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For one-dimensional optical structures consisting of gratings surrounding a defect, region,
optical field solutions inside the bandgap are investigated that are steady states or fully
transmitted modes. The observation that a mode is a suitable combination of two states,
and that each state is a resonant phenomenon, implies that an accidental degeneracy
condition has to be satisfied in order that two states occur at the same frequency. Finding
the conditions, and thereby the required design-parameters of the structure, makes it
possible to characterize the modes without the necessity to scan the whole bandgap for
transmission properties. The mathematical formulation is based on the optical transfer
map and leads to a non-standard, not well-studied, eigenvalue problem on the defect
region with effective boundary conditions that simulate the surrounding gratings.

Keywords: Optical defect grating structures; bandgap states and modes; optical transfer
map; non-standard eigenvalue problem.

1. Introduction

In this paper we consider the transmission through one-dimensional grating struc-
tures that consist of a “defect” region that is positioned between two infinite
gratings or between two finite gratings placed in an exterior uniform medium. In
particular we will address the problem of the direct characterization of so-called
defect modes (DM) that can be observed to appear for specific defect frequencies
(DF) in the bandgap (BG) of certain finite defect grating structures; see Figs. 1
and 2. This appearance is remarkable since in a uniform grating without defect the
bandgap is the interval of wavelengths for which the structure acts like an almost
perfect mirror.

For several applications and for fundamental understanding of the resonance
phenomenon, it is desirable to characterize the DF and DM in a direct way, avoiding
the necessity to scan with transmittance experiments the whole frequency range in
the BG. Except when transfer matrix techniques (TMT) can be used, which is
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Fig. 1. (a) Relative optical transmission |7|? versus the frequency, for perpendicular plane wave
incidence on a multilayer stack of transparent dielectric materials. The symmetric, finite periodic
grating consists of 17 inner layers, alternating with low refractive index n1 = 1.25 and high re-
fractive index ny = 2.5, with their thicknesses satisfying nili = nals =1 /4 (quarter-wavelength
stack). The outermost layers are of the high index material; we assume the structure to be sur-
rounded by air (refractive index ng = 1.0). (b) Analogous to the one in (a), for a grating, where the
central, high refractive index layer is twice as thick as the neighboring layers with high refractive
index. Observe the additional transmission maximum at the design frequency w =1 2.

restricted to linear materials with step-wise index structures, no analytic way to
tackle this problem seems to exist. This will be the aim and contribution of this
paper: to characterize in a direct way the DF and DM. The formulation will in
principle be applicable for arbitrary material properties within the defect region,
even if it is inhomogeneous or nonlinear. Further it is possible, to design simple
numerical programs, Finite Element for instance, that use only the defect region
as calculational domain. First the problem for defect states (DS) will be addressed.
This DS is the solution of an eigenvalue problem in the frequency w, which problem
is, for Kerr-type of nonlinear materials, of the form

O?u +w? [nk(2) + x|u|?)|u=0, forze (~L,L)
(1)

U = ke{w)u ab z=+L.

Note that the (possibly nonlinear) Helmholtz equation is dressed up with so-called
“effective” boundary conditions at the boundary &L of the defect region; these
boundary conditions replace the optical effect of the surrounding gratings. The fact
that these effective boundary conditions depend on the frequency itself makes this
a non-standard eigenvalue problem: even when the field equation is linear (y = 0)
the eigenvalue appears in a nonlinear (and non-polynomial) way in the functions
k(w). Not much is known yet about such eigenvalue problems in its generality; we

will restrict therefore to special cases in the following, leaving a more complete
investigation for later.
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Fig. 2. Defect mode profile of the defect grating structure in Fig. 1(b).

