
What Can Be Learned from Computer Modeling? Comparing
Expository and Modeling Approaches to Teaching Dynamic
Systems Behavior

Sylvia P. van Borkulo • Wouter R. van Joolingen •

Elwin R. Savelsbergh • Ton de Jong

Published online: 18 May 2011

� The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Computer modeling has been widely promoted

as a means to attain higher order learning outcomes. Sub-

stantiating these benefits, however, has been problematic

due to a lack of proper assessment tools. In this study, we

compared computer modeling with expository instruction,

using a tailored assessment designed to reveal the benefits

of either mode of instruction. The assessment addresses

proficiency in declarative knowledge, application, con-

struction, and evaluation. The subscales differentiate

between simple and complex structure. The learning task

concerns the dynamics of global warming. We found that,

for complex tasks, the modeling group outperformed the

expository group on declarative knowledge and on evalu-

ating complex models and data. No differences were found

with regard to the application of knowledge or the creation

of models. These results confirmed that modeling and

direct instruction lead to qualitatively different learning

outcomes, and that these two modes of instruction cannot

be compared on a single ‘‘effectiveness measure’’.

Keywords Assessment � Computer modeling � Dynamic

systems � Instructional technology � Simulation-based

learning environments

Introduction

Computer modeling involves the construction or modifica-

tion of models of (dynamic) systems that can be simulated

(Penner 2001). Constructing models and experimenting with

the resulting simulations helps learners to build their

understanding about complex dynamic systems. Although

modeling of dynamic systems appears to be difficult for

secondary education students (Cronin and Gonzalez 2007;

Fretz et al. 2002; Hmelo et al. 2000; Sins et al. 2005;

Sterman 2002; Wilensky and Resnick 1999), its potential

benefits make it a worthwhile activity to include in the

science curriculum (Magnani et al. 1998; Mandinach 1989;

Qudrat-Ullah 2010; Stratford et al. 1998).

An example of a computer modeling environment

is shown in Fig. 1. This modeling environment, called

Co-Lab (van Joolingen et al. 2005), provides a modeling

language as well as tables and graphs for displaying the

results of executing the model.

Recently, the debate about the effectiveness of con-

structivist and, in particular, inquiry approaches to learning

has gained new momentum (Kirschner et al. 2006; Klahr

and Nigam 2004; Rittle-Johnson and Star 2007). Opponents

of constructivist approaches to learning argue that the pro-

posed benefits of inquiry approaches do not find support in

experimental research. Indeed, no unequivocal evidence for

the benefits of inquiry learning can be found in the litera-

ture. Some studies find no improvement from inquiry

learning (e.g., Lederman et al. 2007), whereas others do find

gains on inquiry-specific learning outcomes such as process
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skills (Geier et al. 2008), ‘more sophisticated reasoning

abilities’ involved in solving complex, realistic problems

(Hickey et al. 1999), and scientific thinking skills in guided

inquiry (Lynch et al. 2005). A recent study by Sao Pedro

and colleagues (Sao Pedro et al. 2010) shows that there are

indications that inquiry learning can result in better long-

term retention of inquiry skills, such as the control of

variables strategy. A recent meta-analysis confirms that

overall, inquiry learning is more effective than expository

teaching, as long as the inquiry is scaffolded (Alfieri et al. in

press). In the current article we contribute to this general

discussion by comparing a specific form of inquiry learning,

namely learning by modeling, with expository teaching. We

also take the discussion to the next level by raising the issue

of what it means to be ‘‘better’’; in other words, what to

measure when comparing different modes of instruction?

Learning approaches are designed with the intention

of improving specific learning processes and learning

outcomes. This means that when comparing one approach

with another, one should expect changes in the specific

learning outcomes for which each approach was designed.

In other words, if a specific mode of instruction claims to

improve reasoning skills, its effects are not properly mea-

sured by a memory test. This means that we need to use

measures that are appropriate for the learning outcomes we

expect from computer modeling as well as for those

expected from expository teaching. In order to do this we

need to describe in more detail what the expected learning

outcomes of learning by modeling are.

Various benefits of computer modeling have been

claimed in the literature. First, modeling is a method for

understanding the behavior and characteristics of complex

dynamic systems (Booth Sweeney and Sterman 2007;

Sterman 1994). Second, modeling is assumed to enhance the

acquisition of conceptual knowledge of the domain involved

(Clement 2000). Modeling has the potential to help learners

Fig. 1 The learning environment Co-Lab with its modeling tool (top left window)
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develop high-level cognitive skills and thereby to facilitate

conceptual change (Doerr 1997). Third, modeling is

assumed to be especially helpful for the learning of scientific

reasoning skills (Buckley et al. 2004; Mandinach and Cline

1996). Key model-based scientific reasoning processes are

creating, evaluating, and applying models in concrete situ-

ations (Wells et al. 1995).

