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SPECTRAL PROPERTIES OF THE TANDEM JACKSON
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University of Queensland, University of Twente and Centre for Mathematics
and Computer Science, and University of Melbourne

Quasi-birth-and-death (QBD) processes with infinite “phase spaces” can
exhibit unusual and interesting behavior. One of the simplest examples of
such a process is the two-node tandem Jackson network, with the “phase”
giving the state of the first queue and the “level” giving the state of the second
queue.

In this paper, we undertake an extensive analysis of the properties of
this QBD. In particular, we investigate the spectral properties of Neuts’s
R-matrix and show that the decay rate of the stationary distribution of the
“level” process is not always equal to the convergence norm ofR. In fact,
we show that we can obtain any decay rate from a certain range by controlling
only the transition structure at level zero, which is independent ofR.

We also consider the sequence of tandem queues that is constructed by
restricting the waiting room of the first queue to some finite capacity, and
then allowing this capacity to increase to infinity. We show that the decay
rates for the finite truncations converge to a value, which is not necessarily
the decay rate in the infinite waiting room case.

Finally, we show that the probability that the process hits leveln before
level 0 given that it starts in level 1 decays at a rate which is not necessarily
the same as the decay rate for the stationary distribution.

1. Introduction. A quasi-birth-and-death (QBD) process is a two-dimensio-
nal continuous-time Markov chain for which the generator has a block-tridiagonal
structure. The first component of the QBD process is called thelevel, the second
component thephase.

A comprehensive discussion of the properties of QBD processes with finitely
many possible values of the phase variable can be found in the monographs of
Neuts [11] and Latouche and Ramaswami [7]. In particular, it is known that
the level process of a positive-recurrent QBD process with a finite phase space
possesses a stationary distribution which decays geometrically as the level is
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increased. The decay parameter is equal to the spectral radius of Neuts’sR-matrix,
which is strictly less than 1. Similarly, the probability that a QBD process hits
leveln before level 0 given that it starts in level 1 is known to decay geometrically
with the same parameter.

For QBD processes with aninfinite phase space the situation becomes more
complicated. TheR-matrix is now infinite-dimensional, and its spectral properties
are not obvious. Also, the relationship between various decay parameters is
different from the finite-dimensional case. A start in the study of such processes
was made by Takahashi, Fujimoto and Makimoto [17]. They gave conditions under
which the infinite-dimensionalR is α-positive (see Section 2 for a definition).
Under a further condition on the stationary distribution at level 0, they were then
able to infer that the stationary distribution decays at rateα. However, as we shall
see in Section 4, there are many circumstances where the conditions of [17] are
not satisfied.

The purpose of this paper is to make a contribution to the study of the behavior
of infinite-phase QBD processes by considering a special case which exhibits
interesting behavior. This special case is a two-node tandem Jackson network, in
which the number of customers in the first queue gives the phase variable and the
number of customers in the second queue gives the level variable. This system
was studied via simulation in [6], where the authors used some of the results of
the current paper to calculate the relevant decay rates. It is also a special case of
the system studied in [3].

We show that, when the first queue has an infinite waiting room, the decay rate
of the stationary distribution of the “level” process (the state of the second queue)
may not be equal to the convergence norm ofR, which can be thought of as the
analogue of the spectral radius in the infinite-dimensional case. In fact, we show
that we can construct a range of decay rates for the stationary distribution of the
second queue by controlling only the transition structure when the second queue is
empty, that is, at level 0. Futhermore, the decay rate, asn → ∞, of the probability
that the number of customers in the second queue hitsn before 0 given that it
starts at 1 may not be the same as the decay rate of the stationary distribution.
Such behavior does not occur in finite-phase QBD processes.

We also consider the limiting behavior of the tandem queue when the waiting
room of the first queue is finite, and increases to infinity. We show that the
eigenvalues of theR-matrix converge to a continuum, possibly with one additional
isolated point—the latter being the case when the second buffer is the bottleneck.
A consequence of this is that the decay rate in the infinite waiting room case
may not be the same as the limiting value of the decay rates in the finite waiting
room case.

The rest of the paper is organized as follows. In Section 2 we present some
general results for QBD processes. We consider processes with both finite and
infinite phase spaces. In Section 3 we formulate the two-node tandem Jackson
network as a QBD process. In Sections 4 and 5, we discuss the decay rate of
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the stationary distribution when the capacity of the first queue is infinite and finite,
respectively. These sections make heavy use of the properties of certain orthogonal
polynomials. In Section 6, we show how we can obtain any decay rate for the
stationary distribution of the second queue by controlling the transition structure
when the second queue is empty. In Sections 7 and 8, we turn to the question of the
decay rate of the probabilities that the process hits leveln before level 0. Section 7
deals with general QBD processes; Section 8 deals with the specific case of the
tandem Jackson network.

2. QBD processes. A level-independent QBD process is a continuous-time
Markov chain(Yt , Jt , t ≥ 0) on the state space{0,1, . . . } × {0, . . . ,m}, whose
generatorQ has a block tridiagonal representation

Q =


Q̃1 Q0

Q2 Q1 Q0

Q2 Q1 Q0

Q2 Q1 Q0
. . .

. . .
. . .

 .(1)

Here, the matricesQ0,Q1,Q2 and Q̃1 are (m + 1) × (m + 1) matrices. The
parameterm may be finite or infinite. The random variableYt is called thelevel of
the process at timet and the random variableJt is called thephase of the process
at timet .

To avoid complications, we assume that the following condition is satisfied.
A discrete-time version of this condition appeared in [9].

CONDITION 2.1. The continuous-time Markov chain on the setZ × {0,

. . . ,m}, with generator
. . .

. . .
. . .

Q2 Q1 Q0

Q2 Q1 Q0
. . .

. . .
. . .

 ,(2)

is irreducible.

There are a number of consequences of Condition 2.1, which we shall use later.
This condition is satisfied in the QBD process model for the tandem queue which
is presented in Section 3.

We set the stage by mentioning some well-known results, at the same time
fixing some notation. By Theorem 3.2 of [13], the limiting probabilitiesπkj :=
lim t→∞ P(Yt = k, Jt = j) exist. Let us define the vectorsπk = (πk0, . . . , πkm),
for k = 0,1, . . . , andπ = (π0,π1, . . . ). Then

πk = π0R
k, k ≥ 0,(3)
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whereR is the minimal nonnegative solution to the equation

Q0 + RQ1 + R2Q2 = 0.(4)

The matrixR has a probabilistic interpretation. Letµi be the mean sojourn time
in state(k, i), for k ≥ 1. ThenR(i, j) is µi times the total expected time spent in
state(k + 1, j) before first return to levelk, starting from state(k, i).

Before turning to the relation between the matrixR and the decay rates of
interest, we discuss the issue of ergodicity, both form < ∞ andm = ∞, noting
a small inaccuracyin the literature regarding the latter case.

THEOREM 2.2. The QBD process is ergodic, that is, π is positive and has
components which sum to unity, if and only if there exists a probability measure y0
such that

y0(Q̃1 + RQ2) = 0(5)

and

y0ν < ∞,(6)

where ν = (I + R + R2 + · · · )1. In this case

π0 = y0/y0ν.(7)

The matrixQ̃1 + RQ2 in (5) is the generator of the process of(Yt , Jt ) filtered
so that it is observed only when it is in level 0. Thus, the condition that there exists
a probability measure satisfying (5) states that the filtered process at level 0 must
be ergodic.

In [13], condition (6) is replacedby the elementwise condition

ν < ∞.(8)

For the casem < ∞, both conditions are equivalent. However, whenm = ∞, the
latter condition isnot sufficient, since it does not guarantee thatπ0 is nonzero;
we may havey0ν = ∞ even whenν is finite.

Specializing to the casem < ∞, inequality (6) is satisfied if and only if

sp(R) < 1,(9)

with sp(R) denoting the spectral radius ofR.
If m is finite and there exists a vectorx with x1 = 1 such that

x(Q0 + Q1 + Q2) = 0(10)

and

xQ01 < xQ21,(11)
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then the QBD is positive recurrent; see [11] or [10]. Under the additional
assumption thatQ̃1 = Q1 + Q2, this was proved for the infinite case by
Tweedie [18]. Equation (11) can be interpreted as requiring that “the average drift
of the level process is negative.”

We now turn to the decay rate of the stationary distribution, assuming that the
QBD process is ergodic. This decay rate is sometimes also referred to as thecaudal
characteristic. We start with a known result for the casem < ∞, stating that the
geometric decay rate is given by the spectral radius ofR. In [7], page 205, it was
shown that

lim
K→∞

∑
i πKi

(sp(R)K)
= κ,(12)

whereκ is a constant. In other words, the marginal stationary probability that
the QBD is in levelK decays geometrically with rate sp(R).