Having found DSs in finite gratings, defect modes will then be investigated. Dif-
ferent from DSs, which are non-translating states with vanishing Poynting quantity,
a DM is a tully transmitted solution, and hence has nonzero Poynting quantity. Such
DM will be obtained from a superposition of DSs at the same frequency. In fact,
in the structures that we consider, there exists one so-called amplified DS with
largely amplified field in the defect which closely resembles a DM. However, the
non-translating property of a DS, and the translating property of a DM, also in the
exterior uniform medium, make them very different, and a relation seems difficult
to establish. The explanation for this apparent discrepancy is the coexistence of
an attenuated DS at the same frequency which, when suitably superimposed with
the amplified one, leads to the correct influx and transmittance properties while
hardly changing the field profile in the defect region. This attenuated DS may be
casily overlooked as being uninteresting in itself. Yet its contribution to the DM
is essential: in exterior regions it is of the same order as the amplified state and
together they can constitute a traveling wave; in the defect region, despite its small
amplitude, the combination with the amplified state produces the correct value of
the Poynting quantity.

Bragg gratings that have step-wise index changes caused by a periodic succession
of materials with different index has been studied extensively.!*? In all cases the
gratings can be viewed as one-dimensional versions of photonic bandgap materials
or photonic crystals.®* When in such a grating the periodicity is broken either
in a geometric way, or by index changes, a “cavity” is created in between two
nearly completely reflecting mirrors. A Fabry-Perot cavity as described for e.g.
in Refs. 2, 5-7 can be viewed as a result of such a “defect” in a Bragg grating.
The appearance of defect modes and the building up of a high intensity in the
defect (growing with the number of periods in the supporting Bragg reflectors),




158 E. van Groesen, A. Sopaheluwakan & Andonowati

has been investigated for linear and nonlinear structures by means of finite-element
techniques.®® The wavelength (frequency) of the defect mode depends sensitively
on the refractive index in the cavity. Furthermore, according to systematic studies
in Refs. 8 and 9, the width of the resonances can be narrowed — and the steepness
of the transmission curve increased — by extending the length of the cavity segment
or by increasing the number of periods in the reflectors. These two properties of a
DM explain the interest in structures which support DMs to design optical devices
with various functionality. For instance, for sensor applications, the property is used
that external influences on the defect region (temperature, stress, light) will effect
the defect index; measuring the resulting change in the DF will correspond to the
external effect. Another application is to exploit the amplified intensity to enhance
the small nonlinear effects of nonlinear materials®.

In Sec. 2 we introduce a slightly novel way to characterize the optical proper-
ties of gratings; this will make it easier in the following to optically connect the
gratings to the defect and surrounding regions by effective boundary conditions.
Then in Sec. 3 we construct DSs for various defect grating structures. In Sec. 4, for
symmetric structures consisting of two finite gratings surrounding a linear defect
region, it is shown that a superposition of two coexisting DSs can produce a DM.
In Sec. 5 we will make several remarks about possible extensions of the methods.

2. Optical Characterization of Gratings

In this section we study the gratings that constitute important building blocks of
the considered structures. We will introduce a slightly novel way of describing the
optical properties of gratings, or of any layered structure for that matter, which will
allow us to express the optical effect of the grating directly into a form, through
effective boundary conditions, that allows a direct optical adjustment to surround-

ing media. We will only consider the TE-case, but the same method can be applied
for TM polarization.

2.1, The optical transfer matriz

The optical properties of any inhomogeneous interval [0, L] are, for TE-polarization,
completely determined by the connection of the field and its derivative at the end
and at the beginning of the interval:

<aju)z__.,; =Tw) (81:1&)3:0

where the optical transfer map (or matrix) (OTM) T" depends on w. Since for linear
materials there are precisely two independent solutions, the two boundary values
at each of the two endpoints, and the observation that the amplitude of a solution
is arbitrary, lead to the conclusion that three (real-valued) quantities are needed
for a full characterization.
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Although the OTM is closely related to the usual transfer matrix technique
(TMT) for layered structures, see e.g. Refs. 10 and 11, and can be found for such
structures from such TMT calculations, the OTM does not depend on the choice
of base functions, and therefore makes it possible to describe in a direct way the
connection between adjacent regions by continuity conditions at the endpoints,
irrespective of which method or base functions are used to calculate the OTM of
the separate regions. This turns out to be very efficient and convenient in dealing
with gratings in composite structures, as we shall see.

