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Abstract

In a recent paper [Mathematical Social Sciences 43 (2002) 151], M.R. Sanver investigates
scoring rules for social choice problems withvoters andm alternatives. He proves that unless
ne{2, 3, 4, 6, 8 a scoring rule cannot simultaneously respect majority in choice and majority in
elimination. In this short technical note, we first point out a serious flaw in Sanver’s proof. Then
we provide a complete proof for a corrected version of Sanver's statement: Wrdegs 3, 4, 5,

6, 8, 10, 12 a scoring rule cannot simultaneously respect majority in choice and majority in
elimination.
0 2003 Elsevier B.V. All rights reserved.
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1. Introduction

We consider a séfl ={1,2,. .. n} of n= 2 votersand a sefA of m= 3 alternatives A
bijection p from A to {1, ... m} yields apreferenceordering of them alternatives.
Sloppily speaking, the alternativewith p(x) =1 is the least desirable alternative, and
the alternativey with p(y) = m is the most desirable alternative according to preference
p. Every voteri € N has a preference ordering of A. These preferences are collected
in a preference profile vectgr= (p,, . ..,p,)- A social choice problems an ordered
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triplet (N,A,p). A social choice rule F assigns to any social choice probleMA4, p) a
non-empty subseE(N,A,p) < A of alternatives. In this paper, we will consider the
following two natural properties of social choice rules:

» A social choice ruld= respects majority in choice if and only if for any {,A,p) and
any xe A with [{i €N: p,(x) = m}| >n/2, we always havexe F(N,A,p). In other
words, an alternative that is ranked best by the majority of voters should always be
chosen.

» A social choice ruler respects majority in elimination if and only if for any (\,A, p)
and anyx € Awith [{i €N: p,(x) = 1}| >n/2, we always have & F(N,A,p). In other
words, an alternative that is ranked worst by the majority of voters should never be
chosen.

An interesting special case of social choice functions arestbee functions that are
based on a so-callestore vector s=(s,, ... s,) of real numbers withs, =s ,, for
1=i=m-1, ands, >s,. Then the score assigned by voteto alternativex equals
oi(x;p) = Sm—p,(9+1- The overall score assigned to alternatixe equals o(X;p) =
2,en0i (X p). The score functionF, chooses the alternatives with maximum overall
scores, that is

F.(N,A,p) = {XEA: a(X;p)=o(y;p) forallye A}.

In a standard scoring rule, the score vectsrmay only depend om. In a generalized
scoring rule, the score vectsrmay depend om andm. Typical examples of standard
scoring rules are thelurality rule wheres = (1,0,0,0.. ..,0) and theantiplurality rule
wheres=(1,1,...,1,0). Every score vector can be normalized by a linear transforma-
tion such that it is of the form (1..,0) with s, =1, s,=0, and O=s =1 for
j=2,...m-1. Throughout the paper, we will only consider such normalized score
vectors. For more information on scoring rules and social choice, the reader is referred
to Moulin (1983, 1988).

The relationships between standard scoring rules and majority conditions has been
extensively treated in the literature. It is well known since Condorcet that scoring rules
may leave out an alternative that gets a majority of votes against any opponent in the
pairwise comparisons. Another “majority-like” condition states that a Condorcet loser
(that is, an alternative beaten by any other alternative in pairwise comparisons) should
not be elected. The Borda count is the only standard scoring rule that never selects a
Condorcet loser. This statement was already knowmMNémson (1882)and modern
proofs appear irFishburn and Gehrlein (197&nd Smith (1973).

The majority in choice condition has already been propose&rith (1973)and by
Richelson (1978, 1980)Both authors remark that the plurality rule satisfies this
condition, whereas the Borda count and the antiplurality rule do not satisfy this
condition. In a paper in Frenchepelley (1992)proves that the plurality rule is the only
(standard) scoring rule which satisfies majority in election. In another paper in French,
Lepelley and Merlin (1998)ntroduced the concept of majority in elimination. They
prove that a standard scoring rule satisfies majority in elimination if and only if
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Table 1

Summary of our results. An entry+ ' means that for these values nfandm there exists a scoring rule that
simultaneously respects majority in choice and elimination. An entry means that no such scoring rule
exists
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S".,s=m/2. As an immediate consequence, no standard scoring rule can simul-
taneously respect majority in choice and elimination (as the plurality rule does not
satisfy this condition).Lepelley and Vidu (2000gnalyzed similar issues in the case
where the preferences are single-peaked.