Turning to the casem = ∞ the situation becomes more complicated, and
we come to the core of one of the problems that are dealt with in this paper. We are
looking for an “infinite-dimensional” analogue of the limiting result (12), and in
particular for the role of the spectral radius ofR in it. Clearly,R is now a square
matrix of size∞.

There are at least two candidates to consider for this analogue. One approach
would be to considerR to be a linear operator from the Banach space�1 to itself.
We could then hope that the decay rate we are looking for is given by the spectral
radius of this operator, if it exists. We shall take a different approach, and use the
infinite-dimensional analogue of the Perron–Frobenius eigenvalue ofR. This is
theconvergence norm of R.

Some relevant concepts about the Perron–Frobenius theory of nonnegative
matrices are recalled below. For details we refer to [15, 16].

For a finite-dimensional, square, irreducible and nonnegative matrixA, there
exists a strictly positive eigenvalue which is simple and is greater than or equal to
the modulus of all the other eigenvalues. To this eigenvalue corresponds a strictly
positive eigenvector. The eigenvalue is called thePerron–Frobenius eigenvalue
of A.

To a large extent, this result can be extended toinfinite-dimensional matrices.
Let A be a nonnegative, aperiodic and irreducible matrix. We would like to prove
the existence of a strictly positiveξ and a strictly positive vectorx such that

xA = ξx.(13)

The power series
∞∑

k=0

Ak(i, j)zk

has a convergence radiusα, 0 ≤ α < ∞, independent of i andj . This common
convergence radius is called theconvergence parameter of the matrixA. When
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k=0 Ak(i, j)αk converges, the matrix is calledα-transient. Otherwise it is called

α-recurrent. An α-recurrent matrixA is α-null if lim k→∞ Ak(i, j)αk = 0 and
α-positive otherwise.

The quantity 1/α is called theconvergence norm of A. It can be shown to satisfy

1/α = lim
k→∞

(
Ak(i, j)

)1/k(14)

independently ofi andj . This implies, in particular, that if the dimension ofA is
finite, then the convergence norm is exactly the Perron–Frobenius eigenvalue ofA

([16], pages 200 and 201).
Forβ > 0, a nonnegative vectorx is called aβ-subinvariant measure of A if

βxA ≤ x(15)

and a nonnegative vectory is called aβ-subinvariant vector of A if

βAy ≤ y.(16)

The measurex and vectory are calledβ-invariant when equality holds in (15)
and (16), respectively.

The infinite-dimensional analogue of the Perron–Frobenius result is the follow-
ing (see, e.g., [16], Theorems 6.2 and 6.3):

No β-subinvariant measure can exist forβ > α. If A is α-recurrent, then there
exists a strictly positiveα-invariant measure. IfA isα-transient, then there exists
an α-subinvariant measure that is not invariant: there may or may not exist
an α-invariant measure. By applying the above to the transpose ofA, similar
conclusions can be reached aboutα-invariant vectors.

It is a common misconception to believe that 1/α is the largest “eigenvalue”ofA.
This is true in the finite-dimensional case, but not in the infinite-dimensional case.
The result above states only that there cannot be any nonnegativex satisfying (13)
with ξ < 1/α. In fact, in this paper we shall encounter examples of matricesA

such that (13) is satisfied by a positive vectorx for ξ > 1/α.
For infinite-dimensional matricesA it is useful to know when the convergence

parameterα can be found as a limit of convergence parameters{α(k)} from a
sequence{A(k)} of finite-dimensional matrices. For example, in Theorem 6.8
of [16], it is shown that the convergence parameters of the(n×n) northwest corner
truncations ofA converge to the convergence parameter ofA. The following result
will be of use to us in Sections 7 and 8.

LEMMA 2.3. Let {A(k)} be a sequence of nonnegative matrices that increases
elementwise to an irreducible matrix A, as k → ∞. Let α(k) denote the
convergence parameter of A(k) and let α be the convergence parameter of A. Then
the sequence α(k) is decreasing with limk→∞ α(k) = α.
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PROOF. By (14) and the fact thatA(k)(i, j) ≤ A(k+1)(i, j), we have

α(k+1) ≤ α(k).

Therefore the sequence{α(k)} is decreasing and its limitα(∞) must exist. Also,
by (14) and the fact thatA(k)(i, j) ≤ A(i, j) for all k, we have

α ≤ α(∞).

Now let y(k) = (y
(k)
1 , y

(k)
2 , . . . )T be anα(k)-subinvariant vector ofA(k), with

y
(k)
1 = 1, and lety∗ = lim inf k y(k), elementwise. Then we know that

α(k)A(k)y(k) ≤ y(k).

Taking lim infk→∞ of both sides and using Fatou’s lemma, we have, for eachi,

α(∞)
∞∑

j=1

A(i, j)y∗
j ≤ y∗

i .(17)

Iterating this, we find that, forν ≥ 1,

α(∞)ν
∞∑

j=1

Aν(i, j)y∗
j ≤ y∗

i .

Sincey∗
1 = 1 andA is irreducible, this shows thaty∗

j < ∞ for all j and, by (17),

that y∗ is anα(∞)-subinvariant vector ofA. Since noβ-subinvariant vector can
exist forβ > α, we must haveα(∞) ≤ α and thusα(∞) = α. �

Now let us turn back to the problem of determining the decay rate ofRn. From
the definition, it follows that if

∑∞
n=0 Rn(i, j) is convergent for alli andj , then the

convergence norm ofR must be less than or equal to 1. It is thus tempting to think
that the decay rate of the stationary distribution must be given by the convergence
norm. However, we have to be careful. As we noted above, it is a common
misconception to believe that the convergence norm is the largest “eigenvalue.”

Assume thatw is a z−1-invariant measure ofR such thatw
∑∞

i=0 Ri is finite.
Then z must be less than 1. To see this, note that the monotone convergence
theorem implies thatw

∑k
i=0 Ri converges elementwise tow

∑∞
i=0 Ri . This means

thatw
∑k

i=0 zi converges elementwise to a finite vector, which can be the case only
whenz < 1. This leads to the following result.

THEOREM 2.4. Consider an irreducible QBD process with a finite or infinite
phase space. If there exists a nonnegative vector w ∈ �1 and a nonnegative number
z < 1 such that

w(Q̃1 + RQ2) = 0(18)
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and

wR = zw,(19)

then the QBD is ergodic, and, for all fixed i = 0,1, . . . ,

πKi

zK
= wi(20)

for all K .

Theorem 2.4 shows that ifπ0 is az−1-invariant measure ofR for somez, then
the stationary distribution of(Yt , Jt ) has thelevel-phase independence property
(see [8]) and decays at ratez. If π0 is a (finite) linear combination of more than
onew (not necessarily nonnegative) that satisfieswR = ξw for someξ , then the
stationary distribution does not have this property. The decay rate is then given by
the value ofξ in the linear combination for which|ξ | is the largest.

For the casem < ∞, any π0 is a finite linear combination of eigenvectors
of R. The left eigenvector of the eigenvalue sp(R) must always be in this linear
combination. To see this, recall thatπ0 must be positive, and the Perron–Frobenius
right-eigenvectorv of R must be nonnegative and nonzero, which implies that
π0v > 0. Now write

π0 =
m∑

i=1

aiwi ,

wherew1 is the Perron–Frobenius eigenvector. Since, fori ≥ 2, thewi correspond
to eigenvalues ofR distinct from sp(R), we know thatwiv = 0 for these values
of i. Thereforeπ0v = a1w1v, which shows thata1 �= 0. This explains why the
stationary distribution decays at rate sp(R) whenm is finite.

As a final topic in this section, we quote a result that helps us to determine
z−1-invariant measures ofR. In the general casem ≤ ∞ it is easy to see from (4)
that, if the row vectorw and scalarz satisfywR = zw, then

w(Q0 + zQ1 + z2Q2) = 0(21)

whenever the change of order of summation involved in using the associative law
of matrix multiplication is permitted.

More important, under certain conditions the converse is true as well, again
irrespective of whetherm < ∞ or m = ∞. This is shown in the next theorem,
which is a statement of Theorem 5.4 of Ramaswami and Taylor [14]. See also [4]
for a more detailed analysis for the case wherem < ∞.

THEOREM 2.5. Consider a continuous-time ergodic QBD process with
generator of the form (1). Let qk = −Q1(k, k). If the complex variable z and the
vector w = {wk} are such that |z| < 1 and

∑
k |wk|qk < ∞, then (21) implies (19).
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Specializing to the finite casem < ∞, we obtain the following corollary.

COROLLARY 2.6. For an irreducible QBD process with a finite phase space,
satisfying (11), the eigenvalues of R are all the zeros of the polynomial

det(Q0 + zQ1 + z2Q2)(22)

that lie strictly within the unit circle.