Restricting to frequencies inside the first BG of a linear grating, we will show
that two of the basic quantities, denoted in the following by x*(w), are the value of
the quotient 0,u/u at the edge (facet) of one (and any) period for the real-valued
attenuated and amplified independent solutions &G=; the notation x = o0 is used
to denote the case when u vanishes at the period facet. The gain factor per period,
denoted by g, is the third basic variable. The optical transfer properties of a grating

with N periods are determined by the OTM which is then given by

(__1)N J"’i“gN — F-}+/QN _gN 4+ l/gN
kte™ (g = 1/g") —kTgN +57/g"

Note that det(T") = (~1)¥, expressing area conservation in phase space.

For frequencies inside the first BG we will give explicit formulas for the example
of a linear grating with two layers; extension of the number of layers, or for arbi-
trary layered structures, composition of the matrices can be invoked. For smoothly
varying index changes and/or nonlinear materials, results of characterization of
this OTM, and of the basic quantities by explicit variational expressions, will be
published elsewhere.

T(w) N-periods —

2.2. Grating properties

Let n be the index of reflection that is periodic with period p. Then, according to
Bloch’s (Floquet) theorem for periodic structures, each solution of

O2u+wn?(2)u =0, u(z +p) = u(z)
can be written as a combination of two indepenclent solutions that are of the form
u(z) = v(z)etEWz () = u(z + p)

where K (w) describes the Bragg dispersion properties of the grating. For frequencies
within the first BG, the value of K is given by K(w) = 7/p £ ip(w)z, and the two
corresponding real-valued solutions are given by

GE(w; z) = w*(z)e™P?, w(z +p) = —w(z), p>0.

Since the quotient 0,G/G is p-periodic, the value of this quotient is the same at
each period-facet. Hence we can define real-valued numbers associated with these
solutions by

8 G::
= zG — evaluated at (any) period-facet .

Fw)
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Denoting by g(w) := exp(p(w)p) the “gain-factor” per period (Floquet multi-
plier), we have GT(z + p) = —¢gG¥(z) and G~ (2 + p) = —G~(2)/g. The three
quantities g, k* can now be used to determine the OTM as follows. Any solution
within the grating can be written as a superposition: u = AGT + BG~. At the left
facet of a period, say at z = 0, the solution and its derivative are given by

u(0) = AG*(0) + BG~(0)
9,u(0) = kT AG™(0) + k= BG~(0),
while after NV periods, z = Np, these quantities are given by
u(Np) = (~g)" AG*(0) + (-9) "V BG~(0)
8,u(Np) = k*(—g)V AGT(0) + 5~ (~g)"¥BG(0).

Eliminating the amplitude factors AG*(0), BG~(0) leads to the OTM given above.

2.2.1. Cualculation of the optical quantities

Consider as an example the case of a grating consisting of two layers with indices
ny,2 and width £; 5, so that the period is given by p = £; + ¢5: for notational
convenience we use Ky 9 = wni . Introducing phase parameters a, 8, the solutions
can be written down explicitly. For the “amplified” solution we find:

cos(k1z ~ ) for0 <2< ¥,
G" = ¢ cos(krty — @)
cos 3

cos(ka(z — £1) — fB) for by <2<p

which is a solution provided
kitan(ki1y — o) = —kg tan 3
ko tan(kels — ) = —ky tan .
Having solved for o and f3, the basic quantities can then be expressed in the ge-

ometric and material properties of the grating through the values of o and 8 as
follows:

cos(k1fy — «v) - cos(kaly — [3)
cos v - cos 3

g:

T = ky tan o, k™ = —kotanf3.
Then an independent attenuated solution follows from reversibility:

gcos(ki(ly — z) — o) for0 <2< 4,

G™ = COS(klﬁl - Cl’.) ‘
T oosd cos(ka(p — z) — ) for {1 Sz <p
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2.2.2. Quarter wave stack ezample

We present some graphical information about the relevant quantities for the case of
a so-called quarter wave stack structure with two layers in Fig. 3. Such a structure
has the same optical path length in each layer since by design n141 = nyfy = 1/4.
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Fig. 3. Plot of the gain factor g(w), ™ (w) and k™ (w).