In comparing the outcomes from the two contrasting

modes of instruction, expository instruction and computer

modeling, we expect specific differences on the model-

based reasoning processes of applying, creating, and

evaluating models. The expository mode of instruction in

this study directly presents the information to the learners,

primarily in a textual format. Guidance is provided in the

form of assignments, but without any dynamic tools such

as simulations or concept maps and without explicit model

building. The modeling mode of instruction comprises a

guided inquiry approach supported by modeling and sim-

ulation tools. The two modes of instruction were compared

using a test intended to detect the specific forms of

knowledge gained by both modeling activities and expos-

itory instruction.

The test distinguishes two dimensions of knowledge:

type of reasoning and complexity. The first dimension

comprises declarative knowledge, the ability to remember

facts from the information provided. It also includes the

core reasoning activities of a modeling activity: applying

knowledge of relations in a model by making predictions

and giving explanations, creating a model from variables

and relations between variables, and evaluating models and

experimental data produced by a model (Wells et al. 1995).

The second dimension concerns the aspect of com-

plexity. Modeling is typically used to understand complex

dynamic systems and understanding complex systems is

fundamental for understanding science (Assaraf and Orion

2005; Hagmayer and Waldmann 2000; Hmelo-Silver et al.

2007; Hogan and Thomas 2001; Jacobson and Wilensky

2006). We distinguish simple and complex model units

based on the number of variables and relations involved. A

simple unit is the smallest meaningful unit of a model, with

only one dependent variable and only direct relations to

that variable. A complex unit is a larger chunk that contains

indirect relations and possibly (multiple) loops and com-

plex behavior (see Fig. 2). Because the derivation of

indirect relations in a causal network is often complex and

computationally more demanding (Glymour and Cooper

1999), a test item about indirect relations will invoke more

complex reasoning.

Two versions of the test were developed to cover the

difference between domain-dependent and domain-inde-

pendent modeling skills. In principle, model-based rea-

soning can be largely domain-independent. For instance, if

a model contains a relation stating that when the water

level in a tank increases, the water flow will increase,

predicting what will happen to the water flow when the

water level changes can be done independently of the

meaning of the variables involved. However, reasoning

with a model can be influenced by the availability of rel-

evant domain knowledge (Fiddick et al. 2000) and thus

may be different in a familiar versus an unfamiliar domain.

In an unfamiliar domain, the only information learners

have is the model itself. The learner must reason by fol-

lowing the relations in the model in a step-by-step way,

building a chain of reasoning. In a familiar domain, rea-

soning steps may be bypassed because the outcome of the

reasoning chain as a whole can be retrieved from memory.

For instance, in a model that includes a capacitor, a person

with knowledge of electronics will be able to reason that

the voltage over the capacitor will increase as a conse-

quence of a charging current, stepping over the charge as

an intermediate variable. In an unfamiliar domain such a

reasoning shortcuts will not be possible.

Research Question

The main research question for the current study was whe-

ther the two contrasted instructional approaches of modeling

and expository teaching will result in specific differences in

knowledge acquisition as measured by subscales of our test.

Because learners in our study worked on a modeling prob-

lem in a specific domain, for a relatively short period of time,

we expected effects mainly in their knowledge related to that

domain, rather than in their more general modeling skills.

Therefore, we focused on the domain-specific test to assess

outcomes, and used domain-independent modeling skills as

a pretest. We expected differences in learning outcomes on

several subscales. Being able to run their own models and

Fig. 2 Example of a simple and a complex model part
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having a simulation tool available enabled the learners in the

modeling condition to perform experiments and to evaluate

experimental data. Moreover, a large part of evaluation

based on experiments is making predictions, and thereby

applying the rules of system dynamics by reasoning with the

relations. Therefore, we expected the modelers to perform

better on the subscales that measure the reasoning processes

of evaluation and application. Furthermore, a substantial

amount of time should be spent on constructive activities

such as translating concepts into variables and creating

relations between variables. Thus, we also expected differ-

ences in favor of the modelers on the create scale. The

expository learners are more directly and explicitly exposed

to the concepts in the domain. Therefore, we expected the

expository teaching to cause learners to be more efficient in

remembering declarative simple and complex domain

knowledge. Because the modelers had tools that support the

creation and exploration of conceptual structures with a

concrete artifact that provides a structural overview of the

model, we expected the predicted advantages of the mod-

elers to be more prominent with the complex models than the

simple models.