PROOF. From the discussion above it follows that all eigenvalues ofR

lie within the unit circle. Each such eigenvaluez with corresponding left
eigenvectorw satisfies (21). Conversely, by Theorem 2.5, all solutions(z,w)

to (21) withz within the unit circle must be eigenvalue–left-eigenvector pairs ofR,
because the condition

∑
k |wk|qk < ∞ is automatically satisfied. In particular, the

eigenvalues ofR are the zeros of (22) within the unit circle.�

3. The tandem Jackson network seen as a QBD process. We now turn
to a specific class of QBD processes which may have infinitely many phases.
It models a simple Jackson network consisting of two queues in tandem (see
Figure 1). Customers arrive at the first queue according to a Poisson process with
rateλ. The service time of customers at the first queue is exponentially distributed
with parameterµ1. On leaving the first queue, customers enter the second queue,
where their service time has an exponential distribution with parameterµ2.
The capacity of the first queue is denoted bym, which may be finite or infinite.
In the case whenm is finite, customers that arrive to find the first queue full are
rejected. Fori = 1,2 let

ρi = λ

µi

and letJt andYt denote the number of customers in the first and second queue at
time t , respectively.

We shall examine the behavior of the two-dimensional Markov chain(Yt , Jt ),
viewed as a QBD process in whichYt represents the level andJt represents the
phase. The transition intensities of this QBD process are depicted in Figure 2.
When the capacity of the first queue is infinite, the phase space of this QBD process
is infinite and the boundary denoted bym in the figure is not present.

FIG. 1. A tandem Jackson network.
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FIG. 2. The transition intensities for the tandem network.

For the case wherem < ∞, the(m+1)× (m+1)-matricesQ0,Q1,Q2 andQ̃1
in (1) are given by

Q0 =


0 . . .

µ1 0 . . .

µ1 0 . . .
. . .

. . .

µ1 0

 , Q2 =


µ2

µ2
µ2

. . .

µ2

 ,

Q1 =


−(λ + µ2) λ

−(λ + µ1 + µ2) λ

−(λ + µ1 + µ2) λ
. . .

. . .

−(µ1 + µ2)


and

Q̃1 =


−λ λ

−(λ + µ1) λ

−(λ + µ1) λ
. . .

. . .

−µ1

 .

Obviously, Condition 2.1 is satisfied in this case and the stability condition (11)
translates into

ρ2 <
1− ρm+1

1

1− ρm
1

, ρ1 �= 1,(23)

ρ2 < 1+ 1

m
, ρ1 = 1.(24)
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For the case wherem = ∞, the tridiagonal blocks are given by the infinite-
dimensional matrices

Q0 =


0 . . .

µ1 0 . . .

µ1 0 . . .
. . .

. . .

 , Q2 =


µ2

µ2
µ2

. . .

 ,

Q1 =


−(λ + µ2) λ

−(λ + µ1 + µ2) λ

−(λ + µ1 + µ2) λ
. . .

. . .


and

Q̃1 =


−λ λ

−(λ + µ1) λ

−(λ + µ1) λ
. . .

. . .

 .

In this case, the well-known condition under which both queues are stable is

λ < min{µ1,µ2}.(25)

For both finite and infinitem, we are interested in the decay rate of the stationary
distribution of the tandem network as the number in the second queue becomes
large and its relation to the spectral properties of the matrixR. It will be convenient
to index this matrix with the size of the waiting room at the first queue. Thus we
shall write Rm for the situation where the size of this waiting room ism and,
in particular,R∞ when the waiting room at the first queue is unlimited.

For infinitem, under condition (25), it follows from the results of Burke [1] that
the arrival process to the second queue is a Poisson process with parameterλ and
so the second queue behaves like anM/M/1 queue with arrival rateλ and service
rate µ2. Thus the stationary distribution of the second queue is geometric with
parameterρ2 and its decay rate is simplyρ2. However, it is not at all clear how
this decay rate corresponds to the spectral properties of the infinite-dimensional
matrix R∞.

To study the spectral properties ofR∞ we shall make use of Theorem 2.5.
To facilitate our development,we introduce some notation.

For eachz with |z| < 1, z �= 0, letQ(z) be the infinite-dimensional tridiagonal
matrix (Q0 + zQ1 + z2Q2)/z, that is,

Q(z) =
−λ − µ2 + µ2z λ

µ1/z −λ − µ1 − µ2 + µ2z λ
. . .

. . .
. . .

 ,(26)

and letQ(n)(z) denote the(n × n) northwest corner truncation ofQ(z).
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For the finite case, define the(n × n)-matrix Q̂(n)(z) as

Q̂(n)(z)
(27)

=


−λ − µ2 + µ2z λ

µ1/z −λ − µ1 − µ2 + µ2z λ
. . .

. . .
. . .

µ1/z −µ1 − µ2 + µ2z

.

The significance of these matrices follows from Theorem 2.5. The infinite-
dimensional row vectorw satisfieswR∞ = zw for z �= 0 with |z| < 1, if∑

k |wk|qk < ∞ andw satisfies

wQ(z) = 0.(28)

For the tandem queue,qk is constant fork ≥ 1 and so the condition that∑
k |wk|qk < ∞ is equivalent to requiring thatw ∈ �1.
For the casem < ∞, the(m+1)-dimensional row vectorw is a left eigenvector

of Rm corresponding to eigenvaluez �= 0 with |z| < 1, if and only if it satisfies

wQ̂(m+1)(z) = 0.(29)

REMARK 3.1. Readers may note that (28) and (29) are not exactly equivalent
to (21). The latter follow from the former only ifz �= 0. In fact, for the tandem
network model, the vector(1,0,0, . . . ) satisfies (21) withz = 0.

By using the physical interpretation ofRm, we can see that the interesting
z−1-invariant measures ofRm are the ones for which (28) and (29) are satisfied.
For the tandem Jackson network, the expected time spent in any state at levelk + 1
before the process returns to levelk is nonzero if the process starts in a state(k, i)

with i > 0. Thus we know immediately from its physical interpretation that
Rm(i, j) is strictly positive for all i ≥ 1 and j ≥ 0. On the other hand, it is
impossible to visit levelk + 1 starting in state(k,0) without visiting a state(k, i)

with i ≥ 1 first, and soRm(0, j) = 0 for all j . ThusRm decomposes its indices
into two communicating classes,C1 ≡ {0} andC2 ≡ {1,2, . . . }. The eigenvector
(1,0,0, . . . ) of Rm with corresponding eigenvalue 0 has support onC1. All other
z−1-invariant measures ofRm have the form(w0,w1), wherew1 is az−1-invariant
measure of the positive submatrix̃Rm corresponding toC2. These are thew andz

for which (28) and (29) are satisfied.

4. The case where m is infinite. Before we start studying (28), we first give
some preliminaries. In this and the following sections, we shall frequently use
the function

τ (z) ≡ −λ − µ1 − µ2(1− z) + 2

√
λµ1

z
.(30)
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It is easy to see thatτ (z) is convex on(0,1) with limz→0 τ (z) = ∞, and
τ (1) = −(

√
λ − √

µ1 )2. Thus there is a unique valueη ∈ (0,1) with τ (η) = 0,
and, forz ∈ (0,1), τ (z) < 0 if and only if z > η.

We shall also frequently refer to the relationship betweenη, ρ1 and ρ2 in
the respective cases whenµ1 ≤ µ2 andµ1 > µ2. These are summarized in the
following lemma.

LEMMA 4.1. (a)When µ1 ≤ µ2, 0< η ≤ ρ2 ≤ ρ1 < 1.
(b) When µ1 > µ2, 0< ρ1 < η < ρ2 < 1.

