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Recent advancements in bioprinting technologies have significantly improved our capability 

to fabricate artificial tissues and biomedical devices through bottom-up assembly of 

biomaterials, biomolecules, and cells.[1] The spatial arrangement of distinctive components 

in the resulting constructs is of critical importance to achieve tissue and device functions. 

The bioprinting technologies, including extrusion-based printing,[2] laser-based printing,[3] 

inkjet-based printing,[4] acoustic encapsulation,[5] and valve-based printing,[6, 7] have 

provided robust platforms that allow for controlled deposition of three-dimensional (3D) 

constructs with pre-defined patterns. Among these different methods, extrusion-based 

bioprinting is one of the most popular methodologies presently used due to its compatibility 

with various bioinks and ease of operation.[8]

A typical extrusion bioprinter is composed of three units: a reservoir (e.g., syringe) that 

contains the bioink, a printhead through which the bioink is ejected from the reservoir, and a 

receiving stage where the deposited bioink is collected.[9] The printhead, the stage, or both, 

may be motorized to achieve elaborate control of bioprinting based on precisely designed 

patterns. Nevertheless, most of the current modalities are limited to the use of a single bioink 

during each deposition process, rendering it difficult to achieve bioprinting of sophisticated 

compositional structures. Several techniques have recently been advanced to overcome this 

limitation in an effort to improve the capacity of bioprinters to extrude more than a single 

bioink. For example, a simple mixing device was fixed onto the printhead for printing of two 

materials.[10–12] In addition, multi-material bioprinting was realized by incorporating 

multiple separate printheads on a bioprinter, where mechanical co-registration of the 

printheads achieved the deposition of selected inks at desired locations.[13, 14, 15, 16] Despite 

their potential in scaling up to a larger number of materials, the deposition speed of this 

technique would inevitably be reduced as more nozzles are added, since fast switching 

among different channels and simultaneous injection of bioinks can hardly be achieved.

Here, we report a multi-material extrusion bioprinting platform that is capable of extruding 

multiple coded bioinks in a continuous manner with fast and smooth switching among 

different reservoirs for rapid fabrication of complex (tissue) constructs. This paper provides 

a proof-of-concept demonstration by mounting a single printhead consisting of a bundle of 7 

equal-sized capillaries, each connected to a unique bioink reservoir that could be 

individually actuated by digitally controlled pneumatic pressure. The ejection process, when 

synergized with the movement of the motorized stage, allows for rapid deposition of two-

dimensional (2D) patterns and 3D architectures composed of multiple desired bioinks in a 

spatially defined manner, at a speed an order of magnitude faster than most existing nozzle-

based bioprinting modalities. We further demonstrated the capability of our rapid continuous 

multi-material bioprinter to generate miniaturized cell-laden constructs containing several 

types of cells, as well as its potential to fabricate gradient structures, and prototype multi-

component bioelectronics, using a broad range of bioinks derived from shear-thinning to 

conductive biomaterials. The proposed technology is likely to advance the field of extrusion 
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bioprinting by offering strong capacity in printing speed and continuity, which is compatible 

with a wide variety of bioinks. Most of all, our 3D bioprinting platform may be conveniently 

extended to a large numbers of bioinks necessary for engineering highly complex functional 

biomaterials, tissues, and devices in the future.

Unlike conventional multi-nozzle bioprinters, which typically require mechanical switching 

among the physically separated nozzles to deposit multiple bioinks, our bioprinter is able to 

continuously eject different types of bioinks in both individual and simultaneous modes. The 

bioprinter consists of a Cartesian robotic stage and an array of bioink reservoirs routed to a 

single printhead containing 7 bundled channels with equal sizes (Figure 1, A–D, Figures S1 

and S2). The dispensers are pneumatically driven and fed by compressed gas through valves 

(Figure 1C). Digital tuning of the extrusion is achieved using a program integrated with the 

bioprinter to individually (or simultaneously) switch on/off desired valve(s) and command 

the dispensing patterns (Figure 1, B and C). The controllers for both the valves and the 

motorized stage are programmed to synchronize the actuation of the valves and the 

movement of the stage. The adjustment of the pneumatic pressure and valve gating duration 

allows the dispersion of various bioinks with different viscosities. As such, this bioprinter 

can print up to 7 materials and rapidly switch among materials from different channels, 

without needing to physically change the nozzles.

