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ABSTRACT 

Let G be a planar graph on n vertices, let c(G) denote the length of a longest cycle 
of G, and let w(G) denote the number of components of G. By a well-known theorem 
of Tutte, c(G) = n (i.e., G is hamiltonian) if G is 4-connected. Recently, Jackson and 
Wormald showed that c(G) 2 ona for some positive constants ,B and cy M 0.2 if G is 
3-connected. Now let G have connectivity 2. Then c(G) may be as small as 4, as with 
K2,n-21 unless we bound w(G - S) for every subset S of V(G) with IS1 = 2. Define 
t (G) as the maximum of w(G - S) taken over all 2-element subsets S C V(G). We give 
an asymptotically sharp lower bound for the toughness of G in terms of J(G), and we 
show that c(G) 2 81nn for some positive constant 8 depending only on E(G). In the 
proof we use a recent result of Gao and Yu improving Jackson and Wormald's result. 
Examples show that the lower bound on c(G) is essentially best-possible. o 1996 John 
Wiley & Sons, Inc. 
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1. INTRODUCTION 

We use [ 11 for basic terminology and notation not defined here, and consider finite simple 
graphs only. The circumference c(G) of a graph G is the length of a longest cycle in G. 
Suppose that G is a planar graph on n vertices. It is well-known from a theorem of Tutte 
[S] that c(G) = n (i.e., G is hamiltonian) if G is 4-connected. Recently it has been shown 
that c(G) 2 /3n" for some positive constants p and (Y if G is 3-connected (51, [7]. If G is 
2-connected but not 3-connected, its circumference may be as small as 4, as with 1Y2 , ,~ -2 .  

In rough terms, the absence of long cycles in K2,,L-2 is due to the fact that it contains two 
vertices the deletion of which results in a graph with many components. If the number of 
components one can get by deleting two vertices is bounded by a constant, the situation 
changes drastically. 

Let G be a connected graph. A subset S of the vertex set V ( G )  of G is a separator of  
G if the graph G - S, obtained from G by deleting the vertices of S ,  is disconnected. A 
separator S of G is said to be a k-separator if IS\ = k .  An edge zy of a 2-connected graph 
G is said to be a good edge if {z, y} is not a separator of G. If G is a graph, then w(G) 
denotes the number of components of G. For a 2-connected graph G we define [ (G)  to be 
the smallest natural k such that for any 2-element subset S of V(G),w(G - S )  5 k.  For 
convenience we say that a cycle C of a graph G is an X-cycle if E ( C )  contains the edges 
of X G E(G) .  

(1.1) Let G be a 2-connected planar graph on n vertices with [ ( G )  2 2 and f a good edge 
of G. Then G has an (1)-cycle of length at least 

Our main theorem reads as follows. 

where y M 0.10. 

The proof of (1.1) is postponed until Section 3. 
The parameter [ ( G )  is closely related to the concept of toughness in graphs which has 

been introduced by Chvatal [3] as follows. A connected graph G is said to be t-tough 
if IS1 2 t . w(G - S )  for every separator S of G. The toughness r ( G )  of a connected 
non-complete graph G is defined by 

1st T ( G )  = min 
w(G - S ) '  

where the minimum is taken over all separators S of G. It is easy to see that every 
hamiltonian graph is 1-tough. The converse is not true, even in the case of maximal planar 
graphs (see [6] ) .  

If G is a 2-connected graph with J ( G )  2 2, then, obviously, 
3 

Consequently, (1.1) implies that every planar 2-connected graph G on n vertices with 
[(G) 2 2 has a cycle of length at least y ( ~ ( G ) / ( 2  - T ( G ) ) ) ' . ~  Inn. In general, there is no 
non-trivial lower bound for the toughness in terms of [ ( G ) ,  but for planar graphs there 
is one. 
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(1.2) Let G be a 2-connected planar graph and S a separator of G such that T(G) = 
ISl/w(G - S) .  Then T(G) = 2/E(G) if IS( = 2, and T(G) > 1/(3(<(G) - 1) + 2) otherwise. 

The proof of (1.2) will be given in Section 3; moreover, examples will be provided 
showing that the bound is asymptotically sharp. 