A recent paper bySanver (2002)investigates in detail the question whether
generalized scoring rules can simultaneously respect majority in choice and elimination.
Sanver arrives at the following statementA “generalized scoring rule F, cannot
simultaneously respect majority in choice and elimination, except for n€ {2, 3, 4, 6, §".

In Section 2, we will point out a serious flaw in Sanvers’s argument that makes his proof
invalid. In fact even Sanver’s statement is incorrect, since (as we will show in this note)
there do exist scoring rules fare {5, 10, 12 that simultaneously respect majority in
choice and elimination. In Section 3, we will prove the following corrected version of
Sanver’s statement; s@@ble 1for an illustration.

Theorem 1.1. There exists some generalized scoring rule F, that simultaneously
respects majority in choice and elimination, if and only if one of the following cases
holds:

(i) ne{2,3,4,5, 6, and m=3
(i) n=10and me {3,4
(i)n=12and m=3

2. Discussion of the arguments of Sanver

We remind the reader that throughout this paper we deal with normalized score
vectors that are of the form (1..,0) with s, =1, s, =0, and O=s =1 for j=
2,...m—1. The following proposition is a slightly rewritten statement $&nver
(2002).
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Proposition 2.1. @anver, 2009 A normalized generalized scoring rule F, respects
majority in choice if and only if

(i) s,=4/(n+2)when n iseven
(i) s,=2/(n+ 1) when n is odd.

Indeed, an alternativ& that is ranked best by a majority of the voters has overall
score at leastn(+ 2)s,/2 if n is even, and overall score at least# 1)s,/2 if n is odd.
Any other alternativey has overall score at most { 2)s,/2 +s,(n+ 2)/2 if n is even,
and at mostr(— 1)s,/2+s,(n+ 1)/2 if n is odd. The stated inequalities (i) and (ii) are
necessary and sufficient to have the overall score gfeater or equal to the overall
score ofy.

Sanver’'s proof is centered around Proposition 2.2 stated below. Note that the
statement of Proposition 2.2 is absolutely true, but also absolutely vain:=ar, the
left-hand side in the stated inequalities equglq1 — s,,) = 1, whereas their right-hand
side is strictly less than 1. Hence, the required conditions are fulfilled a priori by the
normalization of the score vector.

Proposition 2.2. @anver, 2009 A normalized generalized scoring rule F, respects
majority in elimination only if

(i) Sy_iv1/(1—s)>(M—2)/(n+2) for some 2=<i=mwhen n>2 is even
(i) sy 41 /(L—s)>(—1)/(n+ 1) for some 2=<i=m when n is odd.

Sanver claims that the necessary conditions in these two propositions are generally
inconsistent. This clearly cannot be true, since the necessary conditions (i) and (ii) in
Proposition 2.2 are satisfied layy normalized score vector. The main flaw in Sanver's
argumention, however, is that he ignores the éasen in these necessary conditions (i)
and (ii). As a consequence, Sanver comes to the (wrong) conclusion that a generalized
scoring rule cannot simultaneously respect majority in choice and elimination, unless
ne{2, 3, 4, 6, §. According to Theorem 1.1, there are counter examples to this
statement fon =5, n= 10, andn=12.

In the last section of his paper, Sanver observes that no standard scoring rule can
simultaneously respect majority in choice and elimination. This result remains correct,
since it is an (almost) immediate consequence of Proposition 2.1 stated above.
Moreover, this result is also implicit in the work dfepelley and Merlin (1998).

3. The proof of the main result

This section is devoted to a proof of Theorem 1.1. Exactly as in Section 2, we will
restrict our attention to normalized score vectors vejl+= 1 ands,, = 0. First, let us
settle the trivial case with = 2 voters: In this case, any alternative that is ranked best by
the majority of voters has score 2, and any alternative that is ranked worst by the
majority of voters has score 0. Clearly, majority in choice and elimination are respected.
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Section 3.1 deals with the cases of adé: 3, and Section 3.2 deals with the cases of
evenn=4.

3.1. The cases with an odd number of voters

This subsection deals with the case of an odd numbef voters. We first derive the
positive results fon =3 andn =5 in Lemma 3.1. Then Lemma 3.2 gives the negative
result for oddn=7.