PROOF. Observe thatτ (ρ2) ≤ 0, which immediately gives us thatρ2 ≥ η, and
τ (ρ1) = (1 − λ/µ1)(µ1 − µ2), which gives us thatρ1 ≥ η whenµ1 ≤ µ2 and
ρ1 < η whenµ1 > µ2. Together with the fact thatρ1 ≥ ρ2 if and only if µ1 ≤ µ2,
this proves the lemma.�

Now consider the system of equations (28) wherez is fixed such that
z ∈ (−1,1), z �= 0. Writing out the system, we have

−(
λ + µ2(1− z)

)
zw0 + µ1w1 = 0,(31)

λzwk−1 − (
λ + µ1 + µ2(1− z)

)
zwk + µ1wk+1 = 0, k ≥ 1.(32)

After substitutingwk = uk in (32), we derive the characteristic equation,

µ1u
2 − (

λ + µ1 + µ2(1− z)
)
zu + λz = 0.(33)

Since the discriminant of (33) is positive if and only ifz < 0 or τ (z) < 0, the form
of the solution now depends on the location ofz relative to 0 andη. We proceed
by giving the solution forwk in the cases−1 < z < 0 andη < z < 1. This is

wk = c1u
k
1 + c2u

k
2,(34)

where

u1,2 = (λ + µ1 + µ2(1− z))z ±
√

(λ + µ1 + µ2(1− z))2z2 − 4λµ1z

2µ1
.(35)

The coefficientsc1 andc2 can be derived from

c1 + c2 = 1,(36)

c1u1 + c2u2 = 1

µ1

(
λ + µ2(1− z)

)
z,(37)

where the first equation is due to the (arbitrary) normalizing assumption that
w0 = 1, and the second equation follows from boundary equation (31). Thus,
we find

c1,2 = 1

2
± (λ − µ1 + µ2(1− z))z

2
√

(λ + µ1 + µ2(1− z))2z2 − 4λµ1z
.
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Whenz = η, the vectorw is given by

wk = uk(1+ ck),(38)

with u = √
ρ1η and c = 1 − √

η/ρ1, while for 0 < z < η the real solution is
given by

wk = (
cos(kφ) + c sin(kφ)

)|u|k,(39)

with |u| = √
ρ1z,

φ = arctan

(√
4λµ1z − (λ + µ1 + µ2(1− z))2z2

(λ + µ1 + µ2(1− z))z

)
and

c = (λ + µ2(1− z))
√

z/λµ1 − cos(φ)

sin(φ)
.

As we pointed out after equation (28), in order to use Theorem 2.5 to establish
whetherw is indeed az−1-invariant measure ofR, we need to verify whether
w ∈ �1.

LEMMA 4.2. The vector w is an element of �1 if and only if

z1 < z < µ1/µ2,

where z1 = (2λ + µ1 + µ2 −
√

(2λ + µ1 + µ2)
2 + 4µ1µ2 )/(2µ2) < 0.

PROOF. First note that, for 0< z ≤ η, the form of (38) and (39) shows that it is
certain thatw ∈ �1. Thus we need only consider the case when the rootsu1 andu2
are real. This occurs when−1 < z < 0 orη < z < 1.

Unlessz = 1 or z = ρ2 both c1 andc2 are nonzero, so forw to be in�1 it is
necessary and sufficient that bothu1 andu2 are in(−1,1). To study when this is
the case, letf (u) be the left-hand side of (33). Then the statement that the roots
u1 andu2 are in(−1,1) is equivalent to saying that bothf (−1) > 0, f (1) > 0,
f ′(−1) < 0 andf ′(1) > 0.

When −1 < z < 0, f (1) is always positive and the condition thatf (−1)

is positive reduces toµ1 + (2λ + µ1 + µ2(1 − z))z > 0, which is the same
as saying thatz1 < z. Furthermore,f ′(1) is always positive andf ′(−1) can
be written as−f (1) − µ1 + λz, which is negative iff (1) is positive. When
η < z < 1, f (−1) is always positive and the condition thatf (1) is positive is
(1− z)(µ1 − zµ2) > 0, which reduces toz < µ1/µ2. Furthermoref ′(1) is always
negative andf ′(1) = f (1) − λ + µ1, which is positive whenf (1) is positive by
the stability condition (25).

The observations thatη < µ1/µ2, established by verifying thatτ (µ1/µ2) < 0,
and−1 < z1 < 0 complete the proof. �
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COROLLARY 4.3. When µ1 ≤ µ2, the system of equations

wR∞ = zw(40)

has solutions w ∈ �1 for all z ∈ (z1,µ1/µ2).
When µ1 > µ2, the system (40) has solutions w ∈ �1 for all z ∈ (z1,1).

Note that if µ1 < µ2, it is not certain whether (40) has solutions for
z ∈ [µ1/µ2,1), but any such solutions will not be in�1. In Remark 6.3 we show
that such solutions exist only forz = µ1/µ2.

For us to be able to apply Theorem 2.4, the vectorw must be nonnegative.
To investigate this, we start by generalizing (31) and (32) to

P0(x; z) = 1,(41)
µ1

z
P1(x; z) = x + λ + µ2(1− z),(42)

µ1

z
Pn(x; z) = (

x + λ + µ1 + µ2(1− z)
)
Pn−1(x; z) − λPn−2(x; z),

(43)
n ≥ 2.

For any given real and positive value ofz, (41)–(43) define a sequence of
orthogonal polynomials Pn(x; z). When x = 0, they reduce to (31) and (32),
from which we deduce the fact thatwn = Pn(0; z). Moreover, we shall see that
Pn(0; z) is positive for alln if and only if the zeros of all thePn(x; z) are less than
zero. Thus we can study conditions for the positivity ofw via the properties of the
polynomialsPn(x; z).

LEMMA 4.4. For z > 0, the sequence {Pn(x; z)} satisfies the orthogonality
relationship ∫

supp(ψ)
Pn(x; z)Pm(x; z)ψ(dx) =

(
zλ

µ1

)n

δn,m,

where

supp(ψ) =
{ [σ(z), τ (z)], if z ≤ ρ1,

[σ(z), τ (z)] ∪ {χ(z)}, if z > ρ1,

τ (z) is given by (30),

σ(z) = −λ − µ1 − µ2(1− z) − 2

√
λµ1

z
(44)

and

χ(z) =
(

λ

z
− µ2

)
(1− z).(45)
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The measure ψ is given by

ψ(dx) = 2

π

√
1− (x + λ + µ1 + µ2(1− z))2z/4λµ1

1− (x + λ + µ2(1− z))z/λ
dx, σ ≤ x ≤ τ,

ψ
({χ(z)}) = 1− λ

zµ1
if z > ρ1.

PROOF. For fixedz > 0, let

Tn(x) =
(√

µ1

zλ

)n

Pn

(
2x

√
λµ1

z
− λ − µ1 − µ2(1− z); z

)
.(46)

It follows that T0(x) = 1, T1(x) = 2x − b and Tn(x) = 2xTn−1(x) − Tn−2(x),
where

b =
√

zµ1

λ
.

The Tn’s are perturbed Chebyshev polynomials, for which the orthogonalizing
relationship is given (see [2], pages 204 and 205) by

2

π

∫ 1

−1
Tn(x)Tm(x)

√
1− x2

1+ b2 − 2bx
dx

+ 1{|b|>1}Tn

(
b

2
+ 1

2b

)
Tm

(
b

2
+ 1

2b

)(
1− 1

b2

)
= δn,m,

where1{|b|>1} = 1 if |b| > 1 and 0 otherwise. Substituting (46) and rewriting yields
the result. �

As a consequence we have the following.

LEMMA 4.5. For each value of z > 0, Pn(x; z) has n distinct real ze-
ros xn,1 < · · · < xn,n and these zeros interlace. That is, for all n ≥ 2 and
i = 1, . . . , n − 1,

xn,i < xn−1,i < xn,i+1.

PROOF. The lemma follows from a well-known result for orthogonal polyno-
mial sequences (see [2], Theorem 5.3).�

The support of the measureψ is intimately related to the limiting behavior of
the zeros of thePn(x; z). Some results are stated in the lemma below.
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LEMMA 4.6. The sequences of smallest, second-largest and largest zeros of
the Pn(x; z) possess the following properties:

{xn,1}∞n=1 is a strictly decreasing sequence with limit σ(z);
{xn,n−1}∞n=1 is a strictly increasing sequence with limit τ (z);
{xn,n}∞n=1 is a strictly increasing sequence with limit χ1(z),

where

χ1(z) = sup
(
supp(ψ)

) =
{

τ (z), if z ≤ ρ1,

χ(z), if z > ρ1.

For a proof, see [2], Section II.4.

LEMMA 4.7. Let z > 0. Then Pn(x; z) is positive for all n if and only if
x ≥ χ1(z).

PROOF. The leading coefficient ofPn(x; z) is positive for alln, which implies
that Pn(x; z) is positive forx > xn,n. Sincexn,n is strictly increasing, we know
that Pn(x; z) is positive for alln if x ≥ χ1(z). Conversely,Pk(x; z) is negative
for x ∈ (xk−1,k, xk,k) and so the interleaving property given in Lemma 4.5 implies
that, for everyx < xn,n, Pk(x; z) is less than zero for at least onek ∈ {1, . . . , n}.
Thus, ifx < χ1(z), Pk(x; z) is less than zero for at least onek ∈ Z+. �

Next, let us return to the question of when the vectorw which solves
(31) and (32) is positive.

LEMMA 4.8. The vector w is positive if and only if χ1(z) ≤ 0.

