—(43).
Imitating the proof of Lemma 4.5 fo®, instead ofP,, we find that the zeros
of {®,} interlace, that the largest zero 6f, is larger than the largest zero 8§
and that the second largest zeroayf is smaller than the largest zero Bf. Now,
for z € [n, p2], the largest zero aP, is less than or equal to 0. Heneé®, can have
at most one zero greater than 0. It is easily verified that the largest z&g isf
given by (A — p22)(12z% — (A + 1 + pu2)z + n1)/(z(A — poz + p1)), which is
strictly positive for all O< z < p». Hence, all®,, have exactly one strictly positive
zero. Thus, because the leading coefficier®pfs positive,©,,(0) must be strictly
negative, which is equivalent to (56).

Second, let; = ;w;,i=1,2,.... We have, forali =2, 3, ...,

Yi=Yi-1+ A+ p1— pu22)w; —Aw;_1,

where y; = A — w2z > 0. Thus, using (56)y1, y2, ... IS a strictly decreasing
sequence with limit

0 0
A — oz + (A4 p1—poz) Y wi — Ay w; =0,
i=1 i=0

where we have again used (55). This shows that;alre positive. [

As above, the recursion ensures Wa01 + R, Q2) = 0, so that the stationary
distribution of (Y;, J;) is given by

Ty =CcWR, = cz'W, n>0,

for some normalizing constant from which it is clear that is the decay rate in
this model.

Thus, by allowing customers at the first queue to be removed at specified rates
when the second queue is empty, we have been able to produce any decay rate
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in [n, p2]. Note that it is not possible using this scheme to produce a decay rate
greater thamw,. However, we can do so using a scheme such as thatin Example 6.1,
which is also applicable here, since the proof of Proposition 6.1 did not use the fact
thatuy > wo.

In the examples given abové,l was constructed such that the corresponding
mo is exactly equal to some l-invariant measure oR.,. As a consequence,
the stationary dlstrlbutlon ofY;, J;) has a product form However, it is also
possible to constru@l, so thatrg is a finite linear combination of 1-invariant
measures oR,. In that case the stationary distribution does not have a product
form. The decay rate is then given by the largest value with corresponding
z~L-invariant measure in the linear combination.

REMARK 6.3. Whenu < u2, the minimal attainable decay rate cannot be
less tharny and whenuy > o the minimal attainable decay rate cannot be less
thanp,. This follows becausg andp, respectively are the smallest valueg dbr
which az~1-invariant measure exists.

The maximal attainable decay rate is produced in a different way. Clearly, when
w1 > 2, any decay rate iip2, 1) can be produced. However, when < uo,
it is not immediately clear whether the matii, has a value € [u1/12, 1) with
a corresponding —1-invariant measurev that is not in¢1. If such a measure did
exist, the behavior at level 0 would be such that the first queue is unstable, while
the second remains stable and has decay:radephysical argument tells us that
this is possible only when= w1/ u2: if the first queue is unstable, then the second
gueue behaves like a standay M /1 queueing system with arrival rate, and
service ratgus. This implies that its decay rate could never be larger flagfuo.

7. Hitting probabilities on high levels: general QBD processes. In various
applications one is interested Iitting or exit probabilities of the level process.
In this and the following section, we shall consider the decay rate of these
probabilities, first in the context of a general QBD with possibly infinitely many
phases and then in the context of g M /1 tandem.

Fora < b, defineTf to be the first time that either level or level 5 is hit.
Also, letP;; denote the probability measure under which the QBD process starts
in (k,i). Fork > 0, we are interested in the decay ratekas> oo of the first exit
probabilities

Pk, j) = Pii(Jrx = J. Yrx = K),
which we collect into a matrixPX. Define the matrixH; to be equal toP} ™.

Thus, Hp is the 0 matrix and it is not difficult to see that, for> 1, H1, Ho, ...
satisfy the recursion

Qo+ Q1Hi + Q2H—1H =0,
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and the matrixPX is given by
(57) PkK :Hka+1---HK_1.

The following result is essentially a restatement of Lemma 8.2.1 of [7].