Lemma 3.1. For n € {3,5} and for any m= 3, there exists a generalized scoring rule F
that simultaneously respects majority in choice and elimination.

Proof. We use the score vectar=(1,2/( +1),...,2/0+ 1),0). By Proposition 2.1,
the resulting scoring rule respects majority in choice.

Let us prove that this scoring rule also respects majority in elimination. We start with
the casen = 3. If a majority of at least two voters ranks alternative A worst, then the
overall scores(x; p) is at mosts, + 2s_, = 1. One of the othem — 1 alternatives isever
ranked worst. The overall score of this alternative is at least 3= 3/2> o(X; p).
Hence,F, indeed eliminates.

We turn to the casa = 5. If a majority of at least three voters ranks alternative A
worst, then the overall score(x;p) is at most 8, +3s,=2. We distinguish two
subcases. First, assume that some other alterngtiigeranked best by at least two
voters. Thero(y;p) = 2s, + 2s,, + S,,_, = 7/3> o(X; p). Secondly, assume that all other
alternatives are ranked best by at most one voter. Then there exists an alteyrtative
is once ranked best and never ranked worst. This yieldsp)=s, +4s,_,=7/3>
o(x;p). In both subcases, the rukg correctly eliminatex. [

Lemma 3.2. For any odd n=7 and for any m= 3, there does not exist a generalized
scoring rule Fg that simultaneously respects majority in choice and elimination.

Proof. The proof is done by contradiction. Suppose that there exists a normalized score
vector s with s, =1 ands,, =0, such that the corresponding scoring rélerespects
majority in choice and elimination. Let= 2k — 1 with k= 4. Proposition 2.1 yields that
s,=2/h+1)=1/k

Consider a preference profiewith the following properties. There is one alternative
X € A that is ranked worst bl voters and ranked best by the otlker 1 voters. Hence,
o(x;p) =k —1. The remainingn — 1 alternatives are ranked as follows.

(@ If k=m-— 1 holds, then each of the remaining— 1 alternatives is ranked best by
at most one voter, and it is ranked second or worse by all the other voters.

(b) If k=m holds, then each of the remainimg— 1 alternatives is ranked best by
(k/(m — 1)Oor Ok/(m — 1)Ovoters, it is ranked worst by at least one voter, and it is
ranked second or worse by the other voters.

Case (a) is easily completed: For any alternagivex, its overall scores(y;p) is at
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mosts; + (n—1)s, =1+ (2k — 2)/k<k — 1. Henceo(x; p) > a(y; p) holds for all such

y, and the scoring rulé-, does not respect majority in elimination. In Case (b), the
overall score of any alternatiwe x satisfies

o(y;p) = HlJrstr(n—l—Dm—EE)Sz
H(l_%*(z“‘z)% = D’E(k—l)%+(k—1)§
k;kl<[£D+2>sk—1_

In this chain of inequalities, we have used tlsgt= 1/k, that m=3, and thatk = 4.
Since o(y;p) =k — 1= o(x;p) holds, also in Case (b) the scoring rufe does not
respect majority in elimination. [J

I

3.2. The cases with an even number of voters

This subsection deals with the case of an even numlwdrvoters. We first derive the
positive results fome {4, 6, 8, 10, 12 in Lemma 3.3. Then Lemma 3.4 gives the
negative results fon=10 andn= 12, and Lemma 3.5 gives the negative results for
evenn=14.

Lemma 3.3. There exists a generalized scoring rule F, that simultaneously respects
majority in choice and elimination, if one of the following cases holds:

(i) ne{4,6,8 and m=3
(i) n=10and me{3, 4
(i)n=12and m=3

Proof. Let n = 2k — 2 for some integek. We use the score vecter= (1,2, . ..,2k,0).
By Proposition 2.1 the resulting scoring rule respects majority in choics, ast/(n +
2).

We will show that this scoring rulé&, also respects majority in elimination for the
ranges ofm stated in (i)—(iii). If a majority of voters ranks alternatixe= A worst, then
the overall scorer(x; p) of this alternative is at mosk{ 2)s, + ks, =k — 2.