Method

Participants

Seventy-four (51 males and 23 females) eleventh grade

students from two upper track secondary schools partici-

pated in this study. The participants were between 16 and

19 years old (M = 17.20, SD = .55) and all were in a

science major.

Materials

Co-Lab Learning Environment

The Co-Lab software (van Joolingen et al. 2005) provides a

learning environment for each of the two conditions. The

domain chosen was global warming. One version of the

environment was configured for modeling-based instruc-

tion and consisted of a simulation of the basic energy

model of the Earth, a modeling editor to create and simu-

late models, graphs and tables to evaluate the data pro-

duced by the model, and textual information about the

domain. A second version of the environment was set up

for expository instruction and consisted of the textual and

pictorial information needed for writing a summary report

on the topic of global warming.

Worksheets with assignments about factors in global

warming were given to all participants as scaffolds. Their

work was subdivided into three parts. The first part was

about climate models in general and included questions

about the quality and accuracy of making global warming

predictions using models. The second part concerned the

factors albedo and heat capacity, and included questions

about the influence of these factors on the temperature on

Earth. This was implemented in different ways for the

modelers (who created a model to support their reasoning)

and the expository learners (who used the information

provided to solve the problems in the text). For example, an

assignment about the influence of the albedo on the equi-

librium temperature asked both groups to predict what

would happen with the equilibrium temperature if the

albedo was high or low respectively. Subsequently, the

modelers were asked to investigate their hypotheses with

their model whereas the expository learners answered the

question based on the information given. The third part

was about evaluating one’s understanding of the domain

structure. The modelers were asked to compare their own

model’s behavior with the given simulation of the Earth’s

basic energy model. The expository learners were asked to

compare their findings about the influential factors with

given global warming scenarios. These scenarios specified

a number of plausible future climates under the assumption

of different values of future emissions of greenhouse gas-

ses. The expository learners wrote a report about the factors

influencing the temperature on Earth as a final product,

while the final product for the modelers was represented by

the model they created.

The Modeling Knowledge Tests

Two paper-and-pencil tests for modeling knowledge were

constructed according to the considerations introduced

above (van Borkulo et al. 2008). This means that both tests

had 4 (Remember declarative knowledge, Apply, Create,

Evaluate) 9 2 (Simple, Complex) subscales. One test was

domain-independent and the other test was specific for the

domain of energy of the Earth. The domain-independent

test was used as a pretest and the domain-specific test as

posttest. The scores on the domain-generic pretest were

used to match participants in the experimental groups for

prior modeling ability. The results on the domain-specific

posttest were analyzed using the domain-general pretest as

a covariate to control for individual differences in prior

modeling skills.

The domain-independent test introduced the fictitious

phenomenon of the ‘‘harmony of the spheres’’. Because this

test was about a fictitious phenomenon, it was impossible

that students would have any relevant domain knowledge or

experiential knowledge to rely on. The domain-specific test

was about the domain of global warming, where students

would have relevant domain knowledge after the interven-

tion. Both tests introduced a model of the domain about
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which different kinds of questions were asked. The model

structures for both tests were isomorphic, meaning that the

models presented were identical, except for the names of the

variables.

The ‘‘harmony of the spheres’’ test consists of 25 items

distributed over the eight subscales (see Table 1). The

declarative knowledge items measured students’ prior

knowledge about modeling formalism, and the application,

creation, and evaluation categories contained problems

about the harmony model that was introduced to the stu-

dents. Figure 3 shows the model that was given in the

pretest. Figure 4 shows examples of a simple application

item and a complex evaluation item.

The domain-specific ‘‘black sphere’’ posttest concerned

the modeling of global warming and hence involved the

domain of energy of the Sun and the Earth. The black

sphere test consists of 24 items again covering the eight

subscales introduced above (see Table 1). Figure 5 shows

the introductory model that was given in the posttest.

Figure 6 shows examples of a simple declarative item and

a complex create item.

The tests were scored by giving participants 0–1 point

for each item. Partial credit was given for partly correct

answers. The maximum score on the harmony test was 25.

The maximum score on the black sphere test was 24.