For indices n1 = 1.25 and ng = 2.5, the band gap, determined by values w for
which g > 1, is the interval 27 - [0.7836, 1.2163]. Then, for the special (“design”)
frequency wq such that wonify = 7/2, a quarter “wavelength”, it follows that the
two basic solutions have at a period-facet the boundary values

Gt(0)=0,0,GT(0)=1 and G (0)=1,0,G7(0) =0

(when the low index layer is the first layer; else the signs are interchanged) corre-
sponding to k% (wg) =0, £~ (wp) = 0o, while the gain factor is maximal g = 2.

For the design frequency, plots of the solutions G+ and G~ are depicted over a
distance of four periods, in which a gain of 2% ;

is visible, in Fig. 4.
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Fig. 4. Plots of G+ and G~ over four periods.

2.3. Effective boundary conditions

The two basic solutions G+ considered above are of no relevance for infinitely
long gratings since then both are unbounded, and the only bounded solution is
the vanishing field, the characteristic property of an infinitely long grating. When
the grating is half-infinite, one solution is bounded inside the grating. Take as an
example the half-infinite grating at the left, say (—oo, —L); then only the amplified
solution G, that decays to zero at —oo, is nontrivial and bounded. The optical
effect of this half-infinite grating is then completely determined by the value s,
Stated differently, any field at the right should satisfy the boundary condition

O u=rTuatz=—L;

for obvious reasons we will call this an “effective boundary condition” (EBC).
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Remark 1. The above formulation makes it possible to give a somewhat different
interpretation to the value k™ which may also be more constructive in the case when
no explicit analytical solutions can be found, for instance for nonlinear gratings. In
fact, the value of the coefficient k¥ can be described in a variational way using the
Helmholtz functional on the half-infinite interval. Specifying the amplitude at the
end point, arbitrary for linear gratings, the characterization is:

"'i‘

kT {(w) = inf < / {(8,u)? — w?n?u}dzlu(-L) =1},
\J-L

7

i.e. the value function of the Helmholtz functional is sTu(—L), see Ref. 12. For
nonlinear gratings the value of the amplitude has to be taken into account and
appears nonlinearly in the result. This formulation makes it feasible to calculate
the coefficient £ numerically.

When the grating is finite, both basic solutions are bounded, and for optical
communication with the two exterior sides the OTM-approach can be applied. For
instance, consider the configuration of a uniform medium at the left with index
niety and a finite grating of N periods between [—M, —L]. When we consider the
transmission problem with a given influx from the left, the solution for z <« —M is
given by

w(z) = Aptkies (2+M) 1 pe = thiett (2+M)

with A the influx amplitude and r the amplitude of the reflected wave. Then

U U 1 1 A
(az“)z=—L - TN(W) <‘9zu)z:mm - TN(M) (ikleft _":kleft) ( r )

from which we can solve d,u(—L) as function of A and u(—L), leading to the
effective boundary condition at z = —L.

A somewhat different interpretation is to look at the effect of influx from the
left-most uniform exterior on the basic solutions in the finite grating. Taking the
field in the uniform medium at the left that is consistent with the basic (amplified
or attenuated) state in the grating, the state will be a standing wave C cos(kg(z +
M) + 8) with kg tan(8) = «, and so will the state in the uniform medium to the
right of the grating. The attenuated state will correspond to a very small amplitude
state at the right. However, for the grating placed in air at both sides, an influxed
wave €% only from the left (no incoming wave from the right) will not be a
standing wave: it will not be totally reflected and there is a small transmittance.
Related to this is a slightly different effective boundary condition at the grating
end at z = —L. This will depend on the number of gratings: for increasing number
of periods the presence of the uniform exterior becomes rapidly very small, see
Fig. 5 for the effective boundary value sy of the transmittance problem through
the grating with N periods compared to the value k™ for the half-infinite grating.
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2.4. States and modes

In the following sections we will characterize special field distributions that may
exist in defect grating structures. In Sec. 3 we will investigate defect states DS,
and in Sec, 4 defect modes DM. The difference between the two is that a DS is

a “standing wave” while a DM is a traveling wave that is completely transmitted
through the structure.

