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Pruning Error Minimization in Least Squares Support Vector Machines
Bas J. de Kruif and Theo J. A. de Vries

Abstract—The support vector machine (SVM) is a method
for classification and for function approximation. This method
commonly makes use of an -insensitive cost function, meaning
that errors smaller than remain unpunished. As an alternative,
a least squares support vector machine (LSSVM) uses a quadratic
cost function. When the LSSVM method is used for function
approximation, a nonsparse solution is obtained. The sparseness
is imposed by pruning, i.e., recursively solving the approximation
problem and subsequently omitting data that has a small error
in the previous pass. However, omitting data with a small ap-
proximation error in the previous pass does not reliably predict
what the error will be after the sample has been omitted. In this
paper, a procedure is introduced that selects from a data set the
training sample that will introduce the smallest approximation
error when it will be omitted. It is shown that this pruning scheme
outperforms the standard one.

Index Terms—Function approximation, pruning, regression,
support vector machine (SVM).

I. INTRODUCTION

T HE SUPPORT vector machine (SVM) has been intro-
duced by Vapnik [1] as a method for classification and

for function approximation. In this paper, we will be concerned
with function approximation only. The SVM makes it possible
to deal with high-dimensional input spaces, because it is not
liable to the curse of dimensionality [2]; the parameterization
of the approximator depends on the complexity of the function
only. The SVM is typically based on an-insensitive cost
function, meaning that approximation errors smaller thanwill
not increase the cost function value. This results in a quadratic
convex optimization problem. Due to the inequality constraints
contained in this method, the solution that is obtained is sparse.

Instead of using an-insensitive cost function, a quadratic
cost function can be used. This approach results in so-called
least squares support vector machines (LSSVMs), which were
introduced by Suykens [3] and are closely related to regular-
ization networks [4]. With the quadratic cost function, the op-
timization problem reduces to finding the solution of a set of
linear equations. This is computationally attractive, however,
the obtained solution is not sparse. Sparseness is imposed by
pruning, i.e., recursively solving the approximation problem
and subsequently omitting data that has a small error in the pre-
vious pass. See Fig. 1.

This two-step approach of LSSVM gives the user control over
the approximation process, as it is clear what error is introduced
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Fig. 1. Obtaining a sparse solution.

by imposing sparseness. This makes the appraisal between the
number of support vectors and the pruning error explicit. To
have a clear measure on how the approximation error on the
training set is influenced by the pruning, the method used in [5]
in which an SVM is used to select a sparse set of support vectors
to approximate the function, is not used.

The selection of data to be omitted during pruning is one of
the determining factors of the function approximation process.
The standard procedure for this in LSSVM, omitting the
sample with the smallest approximation error in the previous
pass, seems sensible, as LSSVM has shown to work well [3].
However, the choice for this selection procedure only accounts
for the absolute error and does not incorporate the location of
the samples. In this paper it will be shown to be suboptimal. In
addition, an alternative procedure will be proposed that selects
from a data set the sample that will introduce the smallest
approximation error when it is omitted in the next pass of the
approximation. An example illustrates the differences between
these methods.

This paper is organized as follows. In Section II, function ap-
proximation by means of LSSVM is reviewed and the subopti-
mality of the standard pruning scheme is illustrated. An alter-
native pruning procedure is proposed in Section III. This pro-
cedure is tested on an example function and compared to the
standard scheme in Section IV. The conclusion is given in Sec-
tion V.

II. LSSVM FOR FUNCTION APPROXIMATION

This section summarizes known theory concerning LSSVM
for function approximation and is based on [1], [3]. First, the
general function approximation problem is outlined. Next, reg-
ularization and pruning are treated.

A. Function Approximation

Consider a given set of training samples , in
which is the input vector and is the corresponding target
value for sample . The goal of function approximation is to find
the underlying relation between the input and the target value.
Once this relation is found, the outputs for inputs that are not
contained in the training set can be approximated.
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With a SVM, the relation underlying the data set is repre-
sented as a function of the following form:

(1)

In here, is a mapping of the vector to some (probably high-
dimensional) feature space,is the bias and is a weight vector
of the same dimension as the feature space. The mapping
is commonly nonlinear and makes it possible to approximate
nonlinear functions. Mappings that are often used result in an
approximation by a radial basis function, by polynomial func-
tions, or by splines [5], [6].