In case (i) we havé € {3,4,5. We distinguish two subcases. First, assume that some
alternativey # x is ranked best by at least two voters. Thefy;p)=2s, + (k —
2)s,_, +(k—2)s,=2+ 2(k — 2)/k, and this yieldso(y; p) > o(x; p). Secondly, assume
that all alternativey # x are ranked best by at most one voter. Then some alternative
is once ranked best and never ranked worst. This yieldsp) =s, + (2k —3)s,,_; =
1+ 2(2k —3)/k> o(x;p). In both subcases, the rukg correctly eliminates.

In the cases (ii) and (iii)) we havk& {6, 7}. The sum of the scores of thm—1
alternativesy # x is at least
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m—1 2
ks, + 2 (2k—2)s + (k= 2)s,, = k+(m—2)(%k—2).

For km)&{(6, 3), (6, 4), (7, 3), this lower bound on the sum ah—1 scores is
strictly greater thanni— 1)(k — 2). One of thesen— 1 scores must be at least the
average value, and hence strictly larger than 2. Consequently, in all these cades
correctly eliminates the alternative [

Lemma 3.4. There does not exist a generalized scoring rule F, that simultaneously
respects majority in choice and elimination, if one of the following cases holds:

(i) n=10and m=5
(i) n=12and m=4

Proof. The proofs are done by contradiction. Suppose that there exists such a scoring
rule F, that respects majority in choice and elimination. Then Proposition 2.1 yields that
s,=1/3 if n=10 and thats,=2/7 if n=12.

For n=10 we consider the following preference profjte Alternative x is ranked
worst by 6 voters and ranked best by 4 voters; hanep) = 4. Alternativey is ranked
best by 3 voters, second by 3 voters, and worst by 4 voters; hefyc@) = 3+ 3s, < 4.
Forj =1,2,3 alternativeg, is ranked best by 1 voter, and second or worse by 9 voters;
henceo(z;p) =1+ 9s, = 4. The remainingn — 5 alternatives are all ranked second or
worse by all 10 voters; hence their score is at mos, ¥04. The scoring rule fails to
eliminate alternative.

For n=12 we consider the following preference profjle Alternative x is ranked
worst by 7 voters and ranked best by 5 voters; henep) = 5. Alternativey is ranked
best by 1 voter, second by 10 voters, and worst by 1 voter; hetyge) = 1 + 10s, <5.
For j = 1,2 alternativez, is ranked best by 3 voters, worst by 2 voters, and second or
worse by 7 voters; henae(z; p) < 3 + 7s, =5. The remainingn — 4 alternatives are alll
ranked second or worse by all 12 voters; hence their score is at mestt® The
scoring rule fails to eliminate alternative [

Lemma 3.5. For any even n= 14 and for any m= 3, there does not exist a generalized
scoring rule F, that simultaneously respects majority in choice and elimination.

Proof. Once again, the proof is done by contradiction. Suppose that there exists such a
scoring ruleF that respects majority in choice and elimination. het 2k — 2 for some
integerk=8. Then Proposition 2.1 yields thas = 2/k.

Consider the following preference profite Alternativex is ranked worst bk voters
and ranked best by — 2 voters; hencer(x; p) = k — 2. The remainingn — 1 alternatives
are ranked as follows.

(@ If m= 3, then alternativey is ranked best byk/20voters, ranked second ty— 1
voters, and ranked worst by the remaining voters. Alternative ranked best by
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(k/20voters, ranked second by— 1 voters, and ranked worst by the remaining
voters.

(b) If m=4 holds, then each of the remainimy— 1 alternatives is ranked best by
(k/(m— 1)Odor [k/(m— 1)Ovoters, and it is ranked second or worse by the other
voters.

In Case (a)¢(y;p) ando(z; p) are at mostk/2[3, + (k — 1)s, = [k/2[H 2k — 1) /k <
o(x; p). Hence, the scoring rulg, does not eliminate alternative In Case (b), we have
for the overall score of any alternatiwe= x that

oly:p) = Bﬁ[kﬁ(n—ﬂm—ﬁﬂ)%
- BA6-D) LR e

For k = 8, this final upper bound equals 234 — 2. Fork =9, this final upper bound
is at mostik/3[+ 4=k — 2. Hence, in either case(y; p) =k — 2= o(X; p) holds for all
alternativesy € A. The scoring ruleF, does not respect majority in eliminationJ
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