As is well known, the Poynting vector can be used to distinguish clearly between
standing waves and traveling (not necessarily completely transmitted) solutions.

In the one-dimensional case considered here, we will use the Poynting quantity
which is related to the Poynting vector as being the powerflow in the z-direction of
the electromagnetic field. For any solution w of the Helmholtz equation, the Poynting
quantity is given by P(z) := Im[%d,u|, and is independent of z:

P(z) .= Im[ud,ul, 9. P(z) =0. (2)

The relevance of these quantities becomes clear when we investigate them for a
uniform medium, say index ng; with ky = wng, any solution consists of a superpo-
sition of a right and a left traveling wave u = Ae* 0% 4 Be~"0% and we find that at
any position z:

P = ko[l A - |BJ%).

In general, P measures the net flow of the power transported to the right and the
left; our interest is that it clearly identifies a state as a solution for which P = 0
(then |A| = |B| and the solution is a standing wave: u = |A| cos(kgz + 1) for some
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). A traveling wave, possibly superimposed by a standing wave, will have P # 0,
and so, in particular, any DM will have P # 0.

When investigating the so-called transmittance problem for an optical structure,
one looks at a wave influxed from a uniform medium at the left, say, and investigates
its transmittance through the structure into a uniform medium at the right, where
no influx from the right into the structure is supposed. A DS cannot be obtained in
that manner, since it has standing wave in the left region (meaning that an incoming
wave e'*% is compensated with a reflected wave of the same amplitude, forming
together a standing wave) and just as well a standing wave in the “outflux”-region
at the right. This means that there is not only an outgoing wave to the right, but
just as well a wave coming in from the right and hence a defect state cannot be
“produced” by light influxed from one side only.

3. Defect States in Grating Structures

In this section we consider various grating structures with defects; in each case
we will employ effective boundary conditions for the defect region to replace the
optical properties of the surrounding gratings. The interest is to find defect states,
i.e. solutions with vanishing Poynting quantity P. In structures that contain at
least one half-infinite grating, any nontrivial solution will have vanishing Poynting
quantity and so any solution is a state.

3.1. Defect states between half-infinite gratings

When a defect region is introduced in an infinite grating, the defect separates a left
and a right half infinite grating. The amplified state in the left grating can possibly
be connected in the defect region to the attenuated state in the right one for suitable
frequencies. Such “resonant” frequencies will depend on properties of the gratings
and of the defect region. The problem can be formulated as an eigenvalue problem

on the defect region, say (—L, L], when we use effective boundary conditions at the
defect boundaries:

du=rl (Wuatz=-L, Gu= Krighs(W)u at 2= L (3)

where we use obvious notation for the amplified/attenuated state in the left /right
grating. If for some defect frequency there exists a field distribution inside the defect
region that satisfies these two boundary conditions, a defect state is obtained.
Note that for this formulation it is not necessary that left and right gratings
are the same. But it should be remarked that, even when the problem is linear, the
eigenvalue problem is non-standard since the eigenvalue (w) appears in a nonlinear
way so that even methods for “polynomial” eigenvalue problems!®14 cannot be
applied directly. Existence of a solution is therefore a nontrivial matter. When, in
addition, the Helmholtz equation is nonlinear, bistable solutions can be expected to
exist under certain circumstances.” We will show here that for some specific cases
we can directly find the solution; more general results will be published elsewhere.
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Consider the case of a linear defect region with constant index ng. Then the
general solution in the defect region is of the form

u = Acos(wngz + 6).