The approximation error for sampleis defined as follows:

(2)

and for the given data we search for those weights that give the
smallest summed quadratic error of the training samples in case
of LSSVM. Because this can easily lead to overfitting, ridge
regression (a form of regularization) is used to smoothen the
approximation. The minimization of the error together with the
regularization is given as

(3)

with equality constraint

(4)

Here is the regularization parameter.
This problem can be solved using optimization theory [7].

Instead of minimizing the primary objective [(3)], a dual ob-
jective, the so-called Lagrangian, can be formed of which the
saddle point is the optimum. The Lagrangian for this problem is
given as

(5)
In this equation, the ’s are called the Lagrangian multipliers.
The saddle point can be found by setting the derivatives equal
to zero

(6)

Elimination of and through substitution results in the fol-
lowing set of linear equations:

(7)

In this equation, is a column vector filled with ones, is
the vector with the multipliers and is a vector with the target
values. The elements of matrixequal

. The innerproduct is defined as
. To calculate the elements in this matrix, the map-

ping from input space to feature space does not have to

be made explicitly; it can be calculated in the input space. The
matrix is symmetric positive definite, because otherwise it
would not fulfill Mercers conditions on innerproducts in an ar-
bitrary space [8] if different input samples are used. The solution
of this set of equations results in a vector of Lagrangian multi-
pliers and a bias .

The output of the approximator can be calculated for new
input values of with and . The output is given as

(8)

B. Pruning and Regularization

In (3) a parameter is present that trades off small approxi-
mation errors versus a smooth function. This is a form of regu-
larization that is known as ridge regression [9]. The goal of reg-
ularization is to stabilize the final approximation by means of
some nonnegative function that embeds prior information about
the solution [10]. Information that is commonly assumed, is the
smoothness of the function. This assumption will smoothen the
output of the network and thereby make the solution less sensi-
tive to the current realization of the noise. This will in general
increase the generalization ability.

Next to using a regularization to increase the generalization
ability, pruning also commonly improves the generalization
[11]. Pruning is the omission of free parameters in a network.
An overview of pruning techniques is given in [12]. Pruning is
necessary if LSSVM is used, because in contrast with standard
SVMs as proposed by Vapnik [1], which are based on an
-insensitivity cost function, the’s that appear in LSSVM are

not sparse. This implies that all the training points in the data
set with their Lagrangian multiplier are needed to calculate the
output of a new input, which is clearly unattractive. Therefore,
sparseness is imposed by pruning.

Two schemes for combining pruning and regularization are
given in Fig. 2 by the dashed lines. The first line represents the
combined pruning and regularization scheme. In this scheme, a
parameter is omitted and the resulting weights are recalculated
with the regularization. In the case of LSSVM it means that the

has a nonzero value while pruning. The second line in Fig. 2
expresses the scheme were there will be first regularization and
afterwards pruning. In this scheme, the regularized data is as-
sumed noiseless and the goal of the pruning is solely to down-
size the number of parameters. In the case of LSSVM, it means
that the is set to zero after the regularization.

The advantage of the first scheme is that there is more design
freedom. During the pruning, different regularization method
can be applied. How this design freedom can be used to increase
performance is difficult because the combination of the regular-
ization and the pruning determines the final result. The stopping



698 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003

Fig. 2. Possible ways to combine pruning and regularization.

Fig. 3. Present error and the error it will introduce after it is omitted. The input
samples are evenly distributed on the input space. Note the difference in scales.

of this method can be tested on an evaluation set. If the error on
this set is increasing, the pruning should be stopped.

The advantage of the second scheme is that the approxima-
tion error that is introduced by pruning on the regularized data
is clear. The user can specify an approximation error that is al-
lowed between the pruned approximation and the full regular-
ized approximation and the pruning can continue until this ap-
proximation error norm is violated. Another stopping criterion
can be that the pruning will continue until the error on a sepa-
rate data set, the evaluation set, starts increasing. The regular-
ized solution can make use of complex regularization functions
to smoothen the data.

Henceforward the second pruning scheme will be used, be-
cause this scheme clearly relates the error introduced due to the
pruning.

The intuitive motivation for pruning the sample with the
smallest absolute approximation error seems to be that this
sample appears to have the smallest information content.
However, this is only half the story, as also the distribution
of the input samples determines the amount of information a
specific sample contains. The influence of the distribution on
the value of the present approximation error and the error after
the omission of the sample will be illustrated by an example.
The function that we want to approximate is a (noiseless)
sinc-function. In Fig. 3, the present approximation error and

Fig. 4. Present error and the error it will introduce after it is omitted. The
density of samples is higher around 0.5. Note the difference in scales.

the introduced approximation error are given if the support
vector is excluded which is located at the input in the case that
the samples are evenly distributed. So, the approximation error
at would be about 10 if the support vector
at is omitted, while this approximation error was ca.

