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Abstract: We study the standard H_, optimal control problem
using state feedback for smooth nonlinear control systems. The
main theorem obtained roughly states that the L,-induced
norm (from disturbances to inputs and outputs) can be made
smaller than a constant y > 0 if the corresponding H, norm
for the system linearized at the equilibrium can be made
smaller than y by linear state feedback. Necessary and suffi-
cient conditions for the latter problem are by now well-known,
e.g. from the state space approach to linear H,, optimal
control, Our approach to the nonlinear H_ optimal control
problem generalizes the state space approach to the linear H,,
problem by replacing the Hamiltonian matrix and correspond-
ing Riccati equation as used in the linear context by a Ham-
iltonian vector field together with a Hamilton—Jacobi equation
corresponding to its stable invariant manifold.
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1. Introduction

Consider a smooth (i.e. C*) nonlinear system
(see [10,12])

£=1()+ L g(x)u,

u=(uy,...,u,)ER™, (1a)
y=hi(x), j=1,...,p,
y=(n-.-,y) €ER’, (1b)

where x = (x,,...,x,) are local coordinates for
the smooth state space manifold M. We assume
that x, € M is an equilibrium, i.e. f(x,) =0, and
without loss of generality we assume that h,(x,)

=0, j=1,..., p. For simplicity of notation we
will throughout abbreviate (1) as

x=f(x)+g(x)u, ueR™, yeR? xeM,

(2a)
y=h(x), f(x0)=0, h(x,)=0, (2b)

with g(x) the n X m matrix with j-th column
g;(x). Furthermore we consider the linearization
of (2) around x,, denoted as

x=Fx+Gu, ucR" x€R", (3a)
j=Hx, jeER?, (3b)
with

F=%(xo), G=g(x,), H=%(Xo)- (4)

Also, we consider nonlinear systems affected by
(unknown) disturbances d,

x=f(x)+g(x)u+k(x)d,
UER™, yER?, dERY, xEM, (5a)
y=h(x), f(x0)=0, h(xy)=0, (5b)

where k(x) is an n X ¢ matrix, with entries de-
pending smoothly on x. The corresponding lin-
earization around Xx, is denoted as

x=FX+Gu+Kd, ucR™ desR? Xx€R",

(6a)

y=HX, yeER?, (6b)
where F, G, H are defined in (4), while
K=k(x). (7)

The purpose of this note is to show that there is
a close connection between the H_ norm (L,-in-
duced norm) of the linearized system (3) and some
‘H,, norm’ of the nonlinear system (2). In fact we
will prove that if (assuming F to be asymptoti-
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cally stable and starting from the initial condition
x=0)

172, <y*lallZ, forall ue Ly(0, o) (8)

(i.e. the H_ norm of the transfer matrix H(Is —
F)7!G of the linear system (3) is less than some
constant y > 0), then also for the nonlinear system
(2) we have (starting from the initial condition
x(0) = xo)

IyIE, <v*llull, (9)

for all u € L, “such that x is not driven too far
from x,”. Here || || ,, denotes the usual L, norm,
1e.

|lz||L22=f°ozT(t)z(t)dt, ZR*>R. (10)
0

Furthermore we will show that we have a similar
relation between the standard state feedback H_
control problem for the nonlinear system with
disturbances (5) and its linearization (6). In fact
we will prove that if we can find for (6) a stabiliz-
ing feedback u# = LX such that

17112, + @z,
_LZ—_Z__L_ <v? (11)
d+0 ”dHL2

(i.e. the H  norm from disturbances to inputs and
outputs is less than ), then also for the nonlinear
system we can find, at least locally around x,, a
nonlinear feedback u = I/(x) such that, if x is not
driven too far from x,,

2 2
s Iyiiz, + ”u“L2 5

up 5
d+0 iz,

The main technical tool, which is of some interest
in itself, is a lemma given in the next section
which states that the stable invariant manifold of
a Hamiltonian vector field with no imaginary ei-
genvalues is a Lagrangian submanifold, and so has
a natural generating function attached to it. This
generalizes the well-known fact that the gener-
alized stable eigenspace of a Hamiltonian matrix
having no imaginary eigenvalues corresponds to a
symmetric solution of its related Riccati equation.
Indeed, the generating function will enable us to
use a ‘completion of the squares’ argument, which
is very similar to the one used in the linear case
(see e.g. [8)). For a discussion of the H,, control

(12)

problem for linear systems we refer to the lecture
notes [7}, while the recent state space approach to
linear H_ control can be found in [6,8,11] and the
references quoted therein.