PROOF. This follows immediately from Lemma 4.7 and the fact that, for
a given value ofz, wn = Pn(0; z). �

Lemma 4.8 implies that, to decide whetherw is positive, it is important to know
for which values ofz the correspondingχ1(z) is less than or equal to 0. Since

χ1(z) = max
(
χ(z), τ (z)

) =
{

τ (z), for z ≤ ρ1,

χ(z), for z > ρ1,

the statement thatχ1(z) ≤ 0 implies that, forz ≤ ρ1,

τ (z) ≤ 0 and so z ≥ η

and, forz > ρ1,

χ(z) ≤ 0 and so z ≥ ρ2.
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Whenµ1 ≤ µ2, we know from Lemma 4.1 that

η ≤ ρ2 ≤ ρ1

and sow is positive for allz ∈ [η,1). Whenµ1 > µ2, Lemma 4.1 tells us that

ρ1 < η < ρ2.

Thusw is positive only forz ∈ [ρ2,1).
Summarizing this and Corollary 4.3, we have the following theorem.

THEOREM 4.9. When µ1 ≤ µ2, the system of equations (19) has positive
solutions w ∈ �1 for all z ∈ [η,µ1/µ2).

When µ1 > µ2, the system (19) has positive solutions w ∈ �1 for all z ∈ [ρ2,1).

Theorem 4.9 states a very interesting result. Together with Theorem 2.4, it
indicates that it might be possible to have level-phase independent stationary
distributions of the tandem queue for a range of differentz. The key point is
whether the vectorw that satisfies (19) also satisfies (18).

In fact it has been well-known since the work of Burke [1] and Jackson [5] that
the decay rate of the stationary number of customers in the second queue isρ2
irrespective of whetherµ1 ≤ µ2 or µ1 > µ2, and not any of the other possible
values ofz. Why should this be the case? The answer is thatπ0, the distribution
of J at level 0 satisfying (18), is precisely the vectorw that satisfies (19) with
z = ρ2. In other words, the decay rate isthat valuez for which R∞ which has the
properz−1-invariant measure.

This leads us to ask the question that if we variedQ̃1, and thus (18), can we get
a vectorw that satisfies (19) for a value ofz �= ρ2. If we can do this, we shall have
changed the decay rate of the stationary distribution of the number in the second
queue by changing the transition structure only when the second queue is empty.
In Section 6, we shall see that it is indeed possible to do this.

Before we move on, we shall briefly discuss how the results of Takahashi,
Fujimoto and Makimoto [17] apply to the tandem network example. An appli-
cation of Corollary 1 of [17] shows that if there exists a scalarz and vectorw ∈ �1

that satisfy (28) and a vectory that satisfies

Q(z)y = 0(47)

with wy < ∞ andz−1wA0y �= zwA2y, then (19) is satisfied,R is z-positive and the
right eigenvector ofR is dominated elementwise byy. Furthermore, by Corollary 2
of [17], if π0 is such thatπ0y < ∞, then the decay rate of the QBD process is equal
to z.

After some calculation, we see that, whenµ1 > µ2, the conditions of
Corollary 1 of [17] are satisfied withz = ρ2, w such thatwk = ρk

1 and y such
that yk = ρ−k

2 . Becauseπ0 = w, we can then derive the fact that the decay rate
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is ρ2. However, this reasoning does not work ifµ1 ≤ µ2 and, even ifµ1 > µ2, by
alteringQ̃1, we can create the situation whereπ0 is az−1-invariant measure ofR
for a different value ofz. In this caseπ0 must necessarily be such thatπ0y = ∞.
We give an example of such a construction in Section 6.

5. The case where m is finite. In the case wherem is finite, because the
tandem queue is assumed to be stable, we know by Corollary 2.6 that the nonzero
eigenvalues ofRm are given by the values ofz within the unit circle for which
detQ̂(m+1)(z) = 0. Thus(z,w) is an eigenvalue–eigenvector pair ofRm if and only
if zero is an eigenvalue of̂Q(m+1)(z) with corresponding eigenvectorw. In the first
part of this section, we shall explore the relationship between the values ofx for
which det(xIm+1 − Q̂(m+1)(z)) = 0 and the zeros of a sequence of orthogonal
polynomials closely related to thePn(x; z).

Let the sequence of polynomialŝPn(x; z), be defined such that̂P0(x; z) = 1
and, forn ≥ 1,

P̂n(x; z) = Pn(x; z) − λz

µ1
Pn−1(x; z).

The polynomialŝPn(x; z) satisfy the recursion

P̂0(x; z) = 1,(48)
µ1

z
P̂1(x; z) = x + µ2(1− z),(49)

µ1

z
P̂2(x; z) = (

x + λ + µ1 + µ2(1− z)
)
P̂1(x; z) − λ(1− z),(50)

µ1

z
P̂n(x; z) = (

x + λ + µ1 + µ2(1− z)
)
P̂n−1(x; z) − λP̂n−2(x; z),

(51)
n ≥ 3.

LEMMA 5.1. For each value of z > 0, P̂n(x; z) has n distinct real zeros
x̂n,1 < · · · < x̂n,n which interlace. Moreover, x̂n,n > xn,n and

xn,i < x̂n,i < xn,i+1, i = 1, . . . , n − 1.(52)

PROOF. The statement of the lemma follows from Exercise I.5.4 of [2].�

LEMMA 5.2. (a)The eigenvalues of Q(n)(z) are the zeros of Pn(x; z).
(b) The eigenvalues of Q̂(n)(z) are the zeros of P̂n(x; z) and for each such

eigenvalue x, the corresponding left eigenvector is given by(
P0(x; z),P1(x; z), . . . ,Pn−1(x; z)

)
.
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PROOF. We have already observed [after (43)] that 0 is an eigenvalue
of Q(n)(z) if and only if it is a zero ofPn(x; z). For the general case, let
In denote the identity matrix of dimensionn. Write Q(n) for Q(n)(z) and similarly
for Q̂(n)(z). The characteristic polynomial ofQ(1) is

det
(
xI1 − Q(1)) = x + λ + µ2(1− z).

Because theQ(n) are tridiagonal, we have

det
(
xI2 − Q(2)

) = (
x + λ + µ1 + µ2(1− z)

)
det

(
xI1 − Q(1)

) − µ1

z
λ

and, forn ≥ 3,

det
(
xIn − Q(n)

) = (
x + λ + µ1 + µ2(1− z)

)
det

(
xIn−1 − Q(n−1)

)
− µ1

z
λdet

(
xIn−2 − Q(n−2)).

Hence, we see that(µ1/z)
nPn(x; z) is the characteristic polynomial ofQ(n), and

thus, for eachn ≥ 1, the eigenvalues ofQ(n) are the zeros ofPn(x; z). This
proves (a).

To show the first part of (b), observe that the characteristic polynomial ofQ̂(n)

satisfies

det
(
xIn − Q̂(n)

) = (
x + µ1 + µ2(1− z)

)
det

(
xIn−1 − Q(n−1)

)
− µ1

z
λdet

(
xIn−2 − Q(n−2))

= det
(
xIn − Q(n)) − λdet

(
xIn−1 − Q(n−1))

=
(

µ1

z

)n(
Pn(x; z) − λz

µ1
Pn−1(x; z)

)
.

Hence, the eigenvalues of̂Q(n) are the zeros of̂Pn(x; z).
To prove the second part of (b), it is readily checked that for each eigenvaluex̂

of Q̂(n), for whichPn(x̂; z) = λzPn−1(x̂; z)/µ1, we have(
P0(x̂; z),P1(x̂; z), . . . ,Pn−1(x̂; z)

)(
x̂In − Q̂(n)

) = 0. �

Since R̃m is positive (see Remark 3.1), an eigenvectorw = (w0,w1) of Rm

can be positive if and only ifw1 is the Perron–Frobenius eigenvector ofR̃m.
By Theorem 2.5,w is an eigenvector of̂Q(m+1)(z) with eigenvalue zero and,
becausêQ(m+1)(z) is an ML-matrix (see [16]),w can be positive if and only if zero
is thelargest eigenvalue of̂Q(m+1)(z). In Lemma 5.3, we shall show that there is
exactly onez ∈ (0,1) such that the largest eigenvalue ofQ̂(m+1)(z) is zero.

LEMMA 5.3. For m ≥ 1 there exists a unique number ẑm+1 in the inter-
val (0,1) such that x̂m+1,m+1(ẑm+1) = 0.
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PROOF. Consider the nonnegative matrix

�m+1(z) ≡ z(λ + µ1 + µ2)Im+1 + zQ̂(m+1)(z)

λ + µ1 + µ2
(53)

and let ξm+1(z) denote its largest eigenvalue. Forz ∈ (0,1), �m+1(z) is
a substochastic matrix, which is stochastic whenz = 1. Thus Lemma 1.3.4 of [11]
can be applied. Specifically, under the appropriate stability condition (23) or (24),
the equationz = ξm+1(z) has exactly one solution̂zm+1 ∈ (0,1). It is readily seen
thatz = ξm+1(z) if and only if the maximum eigenvalue of̂Q(m+1)(z) is equal to
zero and the result follows.�

We have now proved the following theorem.