In order to ensure equivalence in test circumstances

between conditions, the models in the test were not rep-

resented in the system dynamics notation used in the

modeling tool, so that students in the modeling condition

would not experience an advantage. Instead, a causal

concept map notation was used. Variables were represented

by circles labeled with a variable name, causal relations

were represented by arrows, and the quality of the relation

was expressed by a plus or minus sign (see Figs. 3, 5).

Scoring Method

We developed a scoring scheme based on an analysis of the

item responses of students at different levels of modeling

proficiency. An answer model was derived for each item,

with elements defining the correct answer and elements

representing common errors.

The expected answer for many items was the specifi-

cation of a relation. In these cases we used a detailed

scoring algorithm, giving points for the specification of the

existence of a relation, the direction of a relation (causal-

ity), and the quality of a relation (positive or negative

influence). A relation could be expressed not only textually

in a written explanation, but also schematically in the

drawing of a model. The threefold scoring of a relation

provided a detailed view of the elaborateness of students’

reasoning.

Procedure

The experiment consisted of two sessions of 200 min each,

at an interval of 2 or 4 weeks depending on the school

program. The lessons were led by the experimenter, were

additional to the regular curriculum and were compulsory

for all students. Participants from one school were awarded

course credit for their participation.

All participants attended an initial session of 150 min

in which modeling was introduced, using examples on the

spreading of diseases and a leaking water bucket. Fol-

lowing this session, participants had 50 min to complete

the harmony pretest. For the second session, the students

were divided into two groups, based on equal distribution

of the harmony pretest modeling knowledge scores. We

included all combinations of school, teacher, class, and

gender for both conditions. In the second session, both

conditions were given information and assignments about

the factors influencing the temperature on Earth. In

addition to the assignments, the students in the modeling

condition (N = 38) performed an modeling task. The

students in the expository condition (N = 36) wrote a

report on the factors in global warming. After 150 min all

participants completed the black sphere posttest, which

took 50 min.

Results

We computed analyses of variance with the pretest sub-

score as a covariate. In the analysis of black sphere test

subscores, the corresponding pretest subscores were used

as a covariate. For the declarative knowledge scale, the pre-

test scale was not comparable, and no covariate was used

(see Table 2).

No significant main effect of condition on total score on

the black sphere test was found, although there was a trend

in favor of the modeling condition (F(1, 72) = 2.972,

p = .089).

Table 1 Distribution of the number of items in pre—and posttest

among the framework dimensions

Number of items Pretest Posttest

Harmony Black sphere

Simple Complex Simple Complex

Declarative 3 3 3 3

Application 3 4 3 3

Creation 2 4 3 3

Evaluation 3 3 3 3

Total 11 14 12 12

25 24
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We expected differences on the subscales. We first took

the subscales for the different skills (Remember declarative

knowledge, Apply, Create, Evaluate). When looking at

each scale overall (taking the simple and complex items

together), we found no differences. When looking at

the complex items across all subscales, we found a

significant difference in favor of the modeling condition

(F(1, 72) = 8.780, p = .004, partial g2 = .110). More

specifically, students in the modeling condition performed

significantly better on both the complex declarative items

(F(1, 72) = 7.065, p = .010, partial g2 = .089) and the

complex evaluation items (F(1, 72) = 3.966, p = .050,

partial g2 = .053). For the other subscales in the frame-

work no significant differences were found (see Table 3).

Fig. 3 The fictitious model of

the harmony of the spheres that

was given in the pretest

Fig. 4 Two examples of

fictitious pretest items

Fig. 5 The black sphere model

that was given in the global

warming posttest
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Discussion

The aim of this study was to investigate the specific

learning outcomes of computer modeling compared to

expository instruction. Although no significant overall

differences in posttest scores between the two conditions

occurred, clear differences were found with respect to the

complex items. In line with our expectations, the modeling

condition performed significantly better on the overall

complex items. More specifically, the difference in per-

formance concerned the complex evaluation items and the

complex declarative items.

An explanation for modelers’ better performance on the

complex items is that the model created by learners in the

modeling condition provides an overview of the complete

model structure, allowing for a better integration of the

various facts and relations that are present in the domain.