2. Stable manifolds of hyperbolic Hamiltonian vec-
tor fields

Consider a Hamiltonian vector field on a sym-
plectic manifold (N?", w), with Hamiltonian
H:N?" - R and equilibrium z, € N,

i=Xy(z), Xy(zy)=0, x€N. (13)

By Darboux’s theorem (see e.g. [1]) there exist
local coordinates (xi,...,x,, py,---, p,) for N
such that

w= 3 dp,Adx,,

i=1

and thus the equations take the well-known local
form

) dH
=5, (x p),
. SH i=1,...,n. (14)
b=~ 3¢ (x. p),

Such coordinates are called canonical. Now sup-
pose that z; is a hyperbolic equilibrium for X,
i.e. the Jacobian matrix D X,,(z,), given in canoni-
cal coordinates as

3°H o*H
dx op 8—;72
DX,(z,) = Z4), 15
=y [0 09
8x2 apax

has no imaginary eigenvalues. Then by the Stable
Manifold Theorem (see e.g. [1,7.2.3]) there exists a
global invariant stable manifold S through x, (S
is an immersed submanifold of N2"), ie. S is
invariant for the vector field X,, and X, re-
stricted to S is asymptotically stable. Further-
more, S is tangent at z, to the generalized stable
eigenspace of DX}, (z,), 1.e.

.S = X (DXy(2)) (16)

where X~ (DX, (z,)) is the n-dimensional eigen-
space of the matrix D X},(z,) corresponding to its
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n eigenvalues in the open left half-plane C ™. (Re-
call that DX, (z,) is a Hamiltonian matrix, and
thus its eigenvalues are symmetric with respect to
the imaginary axis, see e.g. [1].)

A submanifold L c (N?", w) is called a
Lagrangian submanifold (e.g. [1]) if dim L=n
and furthermore w restricted to L is zero, i.e.

w|, =0. (17)

Lemma 1. Suppose z, is a hyperbolic equilibrium for
Xy, on N*". Then the global stable invariant mani-
fold S of X,; through z, is a Lagrangian submani-
fold of N*".

Proof. By hyperbolicity and symmetry of the ei-
genvalues with respect to the imaginary axis,
dim S =n, so we only have to prove that w re-
stricted to S is zero. Since S is invariant for X,
we can define X, as the restriction of X, to S.
‘Furthermore, let @ be the restriction of w to S.
Since Xy is Hamiltonian we have Ly =0 (L Xy
denoting the Lie derivative w.r.t. Xy) and thus
Ly w =0, or equivalently ¢*& = &, where we de-
note by ¢, the flow of the vector field X, on S.
Hence forany z€ S and Z,, Z, € T,S,

&(z)(Zy, Z,) =a( 0 (2))(0(2)42Z1, ¢:(2)4Z,)
(18)

for all £>0. Now, since X, is asymptotically
stable,

¢,(2)eZ, 20 fort—> o0, i=1,2, (19)

and thus &(zXZ,, Z,)=0. O

Remark. Although the contents of the above
lemma are plausible and its proof is simple I could
not find any statement of it in the literature.
Finally, we recall the following well-known fact
from symplectic geometry (see e.g. [1]).

Proposition 2. Let L C (N?", w) be a Lagrangian
submanifold, and suppose that in a neighborhood of
some point zy € L there exist centered (i.e. zero in
zy) canonical coordinates (Xy,..., X, P1ye.-s Do)
such that L is parametrized by x,,...,x,. Then
there exists a function V(x,,..., x,) ( possibly de-

fined on a smaller neighbourhood of 0) such that L
is locally given as

av
{(xl,...,x,,, p1=a—xl(x),...,

pﬁ%(ﬁf))

x around 0 € R" } (20)

V is called a generating function of L around z,.