THEOREM 5.4. When m is finite, the maximal eigenvalue of Rm is given
by the unique ẑm+1 ∈ (0,1) such that x̂m+1,m+1(ẑm+1) = 0. The corresponding
eigenvector is strictly positive. The eigenvectors corresponding to any other
nonzero eigenvalue of Rm cannot be nonnegative.

In view of (12), it is obvious that Theorem 5.4 determines the geometric decay
rate of the level process we were looking for. The following corollary concerns
the limiting behavior of this decay rate asm, the size of the first buffer, tends
to infinity.

COROLLARY 5.5. Let rm be the Perron–Frobenius eigenvalue of Rm for
finite m.

If µ1 ≤ µ2, then r1, r2, . . . strictly increases to η.
On the other hand, if µ1 > µ2, then r1, r2, . . . strictly increases to ρ2.

PROOF. It was stated in Lemma 4.6 that{xn,n(z)} strictly increases toχ1(z).
To prove that{x̂n,n(z)} also increases toχ1(z), the interlacing property ensures
that we need only to shoŵPn(χ1(z); z) > 0 for n ≥ 1.

For the casez ≥ ρ1 we haveχ1(z) = χ(z), and from (48)–(51) it is easily
checked by induction that̂Pn(χ(z); z) = (1− z)(λ/µ1)

n > 0.
For the casez < ρ1, whereχ1(z) = τ (z), first note that

Pn

(
τ (z); z

) − √
zρ1Pn−1

(
τ (z); z

)
> 0.

This can be shown easily by induction, using (41)–(43). Since we can write

P̂n

(
τ (z); z

) = Pn

(
τ (z); z

) − √
zρ1Pn−1

(
τ (z); z

) + (√
zρ1 − zρ1

)
Pn−1

(
τ (z); z

)
,

0 < zρ1 < 1 and Pn−1(τ (z); z) > 0 (see Lemma 4.7), we conclude that
P̂n(τ (z); z) > 0.

Now, by Lemmas 5.3 and 4.5, the sequencerm = {ẑm+1} increases strictly to
a z∗ ∈ (0,1) which is the unique zero ofχ1(z) in the interval(0,1). Assume
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that µ1 ≤ µ2. By Lemma 4.1, this can occur only whenη ≤ ρ1. In this case
χ1(z) = τ (z), which has a zero atz = η. Thus rm = {ẑm+1} increases strictly
to η. On the other hand, whenµ1 > µ2, Lemma 4.1 implies thatz > ρ1 and
χ1(z) = χ(z), which has its zero atz = ρ2. The sequencerm = {ẑm+1} then
increases toρ2. �

The above result shows that we must clearly distinguish between two possible
regimes. These correspond with the different cases identified in Lemma 4.1.
In the first regime, whenµ1 ≤ µ2, the first queue is the bottleneck and
limm→∞ sp(Rm) = η. In the second regime, whenµ1 > µ2, the second queue is
the bottleneck and limm→∞ sp(Rm) = ρ2. Note also that, in this second regime,
Lemma 4.6 tells us that the limit of the sequence of the maximal eigenvalues ofRm

is different from the limit of the sequence of second-largest eigenvalues and so the
limiting spectrum ofRm has an isolated point.

We observed in Section 4 that the decay rate of the tandem Jackson network
with infinite waiting room at the first queue is alwaysρ2 irrespective of whether
µ1 ≤ µ2 or µ1 > µ2. We thus see that, whenµ1 ≥ µ2, the limiting decay rate of
the finite truncations is indeed that of the infinite system. However, ifµ1 < µ2,
the limiting decay rate of the finite truncations is different from that of the infinite
system. We have thus provided a counterexample to the idea that the decay rate
of a QBD process with infinitely many phases can be derived by calculating the
decay rates of finite truncations and then allowing the point at which truncation
occurs to grow to infinity.

6. Varying the decay rate. An interesting question arises from the observa-
tions at the end of Section 4. By appropriately changing the transition intensities
at level zero, in other words changing the entries inQ̃1, can we ensure that the sta-
tionary distribution decays at a rate that is given by any of the feasible values ofz?
In changingQ̃1 we have a great deal of freedom, so we might expect that the an-
swer is yes. In fact it is. Below, we present two examples in whichQ̃1 remains
a tridiagonal matrix.

EXAMPLE 6.1. Supposeµ1 > µ2. We wish to have a decay ratez, satisfying
the conditions in Theorem 4.9, which in this case means thatz ∈ [ρ2,1). By
Lemmas 4.2 and 4.8 the vectorw given in (34) will be positive and in�1. We
now replace eachλ in Q̃1 by a phase-dependentλ̃i . Specifically, we definẽλi

recursively by

λ̃0 = µ2z,
(54)

λ̃i = λ̃i−1
wi−1

wi

+ µ2z − µ1, i = 1,2, . . . .

The following proposition shows that thisdefines proper transition intensities.
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PROPOSITION6.1. The sequence {λ̃i}∞i=0 is strictly positive.

PROOF. Let φ(v) be the generating function of the sequencew1,w2, . . . .

From (32) we find after some algebra that

φ(v) = µ1(1− vz)

λzv2 − z(λ + µ1 + µ2(1− z))v + µ1
.

Substitutingv = 1 gives

φ(1) =
∞∑
i=0

wi = µ1

µ1 − µ2z
.(55)

Now, consider the sequencey0, y1, . . . , with yi = λ̃iwi . This sequence satisfies
the recursion

yi = yi−1 + (µ2z − µ1)wi, i = 1,2, . . . ,

with y0 = µ2z > 0. If µ2z ≥ µ1, then allyi (and hencẽλi ) are obviously positive.
On the other hand, ifµ2z < µ1, theny1, y2, . . . is monotone decreasing, with

lim
i→∞yi = µ2z + (µ2z − µ1)

∞∑
i=1

wi = 0,

which shows that all̃λi are positive in this case as well.�

The recursion (54) ensures thatw is a (µ2z)
−1-invariant measure ofR∞Q2.

Moreover,w satisfieswQ̃1 = −µ2zw. Hencew(Q̃1 + R∞Q2) = 0, so that by (5)
and Theorem 2.2 it follows that the stationary distributionπ = (π0,π1, . . . )

of (Yt , Jt ) is given by

πn = cwRn∞ = zncw, n ≥ 0,

for some normalizing constantc. Thus, it is clear thatz indeed is the decay rate in
this model.

This example has demonstrated the counterintuitive result that, by changing the
arrival intensity to the first queue when the second is empty, such that it becomes
dependent of the number of customers in the first queue, we can produce any decay
rate in the range[ρ2,1).

EXAMPLE 6.2. Supposeµ1 < µ2. We wish to have a decay ratez, with
z ∈ [η,ρ2]. Again, the vectorw given in (34) is positive and in�1. This time
we leave the arrival rate unchanged, but introduce an extra transition rateνi from
state(0, i) to (0, i − 1). This corresponds to removing customers from the first
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queue, without introducing them to the second queue. The valuesνi are recursively
defined as

ν1 = (λ − µ2z)w0

w1
,

νi+1 = (νi + λ + µ1 − µ2z)wi − λwi−1

wi+1
.

PROPOSITION6.2. The sequence {νi}∞i=0 positive.

PROOF. The proof is similar to the proof of Proposition 6.1. First, we
claim that

(λ + µ1 − µ2z)wi < λwi−1, i = 1,2, . . . .(56)

To see this, consider the sequence of polynomials{�n}, defined by�n(x) = (λ +
µ1−µ2z)Pn(x)−λPn−1(x), n ≥ 1, with the polynomials{Pn} given in (41)–(43).
Imitating the proof of Lemma 4.5 for�n instead ofP̂n, we find that the zeros
of {�n} interlace, that the largest zero of�n is larger than the largest zero ofPn

and that the second largest zero of�n is smaller than the largest zero ofPn. Now,
for z ∈ [η,ρ2], the largest zero ofPn is less than or equal to 0. Hence,�n can have
at most one zero greater than 0. It is easily verified that the largest zero of�1 is
given by(λ − µ2z)(µ2z

2 − (λ + µ1 + µ2)z + µ1)/(z(λ − µ2z + µ1)), which is
strictly positive for all 0< z ≤ ρ2. Hence, all�n have exactly one strictly positive
zero. Thus, because the leading coefficient of�n is positive,�n(0) must be strictly
negative, which is equivalent to (56).