Here a shear-thinning bioink formulated by a suspension of synthetic nanosilicates in water 

was employed for bioprinting.[17, 18] Detailed investigations of the rheological properties 

and the printing performance of silicate bioink can be found in Supporting Information 

(Figures S3–S6). It should be noted that the 5% nanosilicate bioink was chosen as the 

optimal formulation that possessed proper shear-thinning properties, and was thus used to 

bioprint various 3D constructs. As an example, we programed the bioprinter to deposit 

bioinks dyed in 7 different colors with increasing numbers of colors after each switch 

(Figure 1, E and F, and movie S1). The bioprinting process was continuous, and the printed 

microfibrous structure maintained its three-dimensionality consisting of an array of spatially 

well-defined bioinks (Figure 1G). The 7 bioinks could also be individually deposited via a 

continuous printing process (movie S2), where no noticeable switching delays were 

observed between adjacent materials (Figure S7).

We next printed a series of microfibrous 2D patterns to demonstrate the capability of our 

bioprinter for continuous extrusion of multiple materials in well-defined manners. Each of 

the 7 bioinks could be continuously printed in equivalent lengths along the direction of the 

individual microfibers, with equal or incremental spacing between the adjacent lines (Figure 

S8, A and B). Alternatively, the spacing between the adjacent microfibers could be 

maintained constant while continuous segments within individual lines were printed with 

decreasing lengths (Figure S8C), or both parameters might be altered simultaneously during 

the bioprinting process (Figure S8D). We further printed an array of microfibers composed 

of increments of 1–7 materials along the direction of individual lines (Figure S8E). Printing 

of these various patterns demonstrated the capability of our platform to continuously deposit 

any desired type and number of bioinks on demand. The different materials could also be 

printed in perpendicular directions, to achieve hierarchical architecture while still 

maintaining a clear separation of the deposited bioinks (Figure S8, F–J). The printed multi-

Liu et al. Page 6

Adv Mater. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



material microfibers could be designed to fuse into a single piece of structure when the 

spacing between the microfibers was reduced to match their width (movie S3). The printed 

microfibers joined each other and formed a cohesive piece of monolayer slab containing 7 

distinct but continuous segments along the direction of microfiber deposition. This ability to 

create fused larger-scale constructs allowed us to print more sophisticated patterns composed 

of multiple bioinks, which has hardly been possible using existing multi-printhead 

systems.[13] Our continuous multi-material bioprinter has shown unparalleled power in 

overcoming this inability by depositing multiple types of materials in precisely programmed 

arrangements at much improved fabrication speed.

It is estimated that our continuous multi-material bioprinter features much faster fabrication 

speed than most existing multi-nozzle systems. For a typical multi-nozzle printer, the switch 

time between nozzles averages 4–20 s.[14, 16] In comparison, our continuous bioprinting 

platform requires nearly no gap in such switching processes. In analyzing our fabrication 

procedure where we printed 15 lines each composed of 7 bioinks for 2 layers (and thus 180 

switches in total, movie S3), while our continuous bioprinter spent only 256 s for the entire 

printing process (at a speed of 400 mm min−1), a conventional multi-nozzle printer will 

consume an additional time of 720–3600 s simply devoted to physical nozzle switching and 

result in a total printing time of 976–3856 s, if the patterns are deposited in the same manner. 