Combining Lemma 1 and Proposition 2 we
obtain:

Proposition 3. Take the assumptions of Lemma 1,
and assume that there exist canonical coordinates
(X1s.ces Xps P1s---» Pp) around z, such that S is
parametrized by (x4,...,x,). Then S is locally of
the form (20) for some generating function V. Fur-
thermore, V is a local solution of the Hamilton—
Jacobi equation

H(x,g—:(x))=H(zo), x around 0€R". (21)

Proof. We still we have to prove (21). Since
X, (H)=0, H is preserved by the flow of Xy
(X,, being the restriction of Xy to ). Since )7;, is
asymptotically stable this means that for all z € S,

H(z) = H(9,(2)) » H(z,) for1 s

(with ¢, again denoting the flow of X},), and thus
(21) follows since every z € S is of the form as
given in (20). O

Corollary 4. The symmetric matrix
4
P,=—(0
y= 55 (0)

(i.e. the Hessian matrix of V in x=0) is the
stabilizing solution of the algebraic Riccati equation
(see e.g. [16])

AP+ PA+ PRP + Q =0, (22)
where we have set

92H

a’H
W(O, 0) =-A, W(O, 0) =‘R,

2
—aa-g(o, 0) = Q. (23)
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Proof. By (16) and (20) it immediately follows that

span[ ! ]
Py

is the generalized stable eigenspace of the Ham-
iltonian matrix

5 4}

and thus P, defines the stabilizing solution of
(22). O

Remark. Note that (22) is the Hamilton-Jacobi
equation corresponding to the quadratic Hamilto-
nian p"Ax + ip™Rp + 14'Qq, ie. the quadratic
term in the Taylor expansion of H(x, p) around
©, 0).

3. A nonlinear L,-induced norm

Let us now consider the nonlinear system (2)
and its linearization (3). We make the following
assumption.

Assumption 1. F is asymptotically stable.

Then the H_ norm of the transfer matrix H(s/
— F)7'G of (3) is defined, and we have the fol-
lowing basic observation in the state space ap-
proach to H_, control [6,5,2,16].

Lemma 5. Let y>0 and let Assumption 1 be
satisfied. Then

|H(sI=F) 'Glly_<v

if and only if there exists a symmetric solution P to
the Riccati equation

F'P+ PF+ %PGGTP +H™H=0 (25)
Y
satisfying
o(F+ LZGGTP)CC‘ (26)
Y

(i.e., P is the stabilizing solution to the Riccati
equation (25)).

We state our first main theorem.

Theorem 6. Consider the nonlinear system (2) and
its linearization (3) satisfying Assumption 1. Let
vy > 0 be a constant.

Suppose that || H(sI — F)™'G ||, <y (i.e. (8)
is satisfied, see [7,6]). Then there exists a neighbor-
hood W of x, such that for all u & L,(0, o) with
compact support for which the solution x(t, 0, x,, u)
of (2) remains in W we have

I IZ, <y Nl (27)

(Here, of course, y(t)=h(x(1,0, x,, u)) denotes
the output of (1))

Proof. By Lemma 5 there exists a solution P to
(25) satistying (26). Equivalently,

I
span[PJ

is the generalized stable eigenspace of the Ham-
iltonian matrix
1
F —GGT
Y .

Ham = (28)

—H'H -FT

In particular, Ham has no imaginary eigenvalues.
Now, Ham 1is precisely the Jacobian matrix
DX, (x,) of the Hamiltonian vector field X, on
the symplectic manifold N2":= T*M (endowed
with its natural symplectic form, see [1]) corre-
sponding to the Hamiltonian

H(x. p)=p'f(x) + 3 2 p'8(x)¢"(x)p

+3h"(x)h(x) (29)

(where (x, p) are the natural (and thus canonical)
coordinates for N=T*M). Hence X, has an
n-dimensional stable invariant manifold S passing
through z,=(x,, 0), which is Lagrangian by
Lemma 1. Furthermore, by (16) and the fact that
the generalized stable eigenspace of Ham is given
in the form

1
span[P]

it follows that S is parametrized, locally around
z4, by the x-coordinates. Hence by Lemma 2, S is
locally around z; of the form