10 before it was omitted. In this case the introduced error
is proportional to the present error. However, if the data is not
distributed evenly throughout the input space, the introduced
error is not proportional to the present error, as is illustrated in
Fig. 4. In this figure the number of samples is increased around
0.5. This shows that the difference in error due the omission of
the support vector can not be determined solely on basis of the
magnitude of the present error.

By selecting the training sample that willintroduce the
smallest errorafter omitting, the increase of the approximation
error due to pruning will be minimal. The remainder of this
paper is devoted to a procedure that accomplishes this.

III. M INIMAL INTRODUCEDERROR

The approximation error of LSSVM is minimized if one
selects for pruning that training point that will introduce the
smallest additional approximation errorafter being omitted
from the data set for the next iteration. The estimation of the
output at iteration of training sample can be calculated
using (8)

(9)

The multiplier for sample at iteration is denoted as ,
while denotes the bias at iteration. If sample is removed
from the training set, the output of its input in iteration
is given as

(10)
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Subtracting these outputs gives the introduced error at sample
when sample is omitted, as follows:

(11)

This equation shows clearly that the introduced error does not
just depend on , but more factors determine the introduced
error.

The omitting of a training point is equal to setting its La-
grangian multiplier to zero, because it will no longer have any
influence on the output of the approximator.

In (3) a regularization parameteris present to weight the
importance of the accurate approximation and the smoothness
of the function. If this is set to zero, the error of the approx-
imation does not influence the criterion, so only the weight is
minimized. This will result in a weight of zero. Hence, the value
of the Lagrangian multiplier of a selective training point can be
made zero by applying regularization with only on that
sample.

The regularization of only one element of the solution can be
done by adding a regularization parameter on the corresponding
diagonal term. Applying this for elementgives the following
set of linear equations:

(12)
If this equation is the same as (7). By setting the
value of is forced to become zero.

This set of equations is of the form in which is
the matrix on the left-hand side,is the solution containing the
Lagrangian multipliers and the bias andis the vector with the
targets. We want to determine the difference in the solution if

goes from zero to infinity, which is equivalent to omitting the
corresponding sample.

Starting at

(13)

Setting , and its inverse are updated as [13]

(14)

In this equation the vectoris defined as .
To find the difference in the Lagrangian multipliers, the solution
of before and after the update are subtracted from each other

(15)

In this equation is a column vector of size filled with
zeros except element which is equal to one. By taking the
limit of with we get

(16)

In (11) it is not only the difference in the multipliers and the bias
that determine the introduced error, but a weighted sum of these
differences that determine the error

(17)

The weights in (17) are equal to the row of the matrix
. Thus, by multiplying the difference of the solutions in mul-

tipliers and bias by the original matrix, the error after omitting
sample is found.

(18)

Instead of throwing the sample out with the smallest absolute
value of , the sample with the smallest absolute value of
divided by the diagonal element of the inverse of should
be thrown out to obtain the smallest introduced error.

In the case of a similar reasoning can be performed.
Instead of the unregularized matrix of (13) the regularized
matrix is used

(19)

Recalculation of (13) until (18) give the introduced error

(20)

Because the regularization parameteris not infinite anymore,
the omission of a sample also introduces an error at other sam-
ples. This directly follows from

The pruning rule that is found here is closely related to
optimal brain surgeon (OBS) of Hassibiet al. [14]. The OBS
methodology finds that the weight that can be omitted to be the
weight that minimizes

(21)

in which represents the weightand represent the Hessian
of the error surface with respect to the weights. If the quadratic
error increase is used, as done with OBS, the Hessian that is
found in our case equals . The difference can be explained
by the fact that in our case the absolute error is used.

IV. EXAMPLE

The case that will be considered is the learning of the non-
linear state dependent effects of a linear motor. These effects,
friction and cogging, act on the input of the linear part of the
plant and can be measured considerable well. The motor has
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Fig. 5. Sum squared error introduced due to the pruning of both methods.

performed several movements and the magnitude of these ef-
fects are measured as well as the states on which they depend.
After the measurement of these values, the signals are filtered
such that the noise is assumed to be omitted. This corresponds to
scheme 1 of Fig. 2. The mapping that is used in this example is a
mapping that results in an approximation by first-order splines.
This gives a linear interpolation between the remaining training
samples. There is no need of regularization, because the sam-
ples are assumed to be noise-free after the filtering. Therefore,
the is set to infinity.