This can also explain the unexpected advantage modelers

had on the complex declarative items. Apparently, complex

facts are not simply reproduced, but are reconstructed

during the test. So, possibly because of a better developed

ability for reasoning with the domain structure, the

Fig. 6 Two examples of black

sphere posttest item

Table 2 Means and standard deviations of the harmony pretest

(sub)scores for the two conditions

Harmony pretest

Expository (n = 36) Modeling (n = 38) Max

Overall

Simple 5.11 (1.39) 5.01 (1.45) 11

Complex 5.89 (2.27) 6.08 (2.46) 14

Total 11.00 (3.29) 11.09 (3.67) 25

Declarative

Simple 0.38 (0.61) 0.31 (0.52) 3

Complex 0.91 (0.60) 0.75 (0.47) 3

Total 1.29 (0.91) 1.06 (0.81) 6

Application

Simple 1.30 (0.50) 1.18 (0.65) 3

Complex 2.21 (1.22) 2.36 (1.14) 4

Total 3.51 (1.56) 3.54 (1.58) 7

Creation

Simple 1.68 (0.57) 1.70 (0.48) 2

Complex 1.54 (0.79) 1.51 (0.99) 4

Total 3.23 (1.18) 3.21 (1.26) 6

Evaluation

Simple 1.75 (0.71) 1.82 (0.59) 3

Complex 1.24 (0.92) 1.46 (0.95) 3

Total 2.99 (1.37) 3.28 (1.24) 6

Table 3 Means and standard deviations of the black sphere posttest

(sub)scores for the two conditions

Black sphere posttest

Expository (n = 36) Modeling (n = 38) Max

Overall

Simple 6.59 (1.38) 6.58 (1.68) 12

Complex 3.67* (1.50) 4.72* (1.72) 12

Total 10.26 (2.48) 11.30 (3.10) 24

Declarative

Simple 2.00 (0.80) 1.74 (0.84) 3

Complex 1.06* (0.71) 1.50* (0.69) 3

Total 3.06 (1.09) 3.23 (1.28) 6

Application

Simple 1.04 (0.69) 1.21 (0.70) 3

Complex 0.90 (0.69) 1.12 (0.71) 3

Total 1.95 (1.16) 2.33 (1.18) 6

Creation

Simple 2.09 (0.69) 2.07 (0.85) 3

Complex 1.16 (0.74) 1.26 (0.76) 3

Total 3.24 (1.34) 3.33 (1.48) 6

Evaluation

Simple 1.46 (0.59) 1.56 (0.66) 3

Complex 0.54* (0.53) 0.85* (0.63) 3

Total 2.00 (0.79) 2.41 (0.99) 6

* Means differ at p \ .05 in the analysis of variance
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modelers were better able to remember or reconstruct rel-

evant facts in the domain.

Against our expectations, we found no differences

related to the application and creation of models. The

creation items in the posttest required the modeling of

phenomena that were similar to the phenomena modelers

had practiced with. We expected the modelers to be able to

perform well on these items with similar model structures.

Explanations for this unexpected lack of difference include

the amount of time available for the modeling activity,

which could have been too brief for a difference to emerge,

and the possibility that the actual behavior by students

engaged in the modeling could have been ineffective. This

would be the case when learners merely copied their

models from given examples rather than creating models

from scratch. For instance, a common error for the mod-

elers during the second session was to omit the temperature

variable from the models they created. Apparently, the

modelers copied the familiar model structures superficially

instead of reasoning and experimenting with the model and

discovering mistakes with respect to the new context.

Ideally, the modelers had the opportunity to learn from

their mistakes by receiving feedback from the simulation of

their model, as opposed to the expository learners who did

not receive feedback.

Relational reasoning seems to be an important factor in

creating and evaluating a model. Applying knowledge of a

model is not obviously involved in creating a relation. In this

study, the participants were creating relations, but seemed

not to learn how to reason with them. It is worthwhile to

further investigate how the acquisition of creation skills can

be supported and how the support for the different parts of

creation skills can be implemented in the instruction.

In conclusion, computer modeling appears to result in

qualitatively different learning outcomes between model-

ing and expository instruction. Differences arose in rea-

soning with complex knowledge structures, with respect to

remembering complex conceptual knowledge and evalu-

ating models. Proper tests with relevant subscales can

reveal the differences in knowledge that can be acquired

using a particular teaching method. The test introduced

here serves as an example. As a consequence, the discus-

sion on the benefits and drawbacks of constructivist

teaching methods such as inquiry learning and modeling, as

triggered by Kirschner and others (Kirschner et al. 2006;

Klahr and Nigam 2004; Mayer 2004), can gain depth by

devising such tests to address specific effects on specific

types of knowledge.
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medium, provided the original author(s) and source are credited.
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