Therefore, our continuous multi-material bioprinter could achieve a speed up to 15 times 

faster than those of the existing nozzle-based platforms. Although the numbers in this 

comparison is not completely accurate due to the different materials used in the literature 

and in our case, it is still indicative of the potential superior capacity of our multi-material 

bioprinter to deposit several bioinks than existing multi-nozzle platforms. The advantage of 

our continuous multi-material extrusion printing system in terms of the biofabrication speed 

would become much more pronounced as the number of materials and the complexity of the 

printouts are increased. These unique features of our bioprinter have significantly promoted 

the current level of automation and speed among existing nozzle-based bioprinting 

techniques.[11, 14, 19] It should be noted that, the present system is readily expandable to as 

many bioinks as needed by simply increasing the number of pneumatically driven valves and 

reservoirs, thus affording us the possibility to rapidly generate complex constructs while 

simplifying instrumentation.

We next demonstrated the capability of our continuous multi-material bioprinter to produce 

complex 3D constructs. Simple cubes composed of 2 and 3 bioinks (Figure 2, A and B) and 

ring-shaped blocks containing 2, 3, and 4 bioinks were readily printed (Figure 2, C–E). 

Constructs containing all 7 bioinks could also be fabricated in different shapes, such as a 

pyramid (Figure 2F), a three-layer stripe (Figure 2G), and a ten-layer stripe (Figure 2H). We 

further designed sophisticated 3D patterns and printed a set of structures resembling human 

organs, including brain, lung, heart, liver, kidneys, pancreas, gastrointestinal system, and 

bladder. Each organ-like structure contained 4–7 bioinks, according to the requirements of 

local structures, and each was individually printed (Figure 2I and movies S4–S7). Only 1–3 

layers of the bioinks were deposited in these examples due to the significant amount of time 

required for printing these structures of relatively large scales. The bioprinting processes 

were rapid, and the transition among different bioinks was smooth. The printed organ-like 

constructs were stable, and the demarcation among adjacent materials was clear (Figures 2, 
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J–N, and S9). Our multi-material bioprinter was also compatible with the embedded 

bioprinting technique.[7] Using a modified printhead with extended length, we were able to 

directly generate free-form shape of polyethylene glycol-diacrylate (PEGDA)/alginate coils 

in a pluronic hydrogel followed by photocrosslinking and retrieval after liquefying the 

supporting matrix (Figure 2O). Similarly, free-form alginate shapes composed of multiple 

bioinks, such as a dual-layer hollow tube (Figure 2P) and a DNA double helix (Figure 2Q), 

could be obtained with our continuous multi-material bioprinter.

The developed rapid continuous multi-material bioprinter should be able to generate 

hierarchical structures and patterns suitable for various applications in biomedicine. We 

subsequently demonstrated the capability of the bioprinter in engineering complex cell-laden 

organs and depositing prototype bioelectronic circuits. While these demonstrations are 

preliminary with limited resolution and functional assays, we primarily aimed to validate the 

concept of our continuous multi-material extrusion bioprinting in the current work.

Among the various photocrosslinkable hydrogels available, gelatin methacryloyl (GelMA) 

has been frequently used as a bioink due to its intrinsic cell adhesion moieties that promote 

cell spreading and functionality.[20] Here, we adopted a mixture of GelMA and alginate as 

the bioink,[10] where the alginate component was used to increase the viscosity to achieve a 

range of bioprinting conditions. The cell-laden bioinks were photocrosslinked to fix their 

structures immediately after printing.[10] Detailed investigations of the rheological properties 

and the printing performance of the GelMA/alginate bioinks can be found in Supporting 

Information (Figures S10–S12). We first took advantage of the multi-bioink printing to 

design a range of different patterns including a heart-like structure (Figure 3, A–E), a 

kidney-like structure (Figure S13, A–F), and stripes with different width (Figure S13, G–K). 