{(x,%?(x)) |x € M, x around xo} (30)
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for some generating function V. Let now W be a
neighborhood of x, such that W is in the domain
of attraction of x, for f, and V is defined on W.
By Proposition 3 and the fact that H(x,, 0)=0
we have

() + 3 7 G (8(:)g()| 5 ()
+ 1T (x)h(x)=0. (31)

Denoting (d/d¢)V as the derivative of V' along
(2), we have by ‘completing the squares’

d av aV
—c-l-tV= 3xf+ x84

_1j ]T
v? ax &
11V
axf+ 2 axggT[ ] + 3 7Y ” s

(32)

and thus by substituting (31), and denoting
HT()R(x) = 11y 1%

1,2
—3Y

d
V= huir - gly?
2
12 v 1"
—2Y H—F gg s

or

Iy 112, =¥ lullZ,=2V(x,) — 2V (x(c0))
_ L[G_V !
u 'Yz axg
(33)

Since u(t)=0 for t>T for some T, and the
trajectories x(¢) remain in the domain of attrac-
tion of x, we have x(o0) = x,,, and thus

2 2 2
Nyl =y llullz,<0.

Hence it follows that || y||7, <y*||u||, To ob-
tain strict inequality we observe that

|H(sI-F) 'Glly <v

implies that there exists some ¥ <y such that
| H(sI — F)"'G|| y_ <. Repeating the same
story for ¥ we obtain

2 _ 22 2 2 2
Iyl sy llullz, <y Hullz,. O

Remark 1. Note that the above ‘completion of the
squares’ argument is essentially the same as in the
linear case {8,16].

Remark 2. The condition on u to be of compact
support is only to ensure that x(¢) — x, for t — oo,
since this is not a priori clear as in the linear case.
Another possibility would be to require that f and
g are globally Lipschitz continuous on W (this is
always true if W is bounded!), since by [14,9] this
implies that (setting x,=0) x€ L, and X € L,,
and thus x(¢) — 0.

Corollary 7. Let Assumption 1 be satisfied, and let
v>0. Then (27) holds if (x4, 0) is a hyperbolic
equilibrium for the Hamiltonian vector field corre-
sponding to the Hamiltonian (29).

Proof. Hyperbolicity is equivalent to the property
that the Hamiltonian matrix Ham defined in (28)
has no imaginary eigenvalues. It is well-known in
the theory of Riccati equations (see e.g. [6, Lemma
4)) that, since (F, G) is stabilizable by Assump-
tion 1, this implies the existence of a symmetric
solution P to (25) satisfying (26). Therefore by
Lemma 5,

|H(sI—F) 'Gll <7,

and the result follows from Theorem 6. O

4. The nonlinear state feedback H_ control prob-
lem

Now we come to our main theorem on the
standard H_ control problem using state feed-
back. For the linearized system with disturbances
(6) we consider the H_ norm of the transfer
matrix
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of the closed-loop system

x=FXx+Gu+Kd, (34a)
y=Hx, (34b)
i=LX, (34c)

for any stabilizing state feedback u = LX, i.e.
F + GL is asymptotically stable. (35)
Thus for any L satisfying (35) we consider

=12 =2
Ny, + lullz
IT, NI, = sup — 55—

P = (36)
%0 diz,

We recall the following theorem from linear H,
control (see [6,11,15]).

Assumption 2. (F, G) is stabilizable, and (H, F)
1s detectable.

Theorem 8. Let Assumption 2 be satisfied for the
linearized system (6) and let v > 0. Then

inf Ty, <Y (37)
L satisfying (35)

if and only if there exists a symmetric solution P > 0
of
1
FTP+ PF - P(GGT - —ZKKT)P +H'H =0,
Y
(38)
satisfying

a(F—GGTP+ %KKTP)cc—. (39)
Y

Furthermore one possible L satisfying (35) and
7o 1|, <7 is given by
L=—-G"P. (40)

For the nonlinear system (5) we obtain our
second main theorem:

Theorem 9. Consider the nonlinear system (5). Let
Assumption 2 be satisfied for its linearization (6).
Let v> 0. Suppose that (37) is satisfied for (6).