Second, letyi = λiwi , i = 1,2, . . . . We have, for alli = 2,3, . . . ,

yi = yi−1 + (λ + µ1 − µ2z)wi − λwi−1,

where y1 = λ − µ2z > 0. Thus, using (56),y1, y2, . . . is a strictly decreasing
sequence with limit

λ − µ2z + (λ + µ1 − µ2z)

∞∑
i=1

wi − λ

∞∑
i=0

wi = 0,

where we have again used (55). This shows that allνi are positive. �

As above, the recursion ensures thatw(Q̃1 +R∞Q2) = 0, so that the stationary
distribution of(Yt , Jt ) is given by

πn = cwRn∞ = cznw, n ≥ 0,

for some normalizing constantc, from which it is clear thatz is the decay rate in
this model.

Thus, by allowing customers at the first queue to be removed at specified rates
when the second queue is empty, we have been able to produce any decay rate
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in [η,ρ2]. Note that it is not possible using this scheme to produce a decay rate
greater thanρ2. However, we can do so using a scheme such as that in Example 6.1,
which is also applicable here, since the proof of Proposition 6.1 did not use the fact
thatµ1 > µ2.

In the examples given above,̃Q1 was constructed such that the corresponding
π0 is exactly equal to somez−1-invariant measure ofR∞. As a consequence,
the stationary distribution of(Yt , Jt ) has a product form. However, it is also
possible to construct̃Q1, so thatπ0 is a finite linear combination ofz−1-invariant
measures ofR∞. In that case the stationary distribution does not have a product
form. The decay rate is then given by the largest value ofz with corresponding
z−1-invariant measure in the linear combination.

REMARK 6.3. Whenµ1 ≤ µ2, the minimal attainable decay rate cannot be
less thanη and whenµ1 > µ2 the minimal attainable decay rate cannot be less
thanρ2. This follows becauseη andρ2 respectively are the smallest values ofz for
which az−1-invariant measure exists.

The maximal attainable decay rate is produced in a different way. Clearly, when
µ1 > µ2, any decay rate in[ρ2,1) can be produced. However, whenµ1 < µ2,
it is not immediately clear whether the matrixR∞ has a valuez ∈ [µ1/µ2,1) with
a correspondingz−1-invariant measurew that is not in�1. If such a measure did
exist, the behavior at level 0 would be such that the first queue is unstable, while
the second remains stable and has decay ratez. A physical argument tells us that
this is possible only whenz = µ1/µ2: if the first queue is unstable, then the second
queue behaves like a standardM/M/1 queueing system with arrival rateµ1 and
service rateµ2. This implies that its decay rate could never be larger thanµ1/µ2.

7. Hitting probabilities on high levels: general QBD processes. In various
applications one is interested inhitting or exit probabilities of the level process.
In this and the following section, we shall consider the decay rate of these
probabilities, first in the context of a general QBD with possibly infinitely many
phases and then in the context of theM/M/1 tandem.

For a < b, defineT b
a to be the first time that either levela or level b is hit.

Also, let Pki denote the probability measure under which the QBD process starts
in (k, i). Fork ≥ 0, we are interested in the decay rate asK → ∞ of the first exit
probabilities

P K
k (i, j) := Pki

(
JT K

0
= j,YT K

0
= K

)
,

which we collect into a matrixP K
k . Define the matrixHk to be equal toP k+1

k .
Thus,H0 is the 0 matrix and it is not difficult to see that, fork ≥ 1, H1,H2, . . .

satisfy the recursion

Q0 + Q1Hk + Q2Hk−1Hk = 0,
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and the matrixP K
k is given by

P K
k = HkHk+1 · · ·HK−1.(57)

The following result is essentially a restatement of Lemma 8.2.1 of [7].

LEMMA 7.1. The sequence of matrices, H1,H2, . . . increases elementwise to
the matrix H which is the minimal nonnegative solution to the matrix equation

Q0 + Q1H + Q2H
2 = 0.(58)

For the case whenm is finite, it was shown in [9], Lemma 3.1, that, when
Condition 2.1 holds, eitherH is primitive or, by a suitable permutation of the
states, it can be written in the form

H =
[

L1 0
L·1 L·

]
,(59)

whereL1 is primitive andL· is lower triangular with its diagonal entries equal
to zero. A similar result can be established even whenm is infinite. (At the time
of writing, this result, due to Latouche and Taylor, is unpublished. An explanation
can be obtained from Peter Taylor at p.taylor@ms.unimelb.edu.au.) Thus, when
m ≤ ∞, H has the decomposition (59), whereL· is lower triangular andL1 is
irreducible and aperiodic. It follows from (14) that the convergence normc of L1 is
well defined and given by

c = lim
n→∞

(
Ln

1(i, j)
)1/n

.

Let �∗ be the set of indices corresponding toL1 and partition the matricesHk ,
conformally with our partition of the matrixH , so that

Hk =
[
L

(k)
1 0

L
(k)
·1 L(k)·

]
.(60)

The decay behavior of the hitting probabilities is described in Theorem 7.3.
However, first we need a lemma.

LEMMA 7.2. For any phase i, there exist numbers k∗ and N∗ such that, for
k > k∗ and N > max(k,N∗), there is a ν ∈ �∗ with

P N
k (i, ν) > 0.(61)

PROOF. First note that, for any givenN andk, sayN0 andk0, there may not
be aν0 ∈ �∗ such thatP N0

k0
(i, ν0) > 0. Taking into account the irreducibility of

the doubly infinite process with generator (2), this could be because every path of
positive probability from state(k0, i) to states of the form(N0, ν0) with ν0 ∈ �∗
does one of the following:
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1. passes through a state of the form(N0,m) with m /∈ �∗ [by the decomposi-
tion (60), this can occur only ifi /∈ �∗];

2. goes through level zero;
3. does both 1 and 2.

Consider a path from(k, i) to a state(N0, ν0) with N0 > k andν0 ∈ �∗ of the
form described in 1 above. LetN∗ be the highest level it reaches. Any path from
(N0, ν0) to levelN∗ + 1 must hit levelN∗ + 1 in a state(N∗ + 1, ν) with ν ∈ �∗
and, by irreducibility of the process with generator (2), there must be such a path.
Concatenating these two paths, we have constructed a path of positive probability
from (k, i) to (N∗ + 1, ν) which first hits levelN∗ + 1 in phaseν ∈ �∗. If this
path does not pass through level 0, then we have constructed a path as desired. If it
does go through level 0 we modify it as described below.

If, after performing the modification described above, all paths from state(k0, i)

to states of the form(N0, ν0) with ν0 ∈ �∗ pass through level 0 choose one such
path let−k̃ be the lowest level reached by the path and putk∗ = k0 + k̃. Then
if k > k∗, there is a path of positive probability from(k, i) to a state of the form
(N0 + k − k0, ν0) with ν0 ∈ �∗ which does not pass through level 0. This shows
that, for all phasesi, we can choosek∗ such that whenk > k∗ there exists a path
of positive probability which does not pass through level 0 from state(k, i) to any
levelN > max(k,N0). The lemma is thus proved.�

THEOREM 7.3. Consider an irreducible QBD process with a finite or infinite
phase space, satisfying Condition 2.1and (11).Then for i ∈ {0,1, . . . } and j ∈ �∗
there exists k∗ such that, for k > k∗,

lim
K→∞

logP K
k (i, j)

K
= log(c),(62)

where c is the convergence norm of L1. For i, j /∈ �∗, there exists K∗ such that,
for K > K∗,

P K
k (i, j) = 0.(63)

For i ∈ �∗, j /∈ �∗ and all k < K ,

P K
k (i, j) = 0.(64)

PROOF. For the case wherei, j ∈ �∗, we have

log(P K
k (i, j))

K
= log(L

(k)
1 · · ·L(K−1)

1 (i, j))

K

≤ log((L1)
K−k(i, j))

K

= K − k

K
log

(
(L1)

K−k(i, j)1/(K−k)
)
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so that, lettingK → ∞, we find by (14) that

lim sup
K→∞

log(P K
k (i, j))

K
≤ log(c).(65)

To show the opposite, choosek∗, N∗ and ν so that (61) is satisfied. Then,
for k > k∗, N > max(k,N∗) andK > N , we have

P K
k (i, j) = ∑

l

P N
k (i, l)L

(N)
1 · · ·L(K−1)

1 (l, j)

(66)
≥ P N

k (i, ν)
(
L

(N)
1

)K−N
(ν, j).