We are interested in the error that is introduced by the pruning
between the target values and the approximation. This error
gives no direct information on the error between the approxi-
mation and the true value.

From the complete nonsparse solution one sample is thrown
out and the ’s for the remaining samples are recalculated. This
is repeated until no samples are left, to illustrate the growing of
the error between the pruned and the unpruned approximation.
The result of the pruning is given in Fig. 5. The error depicted
in this figure is the error between the training points and the ap-
proximation. The 2-norm is used in this figure; the infinity-norm
gave similar results. It can be observed that the minimal intro-
duced error gives a better result than the minimal error method.
This increase in difference can be explained by the fact that the
minimal introduced error searches for the sample that will in-
troduce the smallest error. If the diagonal elements have a large
variance, the use of the introduced error instead of the present
error will significantly alter the outcome. The difference in re-
quired support vectors if the allowed pruning error is between

10 and 10 is approximate 150.

V. CONCLUSION

In this paper, a new procedure is proposed to determine which
sample can be omitted when LSSVMs are used. Instead of omit-
ting the sample that gives the smallest errornow, the sample that
will introducethe smallest error is chosen.

In an example, it is shown that the minimal introduce error
procedure outperforms the minimal error method. If the input

data is independently identically distributed (i.i.d.) over the
input space the minimal introduced error procedure is slightly
better. If the data is not i.i.d. the method is better by far.

The calculations of the diagonal elements of a inverse is a
computational intensive. This means that the computational
load has increased using this method.

APPENDIX

CALCULATE THE SVS

The set of equations that has to be solved is

(22)

This set of linear equations can be solved fast. But this set of
equations has to be solved repeatedly with only minor changes,
namely the omission of one training sample, making the total
calculation time large. The calculations have to be done all over
again if a sample is omitted.

However, the set of ’s can be calculated and updated as
follows.

1) Decompose the matrix into using
the Cholesky decomposition.
2) Calculate and the bias.
3) Determine the training point that will
introduces the smallest error.
4) Downdate the matrix and its inverse.
5) Goto 2 if the approximation is good
enough to omit another data point.

The Cholesky decomposition decomposes a symmetric posi-
tive definite (SPD) matrix into the form , in which
is a lower triangle matrix. An algorithm to implement it can be
found in [15].

A. Calculate and the Bias

The submatrix is SPD which makes it fast to solve a system
. This can be rewritten as and this can be

solved in two steps . Because is a lower
triangle matrix, no pivoting is required for solving these equa-
tions.

The vectors of ones and zeros make the complete matrix on
the left-hand side no longer SPD. The block matrix inversion
lemma can be used to calculate the Lagrangian multipliers using
the SPD property of the matrix [13].

The inverse of the block matrix is given

(23)

with , and . The
solution for and are

(24)
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In [16], an algorithm is given to calculate it for classification
problems, but this algorithm can be altered to use for function
approximation.

B. Determine the Training Point

To determine which training point might be omitted, the di-
agonal of the inverse should be determined next to the. Be-
cause the matrix , the inverse of equals

. To calculate the inverse of, it is suffi-
cient to calculate the inverse of. This inverse can be calculated
with [17]

(25)

In this equation is an element of the matrix and the is an
element of the inverse of. The diagonal elements of the inverse
of are given by

(26)

In this is an element of the inverse of. The complete inver-
sion of only has to be calculated the first time, afterwards only
a part of the inverse matrix has to be changed.

By using the diagonal elements of the matrixinstead of the
complete matrix, a small error is introduced. Because theis
divided by this value and only the smallest of this division is
important, the influence of this error is small.

C. Downdate

After it is determined which training sample will introduce
the smallest error, this sample should be omitted from the
training set. The removal of a training sample means it’s re-
moval from the target set and the removal of the corresponding
row/column in the matrix . This requires the decomposition
matrix to be updated. The updating ofcan be done without
the complete recalculation of.

If the original matrix and its decomposition are given by

(27)

Then, from , the following relations are obtained:

(28)

If the row and the corresponding column are
deleted from the matrix the new matrix and its decomposi-
tion are given by

(29)

and the following relations should hold true

(30)

The relations before and after the update show that the subma-
trices and do not change by omission of a row/column. The
matrix satisfies . This can be calculated
by a Cholesky update [18].

The inverse of an lower triangle matrix is given as [13]

(31)

It was argued that only the lower right corner of the matrix
changed due to the omission of a sample. This corresponds to
the submatrix in the equation above. Therefore only those
parts of the inverse should be updated in whichis present.
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