Satisfying the boundary conditions leads to the condition for w

wngtan(wngl — 0) = kit (w) and wng tan(wngL + 6) = —Kopight (W)

Eliminating ¢ leads to the equation for w for arbitrary integer m:

right

+

2wngL = arctan(k{L. (W) /wng) — arctan(k; , . (w)/wng) + mn .

since the right-hand side is bounded, while the left-hand side is linear in w, for
suitable m there exists at least one solution that belongs to the band gap; the
corresponding value of @ is then found from

20 = — arctan(syt, (W) /wng) — arctan(k ., (w)/wng) + mm .

Hence we conclude that for a uniform defect region hetween arbitrary half-infinite
gratings there always exists at least one DS.

In Fig. 6 we show an example for a quarter wave stack defect grating with
low refractive index nj 1.25 and high refractive index ng = 2.5. The de-
fect layer between the two half infinite gratings has index ng = 2.5 and is
twice as thick as the high index layer. The intersection between the function
filw) = arctan(ry, (w)/wng) — arctan(k g (w)/wng) + 27 and fo(w) = 2wnglL

gives the defect frequency w = 1. 27.
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Fig, 6. The graph of f1(w) = arc:ta,n(mi:fb (w)/wng) — arctan(k; ght(“") /wng) + 27 (solid curve),
and fo(w) = 2wnglL (dashed line).
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3.2. States for a single finite grating

Consider a finite grating, of N periods in the interval say — M, M]; let k*(w), g(w)
be given, and take a uniform medium at both sides, index Ny for z < —M, Nright
for z > M.

Then, for each w in BG there is an increasing and a decreasing state which
connect standing waves in the exteriors through the respective increasing and de-
creasing grating solutions GE. Indeed, the total solution is of the form

A cos(wnie(z + M) + et ) for z < —M
u = ¢ aG(z) for—-M <z< M .
B cos(wnpignt(z — M) + Yrignt ) for z > M

Continuity of the field derivative leads to the two equations

k(W) = —whiegs tan(Prets) = —Wnright tan(Pright)
from which the values of 1 follow. For the amplitudes we then find
A cos(Ples) = aG(—M), B cos(yignt) = aG(M)

with G(M) = (—9)*NG(~M) corresponding to an amplitude amplification/
attenuation ¢V. In particular, when exteriors are identical, B = (—g)"V A for the
amplified solution and B = A/(— g)" for the attenuated solution.

3.3. States in a defect grating

The above result for a single finite grating can now be used to investigate states
in structures with a succession of possibly different finite gratings placed in air by
composition of the OTMs. We will consider the case of one defect region [—L, L]
with two adjacent gratings in [—Meft, — L] and [L, M,igns) only; for more defect
regions between gratings, additional degeneracy conditions will have to be satisfied
for a state to exist.

A defect state of the whole structure will couple in the defect region a decreasing
or increasing state in the left grating to an increasing or decreasing state in the right
grating. Suppose the left and right gratings are characterized by their values £ and
the gain factor g per period. Then with each possible combination of states in the
separate gratings, a defect state ot the whole structure is found for the frequency
that solves an eigenvalue problem of the form shown in (1) on the defect region
[—L, L]. Using obvious notation for the state S that corresponds to the different
possible choices of the behavior in the constituent gratings, we obtain the following
four different possible states:

e St+: the state that is amplified in both gratings;

e S+—: the state that is amplified in the left grating and attenuated in the right
grating;

e S+ the state that is attenuated in the left grating and amplified in the right
grating;

o S—: the state that is attenuated in both gratings.
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Fig. 7. Illustration of four different possible states in a defect grating.