LEMMA 7.1. The sequence of matrices, H1, Ho, ... increases elementwiseto
the matrix H which is the minimal nonnegative solution to the matrix equation

(58) Qo+ O1H + Q2H?=0.

For the case whem is finite, it was shown in [9], Lemma 3.1, that, when
Condition 2.1 holds, eitheH is primitive or, by a suitable permutation of the
states, it can be written in the form

) =[5 1)

where L, is primitive andL. is lower triangular with its diagonal entries equal

to zero. A similar result can be established even wheis infinite. (At the time

of writing, this result, due to Latouche and Taylor, is unpublished. An explanation
can be obtained from Peter Taylor at p.taylor@ms.unimelb.edu.au.) Thus, when
m < oo, H has the decomposition (59), wheke is lower triangular and.1 is
irreducible and aperiodic. It follows from (14) that the convergence noofl. 1 is

well defined and given by

T nee a\1/n
C_nll_)moo( l(l’ .])) .
Let X* be the set of indices correspondingfig¢ and partition the matrice#ly,
conformally with our partition of the matri¥, so that

(k)
(60) Hy = [L%) Lfk>]'

The decay behavior of the hitting probabilities is described in Theorem 7.3.
However, first we need a lemma.

LEMMA 7.2. For any phase i, there exist numbers k* and N* such that, for
k> k*and N > maxk, N*), thereisav € ¥* with

(61) PN, v) > 0.

PrROOF First note that, for any giveV andk, say No andkg, there may not
be avg € ¥* such thatP,fZO(i, vo) > 0. Taking into account the irreducibility of
the doubly infinite process with generator (2), this could be because every path of
positive probability from statéko, i) to states of the forniNg, vg) with vg € X*
does one of the following:
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1. passes through a state of the fofVy, m) with m ¢ X* [by the decomposi-
tion (60), this can occur only if ¢ X*];

2. goes through level zero;

3. does both 1 and 2.

Consider a path frontk, i) to a state(No, vg) with Ng > k andvg € =* of the
form described in 1 above. L&t* be the highest level it reaches. Any path from
(No, vo) to level N* + 1 must hit levelN* + 1 in a statg N* + 1, v) with v € ©*
and, by irreducibility of the process with generator (2), there must be such a path.
Concatenating these two paths, we have constructed a path of positive probability
from (k,i) to (N* + 1, v) which first hits levelN* 4+ 1 in phasev € T*. If this
path does not pass through level 0, then we have constructed a path as desired. If it
does go through level 0 we modify it as described below.

If, after performing the modification described above, all paths from tgteé)
to states of the forniNg, vg) with vg € X* pass through level 0 choose one such
path let—k be the lowest level reached by the path and fdut ko + k. Then
if k> k*, there is a path of positive probability frotk, i) to a state of the form
(No + k — ko, vo) with vg € * which does not pass through level 0. This shows
that, for all phases, we can choosg* such that whert > k* there exists a path
of positive probability which does not pass through level 0 from gfaté to any
level N > max(k, Ng). The lemma is thus proved[]

THEOREM 7.3. Consider an irreducible QBD processwith a finite or infinite
phase space, satisfying Condition 2.1and (11). Thenfori € {0,1,...} and j € X*
there exists k* such that, for &k > k*,

log PX (@, j
(62) jim 9% /)
K—o0 K
where ¢ is the convergence normof Lq. For i, j ¢ X*, there exists K* such that,
for K > K*,

=log(o),

(63) PEG, j)=0.
ForieXx* j¢X*andal k < K,
(64) PEG, j)=0.

PROOE Forthe case wheligj € *, we have

log(PX i, j) _log(Ly” - LYV, j))
K o K
_ log(@n*~*a. )
- K
. e Elog((Ly)* (i, /&)




2084 D. P. KROESE, W. R. W. SCHEINHARDT AND P. G. TAYLOR

so that, lettingk — oo, we find by (14) that

log(PX (i. i
(65) lim sup—2tFi (1)
K—oo K

To show the opposite, choo%é€, N* and v so that (61) is satisfied. Then,
fork > k*, N > max(k, N*) andK > N, we have

PEG, =Y PYa. LY - LT Pa, )
I

< log(o).