Although there is a long-standing conjecture stating that every 2-tough graph is hamil- 
tonian (see e.g. [3]), there are only a few results concerning bounds for the circumference 
of t-tough graphs. The following theorem in [2] seems to be the best result for the case 
of 2-connected but not 3-connected graphs known up to now. 

(1.3) (a) Let t > 0 be fixed. If G is a t-tough 2-connected graph on n vertices, then 

c(G). lnc(G) 2 21nn - o(1nn) ( n  + a). 

(b) For any real number t ,  0 < t I 1, and for any integer n 2 3, there exists a t-tough 
2-connected graph G on n vertices such that 

. l n n + 4  i f O < t < i  
if < t 5 1. 

c(G) < { 
4 log2(n + 2) - 4 log, 3 + 4 

The proof of (1.3)(b) is constructive and all constructed graphs are planar. Thus the 
function Inn in the bound of (1.1) cannot be replaced by a function growing faster than 
Inn. 

2. PRELIMINARIES 

A plane graph is a planar graph with a specified embedding in the euclidean plane. If G 
is a plane graph and C a cycle of G, then the induced embedding of C is a simple closed 
curve in the plane. Thus, if z is a vertex or an edge of G but not of C, then J: is either 
inside or outside C. It is a well-known fact that each face of a 2-connected plane graph is 
bounded by a cycle. A cycle of a plane graph is called a facial cycle if it bounds a face. 

Let G be a 2-connected plane graph and C a facial cycle of G. Then the ordered pair 
(G, C) is said to be a circuit graph if for any 2-separator S of G every component of G - S 
contains a vertex of V(C). The proof of the following statement is an easy exercise, and 
is therefore omitted. 

(2.1) Let G be a 3-connected plane graph and C a cycle of G. Furthermore, let H be the 
plane graph obtained from G by deleting all vertices and edges inside C. Then ( H ,  C) is 
a circuit graph. 

Note that in (2.1) “inside C” may be replaced by “outside C”. 
In [5] the following theorem is proved. 

(2.2) There exists a positive constant ,L? M 0.193. . . such that for every circuit graph (G, C )  
on n vertices and every two edges i, g E E ( C )  there is an {f, g}-cycle of G of length at 
least ,L?n0.4 + 2. 

Combining (2.1) and (2.2), we get the following. 
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(2.3) Let G be a 3-connected plane graph on n vertices and f , g  two edges of G. Then 
there is an { f ,  g}-cycle of G of length at least 

P ( + 2, 

where p is the same constant as in (2.2). 

Since G is 3-connected there is a cycle C of G containing f ,  g. Let GI and Gz 
denote the plane graphs obtained from G by deleting all vertices and edges inside C or 
outside C, respectively. Clearly, IV(G,)\ + IV(G2)l > n. Hence, we may assume without 
loss of generality that IV(G,)l > in. Since (2.1) implies that (G1,C) is a circuit graph, 

I 

Let G be a graph, f = xy an edge of G and P a path with endvertices x‘, y’ such that 
V ( G )  n V ( P )  = 0. Then the graph H defined by V ( H )  = V ( G )  U V ( P )  and E ( H )  = 
E(G) U E ( P )  U {zz’, yg’} \ {zy} is said to be obtained from G by replacing f by P. A 
graph G’ is a subdivision of a graph G if G’ can be obtained from G by replacing edges by 
paths. A superblock is either a complete graph on three vertices or a 3-connected graph. 
Let H be a subgraph of a graph G and x a vertex of V ( G )  \ V ( H ) .  Then H is attached to 
z if, in G, z is adjacent to some vertex of H .  

The following result plays a key role in our proof of (1.1). 

(2.4) Let G be a 2-connected graph and f = z y  an edge of G. Then there is a superblock 
H and a subdivision H’ of H subject to the following conditions. 

Proof. 

the result now follows from (2.2). 

(1) ~y E E ( H )  n E(H’ )  
(2) H’ is a subgraph of G 
(3) every component of G - V ( H )  is attached to precisely two vertices of V ( H )  
(4) if { a , b }  C V ( H )  is a 2-separator of G, then ab E E ( H ) .  