It was clear that, multiple bioinks laden with cells pre-labeled with cell trackers were 

effectively deposited using our continuous multi-material bioprinter. The printed structure 

possessed explicitly separated borders among different cell-laden bioinks (Figures 3, B–E, 

and S13 B–F, and H–K). The resolution was determined to be approximately 100–200 µm, 

as indicated from the printed stripe patterns with a range of widths (Figure S13, H–K).

We further printed a pattern of endotheliaized tissue, where four sectors of bioinks laden 

with human dermal fibroblasts (HDFs), human hepatocellular cells (HepG2), human 

mesenchymal stem cells (hMSCs), and no cells, respectively, were deposited at the base, 

followed by integration of a pattern on top that resembled the vasculature encapsulating 

human umbilical vein endothelial cells (HUVECs, Figure 3F). The fluorescence 

micrographs obtained from different locations clearly revealed successful bioprinting of the 

desired (cell-laden) bioinks (Figure 3, G–I), which laid down the essential basis for future 

fabrication of complex tissues containing hierarchical assembly of multiple cell types. The 

cell viability assays, determined immediately and at 1 and 7 days post bioprinting (Figures 

3J and S14, A–T), indicated that all cell types maintained sufficient viability under the UV 

crosslinking conditions adopted. Comparison with the cells pre-bioprinting (Figure S14, A–

H versus I–T) further revealed that the conditions selected for extrusion did not appear to 

affect cell viability. The cells well spread over a course of 7 days in culture (Figure S14, U–

X), indicating the bioactivity provided by the GelMA component of the bioink. The printed 
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vascularized tissue constructs were further shown to exhibit increased cell proliferation over 

a period of 3 days analyzed (Figure 3K).

In addition, we used the multi-material extrusion bioprinter to generate gradient structures to 

mimic those occurring in natural tissues, such as the bone. For example, we created a ring-

like structure featuring an inward-out gradient in the concentration of hydroxyapatite (HAp) 

embedded in the GelMA/alginate hydrogel (Figure 4A). Alizarin Red staining and 

quantification of the staining intensities further confirmed the presence of this same type of 

gradient in HAp contents (Figure 4, B and C). Importantly, the shape of the printed 

constructs containing bioinks with different concentrations of HAp could be arbitrarily 

controlled to form any desired localized gradients as well as continuous or discrete patterns, 

as illustrated by our capability to print a bone-shaped hydrogel block (Figure 4D). The 

Alizarin Red staining indicated that different bioinks containing a range of HAp 

concentrations were printed across the entire structure, where the same materials (#4 and 5, 

#6 and 7) printed at discrete locations showed similar staining intensity, revealing 

reproducible deposition of the bioinks as programmed (Figure 4E).

The printed constructs featuring gradients of inorganic nanoparticles also demonstrated 

varying bioactivities. Differential attachment and proliferation of MC3T3 preosteoblasts 

seeded on top of the printed structure containing a gradient of HAp, were observed after 1 

and 3 days of culture (Figure 4, F and H). The cell seeding efficiency and proliferation were 

promoted with increasing concentration of HAp. A similar trend in cell behaviors was 

observed when the preosteoblasts were seeded on printed hydrogels containing a gradient of 

nanosilicates based on the osteoinductive property of these nanoparticles (Figure 4, G and 

I).[18] This excellent freedom in reliable and smooth switching among selected bioinks 

during the bioprinting process is critical in recapitulating tissue- and organ-level biomimetic 

properties, especially when sophisticated structures and/or complex compositions are 

involved.