We will denote the state ST~ by S* in the following and call this the “ampli-
fied” state since it has large amplitude inside the cavity compared to the exterior;
likewise we will denote S~ by S~ and call it the attenuated state since it has small
amplitude in the defect region compared to the exterior. We will see in the next
section that these two states can, under specific conditions, form a defect mode.
The states ST and S~ are solutions of the eigenvalue problem on the defect region
with boundary values

for S*: Qyu =k (wuat z=~L, 8,u= Krighy(W)u at z = L, (4)
for §7: dyu =k p(wuat z=~L, du= rsl?rght(w)u at z=1. (5)

In general a defect frequency w. of the amplified state will not coincide with a
defect frequency w.. of the attenuated state. For further use in the next section,
we observe the phase difference of the solution over the defect-grating structure as
follows. The amplified/attenuated state can be represented in the uniform exterior
regions as (for s =+ or s = —)

as COS(WsNiert (2 + Miett) + cig) for z < — Mer
Ds Cos(wsnright(z — ﬂ/fright) T ﬁs) for z > Mright

S° =

corresponding to a phase change of 3; — a;; over the complete structure; this phase
change can also be found from the value of the Helmholtz functional.
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4. Defect Modes

We will now study the transmittance problem, and in particular solutions that are
completely transmitted: defect modes.

The general transmittance problem is often studied by numerical methods, and
by scanning the frequency range inside a band gap it is then observed that defect
modes can exist for certain resonant frequencies. Such a DM looks very similar to
a defect state ST as characterized above. This is remarkable because the behavior
in the influx and outflux regions is completely different, and a defect mode can be
created by one-sided influx, while a defect state cannot.

4.1. Defect mode decomposed into defect states

Consider a linear grating structure with one defect as considered above. If a defect
mode exists for some defect frequency wy, its behavior in the exterior regions is
given by

{

M ; ad EXP i(wd'n]eft(z + J\/fleft) + led) for z < — Mest
d —_—

ba exp H{walright (2 — Miight) + Bd) for z > Myight

\

with real amplitudes ag (which can be taken arbitrarily) and by which satisfy (from
Poynting conservation)

2 _ 2
Meftdy = TMrightby .

Now observe that, given a DM, the real and imaginary parts of this mode are
also solutions. Since these solutions are real, each has vanishing Poynting quantity.
Re(My) and Im(My) are therefore two different defect states of the structure that
exist at the same defect frequency w,y. Moreover, each of these states has the same
phase difference f4 — g over the total defect grating structure.

4.2, Defect mode as superposition of defect states

Now consider a defect grating structure for which we have identified four different
DSs in Sec. 3.3. We want to investigate under which conditions a DM exists in such
a, structure and how it can be obtained from a superposition of the two identified
DSs ST and S~ for definiteness, we normalize the amplitude of these waves at the
left uniform exterior region and take oy = 0, x— = —7/2, so that

S+ = cos(wmeft(z -+ A/I}Eft)) for z < '"“A/I]e-ft y
S™ = sin(wnier; (2 + Miegy)) for 2 < —Miers -

For Jater reference, we note that S¥9,5~ ~ 5~ 8,5" = ~ is a nonzero constant over
the whole structure, in fact v = wnes.

In view of the results in the previous subsection, at least two accidental degener-
acy conditions should be satisfied in order that a defect mode can exist. Restricting
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the further investigation to symmetric structures only, for which n(z) = n(-z2), we
will now investigate the possibilities. For a symmetric structure it holds that

+ — .t
Foreft = H’right and Fieft = h’right !

and hence the boundary conditions are:

T, — . — — e —
for i Qu= -k (wuat z=-L, Su=rg(wuatz=1L,

for S7: Ou= -—-h:j;ght(w)u at z=~-L, 0Oyu= ﬁ:;tght(w)u at z= 1.
Any solution in the defect region is of the form ug = A cos{wngz + 8), and hence

a.z Ud az Ud

= —wngtan(wngL + 6) .

= —wngqtan{—wnglL + 6),
Ud z=-—1 Ug z=L

In view of the boundary conditions for §* a first condition follows from the re-
quirement that

wng tan(—wngl + ) = —wng tan{wngL + 8)

tan(wngl — 6) = tan(wngL + 6)

from which we conclude that necessarily § = 0 or § = w/2. The two possible
solutions in the defect region are therefore the symmetric and the skew-symmetric
functions cos(wngz) and sin(wngz).