(66) N (N\K—N .
> Py (i, v)(Ly )" (v, ).
Now we have
log(PL G, ) _ 10g(P* G, w) | log((Ly™) N, )

K - K K
log(PN(i,v)) K-—N _ . _
= DD B M og((L{Y) (v, YK,

so that, lettingk — oo, we find that
K/:
imin log(P;* (i, 1))

K

im inf > log(cn),

wherecy is the convergence norm af{"’. Since this holds for allv and, by
Lemma 2.3¢cy — ¢ asN — oo, we see that

log(PX (i, j
(67) jiming 29 (1) ’}{ G.7)

> log(c),
K—oo
which, together with (65), gives the result in this case.
Wheni ¢ ¥* andj € ¥*, we can still use Lemma 7.2 to chodseand N* so
that, whenN > N* andk > k*, there exists a € X* such that (61) is satisfied,
and argue as above from (66) that (67) is satisfied.
To get the analogue of (65), observe that, by (57) and (60), we must be able
to write
K-1
PKG, j) = Z L.(k)'__LSr—l)Lg-)Lg-r—&—l)___Lg-K—l)(i’j)
r=k
K-1
< Y LFLaLf TG, ).
r=k
Now, becausel. is lower triangular, there is a positive integef such that
Lf(i,v)=0foralls > s* andv ¢ X*. Thus, forK >k +s* + 1,
S*
PEG, ) <Y LLaLf G, )
s=0

= (DLET=0 G, o,
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where

S*

D=> L’LyLj "
s=0
Consider the Markov chain with transition matrX. Let 7 (j) be the first time
greater than or equal t&° + 1 that the chain visits statee ©* and let f ™ (i, j)
be the probability that (j) = n, conditional on the chain starting in stateg >*.
Then it follows easily that

K—k

(DL, = Y fF™a, HLEF G )
n=s*+1
and that
. F(,j;2)L{Jj, j; z)
(68) DL(i, j;z)= eS| ,
where
0
DL(, j;z) =Y (DL}, )",
n=0
o0
FG.jio= Y. f™aG )"
n=s*+1
and

o0
L(j.js2) =) L1(. D"
n=0
It is clear that f™ (i, j) < (DLY)(, j) and so the convergence radius of the
power seriesF (i, j; z) is greater than or equal to the convergence radius of the
power seriedDL(i, j; z). Therefore, by (68), the convergence radii of the series
DL(, j;z) andL(j, j; z) are the same. Thus we have

- log(DLEF G, j))
k“—>moo K B |Og(C)

and so

limsup
K—o0
Thus, the result is proved forg X* andj € ©*.
Wheni, j ¢ X*, using the same definition ef as above, it follows that, for all
K > k+s*,

(69) PXG, j)=0,

K/:
|09(PkK(l,J)) < log(c).
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while we immediately havePkK (i, j) =0 wheni € X* andj ¢ X*. This proves
the second part of the theoremni]

To finish off this section, we present some results for the mdifjxthat are
analogous to Theorem 2.5 and Corollary 2.6 for the maRyjx This will allow
us to conclude that the eigenvaluesRyj and H,, coincide whenm < oo; see
Corollary 7.6.

As for (21) it is easy to see that, when the column veutand scalat satisfy
H,v=zv,then

(70) (Qo+201+2202)v=0.

Again, under certain conditions onandz, the converse is true, irrespective of
whetherm < oo or m = oo. This is shown in the following theorem, which is
basically Theorem 5.3 of [14].

THEOREM 7.4. Consider a continuous-time QBD process with generator of
the form (1). Then, if the complex variable z and the vector v = {v;} are such that
|z] < Land > |vklgr < oo, then (70) implies that

H,v=2zv.

Following essentially the same proof as for Corollary 2.6 we have a characteri-
zation for the case: < oo.

COROLLARY 7.5. For anirreducible QBD process with a finite phase space,
satisfying (11), the eigenvalues of H,, are all the zeros of the polynomial

(71) det Qo+ 201 +2°Q2)
that lie strictly within the unit circle.

The following result is now immediate from Corollaries 2.6 and 7.5.