Now we have

log(P K
k (i, j))

K
≥ log(P N

k (i, ν))

K
+ log((L

(N)
1 )K−N(ν, j))

K

= log(P N
k (i, ν))

K
+ K − N

K
log

((
L

(N)
1

)K−N
(ν, j)1/(K−N)),

so that, lettingK → ∞, we find that

lim inf
K→∞

log(P K
k (i, j))

K
≥ log(cN),

wherecN is the convergence norm ofL(N)
1 . Since this holds for allN and, by

Lemma 2.3,cN → c asN → ∞, we see that

lim inf
K→∞

log(P K
k (i, j))

K
≥ log(c),(67)

which, together with (65), gives the result in this case.
Wheni /∈ �∗ andj ∈ �∗, we can still use Lemma 7.2 to choosek∗ andN∗ so

that, whenN > N∗ andk > k∗, there exists aν ∈ �∗ such that (61) is satisfied,
and argue as above from (66) that (67) is satisfied.

To get the analogue of (65), observe that, by (57) and (60), we must be able
to write

P K
k (i, j) =

K−1∑
r=k

L(k)· · · ·L(r−1)· L
(r)
·1 L

(r+1)
1 · · ·L(K−1)

1 (i, j)

≤
K−1∑
r=k

Lr−k· L·1LK−1−r
1 (i, j).

Now, becauseL· is lower triangular, there is a positive integers∗ such that
Ls· (i, ν) = 0 for all s > s∗ andν /∈ �∗. Thus, forK > k + s∗ + 1,

P K
k (i, j) ≤

s∗∑
s=0

Ls·L·1LK−1−k−s
1 (i, j)

= (
DLK−1−k−s∗

1

)
(i, j),
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where

D =
s∗∑

s=0

Ls·L·1Ls∗−s
1 .

Consider the Markov chain with transition matrixH . Let τ (j) be the first time
greater than or equal tos∗ + 1 that the chain visits statej ∈ �∗ and letf (n)(i, j)

be the probability thatτ (j) = n, conditional on the chain starting in statei /∈ �∗.
Then it follows easily that

(
DLK−1−k−s∗

1
)
(i, j) =

K−k∑
n=s∗+1

f (n)(i, j)LK−k−n
1 (j, j)

and that

DL(i, j; z) = F(i, j; z)L(j, j; z)

zs∗+1 ,(68)

where

DL(i, j; z) =
∞∑

n=0

(DLn
1)(i, j)zn,

F (i, j; z) =
∞∑

n=s∗+1

f (n)(i, j)zn

and

L(j, j; z) =
∞∑

n=0

Ln
1(j, j)zn.

It is clear thatf (n)(i, j) ≤ (DLn
1)(i, j) and so the convergence radius of the

power seriesF(i, j; z) is greater than or equal to the convergence radius of the
power seriesDL(i, j; z). Therefore, by (68), the convergence radii of the series
DL(i, j; z) andL(j, j; z) are the same. Thus we have

lim
k→∞

log((DLK−1−k−s∗
1 )(i, j))

K
= log(c)

and so

lim sup
K→∞

log(P K
k (i, j))

K
≤ log(c).

Thus, the result is proved fori /∈ �∗ andj ∈ �∗.
Wheni, j /∈ �∗, using the same definition ofs∗ as above, it follows that, for all

K > k + s∗,

P K
k (i, j) = 0,(69)
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while we immediately haveP K
k (i, j) = 0 wheni ∈ �∗ andj /∈ �∗. This proves

the second part of the theorem.�

To finish off this section, we present some results for the matrixHm that are
analogous to Theorem 2.5 and Corollary 2.6 for the matrixRm. This will allow
us to conclude that the eigenvalues ofRm andHm coincide whenm < ∞; see
Corollary 7.6.

As for (21) it is easy to see that, when the column vectorv and scalarz satisfy
Hmv = zv, then

(Q0 + zQ1 + z2Q2)v = 0.(70)

Again, under certain conditions onv andz, the converse is true, irrespective of
whetherm < ∞ or m = ∞. This is shown in the following theorem, which is
basically Theorem 5.3 of [14].

THEOREM 7.4. Consider a continuous-time QBD process with generator of
the form (1). Then, if the complex variable z and the vector v = {vk} are such that
|z| < 1 and

∑
k |vk|qk < ∞, then (70) implies that

Hmv = zv.

Following essentially the same proof as for Corollary 2.6 we have a characteri-
zation for the casem < ∞.

COROLLARY 7.5. For an irreducible QBD process with a finite phase space,
satisfying (11), the eigenvalues of Hm are all the zeros of the polynomial

det(Q0 + zQ1 + z2Q2)(71)

that lie strictly within the unit circle.

The following result is now immediate from Corollaries 2.6 and 7.5.

COROLLARY 7.6. For an irreducible QBD process with a finite phase space,
satisfying (11), the eigenvalues of Hm and Rm coincide.

In particular, whenm < ∞ the hitting probabilitiesP K
k (i, j) have the same

geometric rate of decay as the stationary probabilitiesπKi in (12).

8. Hitting probabilities on high levels: the tandem network. Assume that
the tandem queue starts in state(1, i) with i ≥ 1, that is, with one customer in the
second queue andi ≥ 1 customers in the first queue. It is possible that the process
can first hit level 2 before level 0 with any numberj ≥ i − 1 customers in the first
queue, that is, in any state(2, j) with j ≥ i − 1. If the queue starts in state(1,0),
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then it can first hit level 2 before level 0 with any number of customers in the
first queue. A consequence of this is that the matrixHm for this QBD process is
irreducible. It then follows from Theorem 7.3 that

lim
K→∞

logP K
1 (i, j)

K
= log(c),(72)

wherec is the convergence norm ofHm. Thus, to calculate the decay rate of the
hitting probabilities, we need to calculate the convergence norm ofHm.

To do this for the casem = ∞, we could follow a line of reasoning similar to
that we used in Section 4 based upon Theorem 7.4 instead of Theorem 2.5. Thus,
we would calculate conditions for a solutionv to Q(z)v = 0 to be both positive and
in �1. However, unlike thez−1-invariant measure ofR∞, which affects the decay
rate of the stationary distribution, thez−1-invariant vector ofH∞ has no effect on
the decay rate of the hitting probabilities. We thus choose to calculate the decay
rate of the hitting probabilities in a more efficient way.

By Corollary 7.6, for finitem, the eigenvalues ofRm andHm coincide. Thus
Theorem 5.4 and Corollary 5.5 apply toHm as well as toRm. In particular, we
have the following theorem.

THEOREM 8.1. When m is finite, the following results hold:

1. The maximal eigenvalue hm of Hm is given by the unique ẑm+1 ∈ (0,1) such
that x̂m+1,m+1(ẑm+1) = 0.

2. If µ1 ≤ µ2, then h1, h2, . . . strictly increases to η. On the other hand, if
µ1 > µ2, then h1, h2, . . . strictly increases to ρ2.

By Lemma 2.3, it follows that the convergence norm ofH∞ is then equal toη
if µ1 ≤ µ2 and ρ2 if µ1 > µ2. Together with Theorem 7.3, this gives us the
following theorem.

THEOREM 8.2. 1. When m is finite,

lim
K→∞

logP K
1 (i, j)

K
= log(hm).(73)

2. When m is infinite:
(a) when µ1 ≤ µ2,

lim
K→∞

logP K
1 (i, j)

K
= log(η);(74)

(b) when µ1 > µ2,

lim
K→∞

logP K
1 (i, j)

K
= log(ρ2).(75)
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The decay rate of the hitting probabilities in the case of infinitem is thus the
same as the decay rate of the stationary number in the second queue whenµ1 ≥ µ2,
but it is not the same whenµ1 < µ2. This is an interesting property of the tandem
Jackson network, which we believe was not known previously.

There are two further interesting questions about the decay rate of the hitting
probabilities that we have not addressed above. The first question involves the
decay rate of

∑
j P K

k (i, j) asK → ∞ in the casem = ∞. It follows immediately
from Theorem 8.2 that this decay rate is larger thanη andρ2 whenµ1 ≤ µ2 and
µ1 > µ2, respectively. We conjecture that it is equal to these values, although
we currently have no proof of this.

The second question involves the decayrate of the hitting probabilities on
level K if the process starts in level 1 according to some distributionx1.
Of particular interest is the situation whenx1 is the stationary distributionπ1 at
level 1. These hitting probabilities are given by the components of

x1P
K
1 .(76)

Whenm < ∞, the decay rates of these probabilities are easily seen to be the same
as the decay rates ofP K

1 (i, j), given by Theorem 8.2. However, whenm = ∞, this
need not necessarily hold. Indeed, our experience with the matrixR∞ would lead
us to believe that we could achieve any decay rate in[η,µ1/µ2) if µ1 ≤ µ2 and any
decay rate in[ρ2,1) if µ1 > µ2. However, since we have no theorem analogous
to Theorem 7.4 that can inform us about thez−1-invariant measures, rather than
the z−1-invariant vectors, ofH∞ we do not currently see how this problem can
be approached.

Acknowledgments. Authors thank two anonymous referees for many helpful
comments on an earlier version of this paper.
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