Proof (by induction on IV(G)l). If G has less than four vertices or G is a superblock, 
then there is nothing to prove. Thus we may proceed with the inductive step and assume 
that G has at least four vertices and contains a 2-separator S = {u,  w}. Let GI , .  . . ,Gk 

be the components of G - S. We assume without loss of generality that f is an edge of 
the subgraph of G induced by V ( G I )  U S. Now let G be the graph obtained from G by 
deleting V(G2)  and adding the edge uw unless uw E E(G). Obviously, G is a 2-connected 
graph with fewer vertices than G and f is an edge of G. By the induction hypothesis 
there is a superblock H and a subdivision H’ of H subject to (11, . . . , (4) with respect 
to G, and H’ instead of G, H and H’. If uw E E ( H )  or {u,  w} p V ( H ) ,  then we put 
H = fi. Otherwise, H is obtained from H by adding the edge uv. If uu E E(H’) \E(G) or 
uu E E ( H )  \ E(I?), then H’ is obtained from I? by adding a (u ,  w)-path in the subgraph 
of G induced by V(G2) U S and deleting uu provided uw E E(E?’). Otherwise, we let 
H’ = H ’ .  Now it is not hard to prove that H’ is a subdivision of H and that G, H ,  and H’ 

I 

(2.5) Let z be a real number with x > 1. Then 

satisfy the conditions (l), . . . , (4). 
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Proof. Let f(x) = z0.4/1nz. For 3: > l , f ( x )  has a continuous derivative f ’ (3 : )  = 
0.4/(z0.’-1nz) - l/(aO.‘ . ( l n ~ ) ~ ) .  Now it is easy to see that zo = e2.5 is the only rc > 1 for 
which f’(z) = 0. Since f ’ ( 2 )  < 0 for 1 < 3: < 20 and f ’ ( z )  > 0 for z > zo,f(zo) = 2e/5 

I is the unique minimum of f(z) for 2 > 1. 

3. PROOFS 

3.1. Proof of (1.1) 

Instead of (1.1) we shall prove the following slightly modified statement. 

(3.1) Let G be a 2-connected planar graph on n vertices, f a good edge of G and y = 
p/6°.4 . 2 e / 5 ,  where p is the same as in (2.2). Then G has an {f}-cycle of length at least 
1 , where 

y l n n  if [(G) = 1 

otherwise. 

ProoJ The proof is by induction on n. If n < 4, then G is a complete graph on three 
vertices which is a (hamiltonian) cycle. Thus we may proceed with the inductive step and 
assume n 2 4. By (2.4) there is a superblock H containing f, and a subdivision H’ of H 
subject to the conditions (l), . . . , (4) of (2.4). We distinguish two cases. 

Case 1. V ( G )  = V ( H ) .  Then G is a superblock and hence G is 3-connected and 
[(G) = 1. By (2.2) there exists an {f)-cycle of G of length at least p.no.*. Now it follows 
from (2.5) that 

, ~ . n ~ . ~  2 ylnn .  

Case 2. V ( G )  # V ( H ) .  Then by (3) every component of G - V ( H )  is attached to 
precisely two vertices of V ( H ) .  Let nH denote the number of vertices of H .  Obviously, 
H is a planar graph and, therefore, it follows from (4) and Euler’s formula that the total 
number of components of G - V ( H )  is at most ( ( (G) - 1 ) ( 3 n ~  - 6). Consequently, there 
is a component F of G - V ( H )  containing at least 

n - n H  
(((GI - 1>(3nff - 6) 

vertices. Let F be attached to a, b E V ( H ) .  Let F’ be the subgraph of G induced by 
V ( F )  u {a ,  b ) ,  with the edge ab added unless ab E E(G).  F’ is a 2-connected planar graph 
and ab a good edge of F’. Clearly, [ ( F ’ )  5 [(G).  By the induction hypothesis there is an 
{ab)-cycle C1 in F’ of length at least 

By (4), H contains the edge ab. Consequently, it follows from (2.3) that there is an { f ,  ab}- 
cycle C’ in H of length at least p ( n ~ / 2 ) O . ~  + 2 if H is 3-connected; the same is true if 
H = KS.  Since G contains a subdivision H’ of H ,  there is a cycle C” in H’ which is a 
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subdivision of C’. If a b  E E(C”), let CZ = C”; otherwise denote by P the path a b  has 
been replaced with, and let CZ be the cycle obtained from C” by deleting the inner vertices 
of P and adding ab. Clearly Cz is an {f, ab}-cycle containing no vertices of F which is at 
least as long as C’. Consequently, the subgraph of G obtained from C1 U Cz by deleting 
the edge a b  is an {f)-cycle of length at least 