This leads to two cases depending on which detect solution will connect which
state: for a solution with skew-symmetric amplified, and symmetric attenuated state
we find the two conditions

WhNd COt(wndL) = Hopight

—wng tan(wngL) = m;‘i'ght

and for a solution with symmetric amplified, and skew-symmetric attenuated state
the conditions are:
r_ight;

+
right

—wngtan{wngL) = &
W1 cot(wndL) = K

It is clear that for arbitrary grating the two conditions cannot be satisfied for the
same w, which means that only specific gratings can support a DM.

The case of a QWS is an example that can satisfy these conditions, at the design
frequency wqg with wonify = m/2, ﬁ;}{ght = (), K right = OO Hence if the optical length
of the defect region satisfies wongl, = mmn/2 for some integer m, then for m = odd
we get a skew-symmetric state ST and a symmetric state S, while for m = even
we get a symmetric state ST and a skew-symmetric state S

Each state has a standing wave at the influx region, but the phases of each will

be different. Therefore a suitable complex combination will produce a pure influx
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wave from the left. Because of the normalization for the states chosen above, we
get for the specific complex superposition a purely incoming wave at the left:

Upr = S+ + 457 = expi(wgmeft(z + M)) for z < ~M.

-

The (skew-) symmetry of the states S* guarantee that their phase difference over
the total structure is the same for both. Hence, the same superposition produces a
pure outflux wave at the right:

ST +1S™ = exp i{(wonuignt(z — M)) for z > M .

It is interesting to see the importance of the attenuated state in the construction of
this mode. In the exterior regions both constituent states have the same amplitude
while in the defect region between gratings of N layers, the attenuated state has
amplitude ¢~ while the amplified state has amplitude ¢”. Consequently, for large
N, the contribution to the field profile of the attenuated state is hardly visible and
the mode profile resembles the profile of the amplified state. Yet for the propagating
property of the mode the contribution of the attenuated mode is essential, as seen

by considering the Poynting quantity:
P (8% +1S7) = P(ST) + P(S7) + Im (i579,5~ —iS~8,5T)
=0+0+ (579,57 —570,57] = whes

since P (S*) =0and $79,5~—578,51 = wnjes; constant over the whole structure.
See Fig. 8 for the illustration.
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Fig. 8. Construction of the defect mode from complex superposition of the “amplified” and
“attenuated” states.
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5. Remarks and Conclusions

One-dimensional grating structures as investigated in this paper are simple cases
of two and three dimensional photonic structures. The mathematical methods, and
the observed phenomena in this paper should therefore be helpful for a further
investigation and understanding of these more-dimensional cases.

Concerning the mathematical methods, the use of the optical transfer matrix has
proven to be fruitful to decompose the structure and to investigate the problems on
successive intervals with effective boundary conditions replacing the optical effect
of the adjacent intervals, However, the resulting boundary-value problem, and in
particular the eigenvalue problem, is non-standard since the eigenvalue (frequency)
to be found appears in a nonlinear, non-algebraic way. Solving such problems is not,
easy since both a priori existence statements, as well as effective (iterative) solution
methods, have still to be developed.

The optical phenomena found show an essential difference between the appear-
ance of states and modes. In Sec. 3 it is shown that states can be found as solutions
of an eigenvalue problem. For the relatively simple cases to which we restricted
ourselves, this eigenvalue problem could be solved by finding a solution of a tran-
scendental equation for the frequency. No specific grating properties are required
for their existence. However, in Sec. 4 we showed that a mode, a full-transmitted
traveling wave through the structure, corresponds to the existence of two different
states, which requires the frequency to satisfy two such equations. Even for symmet-
ric structures, these equations can only be satisfied simultaneously if an accidental
degeneracy condition is satisfied, which means that the grating properties should
be chosen appropriately. A quarter wavelength stack was shown to be an example
that has the desired degeneracy properties, and defect modes were identified.

The findings in this paper can be useful for some applications of optical grating
structures. For instance for the design of sensors, when the critical dependence of the
defect frequency for a mode is to be used to detect changes in the optical properties
in the structure. The existence of multiple states in a defect finite grating could
have applications, for instance to construct an optical memory when light influx
from both sides can control the change of the state.
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