Significant interest in bioelectronics is also emerging in biomedicine. A wide range of 

applications of electronics devices is possible in various fields, including epidermal sensors, 

soft contact lenses, neurointerfaces, implantable medical devices, and bioactuators.[21] 

Bioprinting has been increasingly recognized as an excellent technique for depositing 

conductive bioinks for direct fabrication of bioelectronics, given its convenience, robustness, 

and cost effectiveness.[22] While many strategies have been developed for printing 

conductive bioinks, these have been mostly limited by single-ink deposition, which 

precluded the possibility for the production of complex electronic circuits. Taking advantage 

of our multi-material bioprinting platform, we printed a prototype continuous circuit 

featuring conductive alginate/DNA/carbon nanotube (CNT) bioinks with 1–6 mg mL−1 

CNTs in parallel (Figure 4, J and K, and movie S8). This conductive bioink was optimized 

from our previous formulation used for single-material printing.[23] The printed circuit was 

completed by attaching a power source (coin battery, 3V) and 6 miniature green LEDs, 

which upon connection, exhibited a clear gradient in their luminescence intensity (Figure 

4L). The differential luminescence of the LEDs was attributed to the series of resistances 

(0.17–3.37 Ω mm−1) that the conductive bioinks produced and therefore the difference in the 

current generated in each parallel unit (Figure 4, M and N). Our capability for continuously 
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printing several types of conductive bioinks has paved a new avenue for fabricating complex 

bioelectronics, where future bioprinting of complex circuits composed of multiple functional 

electronic units is envisioned.

In summary, we have developed a continuous multi-material extrusion bioprinting strategy 

capable of continuously and/or simultaneously depositing up to 7 types of bioinks through 

the integration of a digitally tunable pneumatic single-printhead system, which was able to 

achieve biofabrication of multi-component structures at a speed up to 15 times faster than 

existing nozzle-based modalities. While our demonstrations in the current work are 

preliminary with limited resolution and functional assays, we primarily aimed to introduce 

the concept of continuous multi-material extrusion bioprinting. To this end, we demonstrated 

the capacity of this platform in bioprinting of sophisticated planar and 3D patterns. In the 

subsequent proof-of-concept demonstrations, we showed the ability of our bioprinter to 

produce complex and gradient constructs for applications in tissue engineering, point-of-care 

diagnosis, and bioelectronics. Notably, our platform may be readily expanded to a large 

number of channels desired, simply by increasing the numbers of digitally actuated 

pneumatic valves in the system.

We believe that further optimization in the instrumentation of the bioprinting system will 

make it a highly efficient modality and a leap forward in the fabrication of physiologically 

relevant and functional tissues/organs that match the complexity of their in vivo counterparts 

at clinically relevant speeds. For example, it should be noted that, in the current setup we 

aligned the individual channels of the printhead side by side, leading to slightly non-

concentric deposition of the multiple bioinks. Nonetheless, the printhead could be further 

connected to a common outlet, and this different printhead design enabling the materials to 

mix with different volumes/rates prior to extrusion would further achieve true gradient 

formation at microscale. The pressure of each channel may also be individually tuned (as to 

the uniform pressures across different channels in our current system) to allow for 

dispensing of multiple bioinks with a series of rheological properties. Further optimization 

of the bioprinter is currently undergoing and will be reported in future publications. We 

foresee the widespread use of our multi-material extrusion bioprinting in rapid construction 

of biomedical devices where a multitude of different materials can be adapted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Design of the digitally tunable continuous multi-material extrusion bioprinter
(A and B) Schematics showing the design of the 7-channel printhead connected to reservoirs 

that are individually actuated by programmable pneumatic valves. (C and D), Photographs 

showing the setup of the Festo valves and printhead. (E) Schematic of a sample code for 

continuous bioprinting of a single serpentine microfiber consisting of 1–7 bioinks. (F) 

Photograph showing the printed microfiber. (G) Side view of the end of the microfiber 

indicating the 3D volume containing 7 individually segmented bioinks. Printing conditions: 

5% nanosilicate aqueous suspension dyed in 7 different colors, printhead moving speed = 

400 mm min−1, pneumatic pressure = 50 psi.
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Figure 2. Multi-material bioprinting of 3D constructs
(A and B) Bioprinting of dual- and triple-layered cuboid blocks. (C–E) Bioprinting of blood 

vessel-like structures (transverse plane) containing dual, triple, and quadruple materials. (F) 