Since [ (G)  2 2 (and n H  2 0), 

Consequently, it suffices to prove that 

p ( z 9 0 . 4  
< 1 

( [ ( G )  - l)0.4 - ln(([(G) - 1 ) 3 n ~ ) ’  Y 

Let z = ([(G) - 1 ) 3 n ~ .  Then 

and the result follows from (2.5) and the definition of y. I 

3.2. Proof of (1.2) 

Let G be a planar 2-connected graph and S C V ( G )  a k-separator of G such that r(G) = 
ISl/w(G - S) .  If k = 2, then w ( G  - S )  = J(G) .  Otherwise, it follows from Euler’s formula 
that the number of components of G - S attached to precisely two vertices of S is at most 
( [ ( G )  - 1)(3k - 6 ) .  In order to count the components of G - S attached to more than two 
vertices of S, we consider the graph G’ obtained from G by deleting all edges of G[S] 
and all components of G - S which are attached to precisely two vertices of S and by 
contracting all the other components of G - S into single vertices, called the white vertices 
of G’. Let w denote the number of white vertices of G’. Clearly, G’ is planar and bipartite, 
so 

3~ 5 (E(G’)( 5 2(V(G’)l - 4 = 2(k  + w) - 4, 

implying that w 5 2k - 4. Thus the total number of components of G - S is [(G) if k = 2 
and at most 2k - 4 + ([(G) - 1)(3k - 6) otherwise. Now the result follows directly from 
the definition of r (G) .  

The following examples show that the bound on the total number of components of 
G - S obtained in the above proof is sharp. Let k 2 3 and 1 2 I be fixed integers. 
Let T k  be a plane triangulation on k vertices. ( A  plane triangulation is a plane graph 
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every face of which is bounded by a cycle of length three.) Clearly, Tk has 3k - 6 edges 
and 2k - 4 faces. Now a new plane graph Gk is constructed as follows. First, a new 
vertex x ~ f  is inserted in every face f of Tk such that xf is adjacent to the vertices on the 
boundary of f .  Next, if 1 2 2, every edge of Tk is replaced by 1 - 1 parallel edges, each of 
which is then subdivided at least once. Now it is not hard to see that [ ( G k )  = 1, 7 ( G k )  = 
[V(Tk)l/w(Gk - V(Tk)) ,  and ~ ( G E  - V(Tk))  = 2k - 4 + (1  - 1)(3k - 6). Consequently, 
7(Gk) = k / ( 2 k  - 4 + ( I  - 1)(3k - 6)), and limkiix, 7(Gt)  = 1/(3(1- 1) + 2). 

4. CONCLUDING REMARKS 

Using a proof technique similar to that in the proof of (1.2), for an r-connected planar 
graph G ( r  2 3) one easily shows that w(G - S) 5 (215’1 - 4)/(r - 2) for every separator S 
of G. This implies that T(G) > ; ( T  - 2) for such a graph G, and that w ( G  - S )  5 /SJ - 2 
for every separator S of a 4-connected planar graph G. The latter result recently appeared 
in [4]. 

Using (3.1) it is not difficult to show that through any (not necessarily good) edge f = xy 
of a 2-connected planar graph G on n vertices there is a cycle of length at least y’ Inn  for 
some positive constant y’ depending on [(G) only: simply use that w(G - {z, y}) 5 [(G) 
and apply (3.1) to a suitable subgraph of G. 

In [2] it is conjectured that any 2-connected t-tough graph on n vertices contains a cycle 
of length at least c Inn,  where c is a positive constant depending on t only. As shown in 
[2], the conjecture is true for 3-connected graphs. Clearly our results imply the truth of the 
statement for planar graphs. We remark that the general conjecture could be proved along 
the lines of our proof of (1.1) if one could prove that every 3-connected t-tough graph G 
on n vertices contains an {f,g}-cycle of length at least (’Inn for any f , g  E E(G)  and 
some positive constant <’ depending only on t. 
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