COROLLARY 7.6. For anirreducible QBD process with a finite phase space,
satisfying (11), the eigenvalues of H,, and R,,, coincide.

In particular, wherm < oo the hitting probabilitiestK(i,j) have the same
geometric rate of decay as the stationary probabilitigsin (12).

8. Hitting probabilities on high levels. the tandem network. Assume that
the tandem queue starts in stéatei) with i > 1, that is, with one customer in the
second queue and> 1 customers in the first queue. It is possible that the process
can first hit level 2 before level 0 with any numbger i — 1 customers in the first
queue, that is, in any sta{@, j) with j > i — 1. If the queue starts in stafé, 0),
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then it can first hit level 2 before level 0 with any number of customers in the
first queue. A consequence of this is that the makfjx for this QBD process is
irreducible. It then follows from Theorem 7.3 that
K/:
(72) jim 109F1 /)
K—o K
wherec is the convergence norm @f,,. Thus, to calculate the decay rate of the
hitting probabilities, we need to calculate the convergence norHj,of
To do this for the case: = oo, we could follow a line of reasoning similar to
that we used in Section 4 based upon Theorem 7.4 instead of Theorem 2.5. Thus,
we would calculate conditions for a solutigrio Q(z)v = 0to be both positive and
in ¢1. However, unlike the ~-invariant measure aR.,, which affects the decay
rate of the stationary distribution, thel-invariant vector off,, has no effect on
the decay rate of the hittingrgbabilities. We thuslwoose to calculate the decay
rate of the hitting probabilities in a more efficient way.
By Corollary 7.6, for finitem, the eigenvalues oR,, and H,, coincide. Thus
Theorem 5.4 and Corollary 5.5 apply #,, as well as tor,,. In particular, we
have the following theorem.

=log(c),

THEOREM8.1. Whenm isfinite, the following results hold:

1. The maximal eigenvalue h,, of H,, is given by the unique z,,+1 € (0, 1) such
that xAm+1,m+1(2m+1) =0.

2. If w1 < uo, then hy, ho, ... strictly increases to n. On the other hand, if
w1 > 2, then hy, ho, ... strictly increasesto po.

By Lemma 2.3, it follows that the convergence normH, is then equal to;
if w1 < u2 andpy if w1 > uo. Together with Theorem 7.3, this gives us the
following theorem.

THEOREM8.2. 1.When m isfinite,

log PG, )
(73) Klinoo -k - log (7).
2. When m isinfinite:
(@) when ua < oz,
_logPfG. j) .
(74) Klinoo - r  - log(n);
(b) when pa > pa,
- log PG, )
(75) Klinoo — r  - log(p2).
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The decay rate of the tiing probabilties in the case of infinite: is thus the
same as the decay rate of the stationary number in the second queuewher,
but it is not the same whem; < 2. This is an interesting property of the tandem
Jackson network, which we believe was not known previously.

There are two further interesting questions about the decay rate of the hitting
probabilities that we have not addressed above. The first question involves the
decay rate op_; PkK (i, j) asK — oo in the casen = oco. It follows immediately
from Theorem 8.2 that this decay rate is larger thaand oo whenu1 < 2 and
u1 > w2, respectively. We conjecture that it is equal to these values, although
we currently have no proof of this.

The second question involves the deaaje of the hitting probabilities on
level K if the process starts in level 1 according to some distributi@n
Of particular interest is the situation when is the stationary distributior 1 at
level 1. These hitting probabiliteeare given by the components of

(76) X1P1K.

Whenm < oo, the decay rates of these probabilities are easily seen to be the same
as the decay rates @QK (i, j), given by Theorem 8.2. However, when= oo, this

need not necessarily hold. Indeed, our experience with the mgsixvould lead

us to believe that we could achieve any decay rafg,ipv1/u2) if u1 < u2 and any
decay rate ifp2, 1) if u1 > u2. However, since we have no theorem analogous
to Theorem 7.4 that can inform us about #&-invariant measures, rather than
the z~1-invariant vectors, ofd,, we do not currently see how this problem can

be approached.

Acknowledgments. Authors thank two anonymous referees for many helpful
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