Bioprinting of a pyramid containing 7 layers of different bioinks. (G and H) Bioprinting of 3 

and 10-layered blocks with continuous segments of 7 different bioinks. (I) Bioprinting of 

human organ-like constructs from multiple bioinks, including brain, lung, heart, liver, 

kidneys, pancreas, stomach, small/large intestines, bladder, and prostate. The organ-like 

constructs were individually printed, photographed, and stitched together in the same image 

at relative locations as those in the human body. (J–N) Side view of selected organ-like 

constructs indicating their 3D nature: (J) brain, (K) lung vasculature, (L) kidney, (M) left 

atrium of heart, (N) bladder/prostate. The organ-like structures were not printed to scale to 

each other. (A–N) printing conditions: 5% nanosilicate aqueous suspension dyed in 7 

different colors, printhead moving speed = 400 mm min−1, pneumatic pressure = 50 psi. (O–

Q) embedded bioprinting of free-form (O) coils (printing conditions: 20% PEGDA, 2% 
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alginate, and 0.5% PI extruded in 23% Pluronic aqueous solution; printhead moving speed = 

100 mm min−1, pneumatic pressue = 30 psi), (P) dual-layer hollow tube, and (Q) DNA helix 

in front and side views. (P and Q) printing conditions: 2% alginate dyed in different colors 

extruded in 23% Pluronic aqueous solution containing 0.05% CaCl2; printhead moving 

speed = 100 mm min−1, pneumatic pressue = 30 psi.
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Figure 3. Multi-material bioprinting of cell-laden structures
(A) Fluorescence image showing a printed multi-component heart-like structure. Fluorescent 

microbeads were used to aid the macroscopic visualization. The inset shows a schematic of 

the design. (B–E) Fluorescence micrographs of different junction regions showing the co-

existence of HDFs stained with different cell trackers in the printed cell-embedding 

construct. (F) Schematic showing the design of a vascularized tissue construct containing the 

four types of cells stained with different cell trackers. (G–I) Fluorescence micrographs of 

different junction regions showing the co-existence of desired cell types in the printed 
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construct. (J) Quantification of viability of the four cell types immediately, 1 and 7 days post 

bioprinting. (K) Proliferation of the cells over a course of 3 days. Printing conditions: 5% 

GelMA and 1% alginate encapsulating different cells, printhead moving speed = 400 mm 

min−1, pneumatic pressure = 3 psi.
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Figure 4. Extended applications of the continuous multi-material bioprinting platform
(A) Printed concentric hydrogel structures containing inward-out gradient of HAp. (B) 

Alizarin Red staining of the same construct revealing the gradient in HAp contents. (C) 

Quantification of the Alizarin Red staining intensities for each ring. (D) Printed bone-like 

structure with desired bioinks containing different concentrations of HAp post staining with 

Alizarin Red. (E) Quantification of the Alizarin Red staining intensities at selected locations. 

(F and G) Fluorescence micrograph showing the spreading of preosteoblasts on printed 

hydrogel blocks with gradients of (F) HAp and (G) nanosilicates. (H and I) Quantifications 

of area coverages by the cells on the two substrates with HAp and nanosilicate gradients, 

respectively. Printing conditions: (A to I) 5% GelMA, 2.67% alginate, and 0.5% PI 

containning various concentrations of HAp and nanosilicates, printhead moving speed = 400 

mm min−1, pneumatic pressure = 3 psi. (J) Schematic showing the design of the 

bioelectronic circuit composed of conductive bioinks with a series concentrations of CNTs. 

(K) Photograph of a printed circuit. (L) Photograph of a completed circuit where the LEDs 

showed a series of differential luminescence intensities. (M and N) Quantifications of the 

resistance and LED luminescence for bioinks containing different concentrations of CNTs. 

Printing conditions: 2% alginate containning various concentrations of CNTs, printhead 

moving speed = 400 mm min−1, pneumatic pressure = 3 psi.
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