Then there exists a neighborhood W of x, and u
nonlinear feedback u = [(x) such that

x=f(x)+g(x)l(x) is globally
asymprotically stable on W, (41)

IV IZ+ Nl <v?idIlg, (42)

for all disturbance functions d € L, with compact
support such that the state space trajectories starting
from x(0) = x, remain in W.

Proof. Consider the Hamiltonian vector field X},
on N2"= T *M corresponding to the Hamiltonian

H(x, p)=p'f(x) - %pT(gu)gT(x)

——%ux)kT(x))w T (x)h(x).
.

(43)
By Theorem 8 there exists a stabilizing solution P

to (38), or equivalently

spanj , ‘

is the generalized stable eigenspace of

1
F  —-GG'+ SKK'
Ham = Y . (44)
| —-H"H —FT

Since Ham = DX, (z,), 2z, = (x;, 0), we conclude
that X, has an n-dimensional stable invariant
manifold S passing through z,, which is
Lagrangian by Lemma 1 and which is parame-
trized, locally around z,, by the x-coordinates.
Hence by Lemma 2, locally around z,, S is given
as

oV

5= {(x,gz(x))

for some generating function V. By Proposition 3
and H(x,, 0) =0 we have

v
P f(x)

- 3 5 ()| 808T) = S5k (0)KT(x)]

x €M, x around xo} (45)

1] + 3 orx) =o. (46)
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Denote (d/d#)V as the derivative of V" along (5).
Then by ‘completing the squares’, and using (46),

d av av av
EV__— a’f‘*‘ Egu+ gkd

TZ
1 14
=§ u+ ag
2
1[av 1"
-3y’ d—F gk]

—3ull®+ 4|’
v, 1 L[v]"
M Al 24 [a]
11 v, [oav]T
PR T 5]
v 1T|I°
u+ ag]

1.,2

—2Y

T2
d 1 aVk]

Ty x

=3y I? = 3lull®+ 3y 047 (47)
Choosing the state feedback

1% T
u=-[Fs00)| =1(x) (48)
we thus obtain

2 2 2 2
Iylz,+ Nullz, =y Il 4L,

= 2V(x0) — 2V(x(w0)) - v*|d - %[QK"]T |

(49)

Since the solution P of (38), (39) equals the
Hessian matrix (32V/dx%)(x,) (compare with
Corollary 4), while (dV/dx)(x,) =0 by the fact
that z, = (x4, 0), we observe from (48) that

g (x0) =L (50)

with L defined in (40). Thus by Theorem 8 the
vector field f(x)+ g(x)I(x) is locally exponen-
tially stable around x,. It is now clear how to
choose W. Indeed W has to be contained in the
domain of definition of ¥ and in the domain of
attraction of the vector field x = f(x) + g(x)I(x).

Then for d as in the formulation of the theorem,
x(o0) = x4, and thus

2 2 2 2
Iyl + lells, <y Il dliL,

Similarly as in the end of the proof of Theorem 6
we get strict inequality, and thus (42) follows. O

Corollary 10. Let Assumption 2 and (37) be satis-
fied for (6). Then locally around x there exists a
unique solution V of the Hamilton—Jacobi equation
(46), satisfying the boundary conditions

oV

0V
ﬁ(xo)=0, W(xo)=1), (51)

V( xO) = 0,
where P >0 is the unique solution of (25), (26).
Furthermore, a feedback u=I(x) such that (41)
and (42) hold for some neighborhood W of x, is
given as
v T

1(x) = ~ | Je(0)8(x)]

Moreover if (46), (51) has a global solution V
on M =R" such that V is a positive definite func-
tion on R" (in the sense of [13]), while the set

(x| 32 ()(/(x) + 5(x)i(x)) = 0)

contains no non-trivial trajectories of x=f(x)+
g(x)(x) (with I(x) as above), then we can take
W =R" (and thus we obtain a global solution to
the nonlinear H_, optimal control problem).

Proof. The first part is just a restatement of Theo-
rem 9. Indeed if V is a local solution of (46), (51)
then

L= {(x,%;(x)) | x around xo}

equals the stable invariant manifold S of X. In
fact, since H =0 on L and L is Lagrangian, L is
invariant for X, ({1, Prop. 5.3.32]). Furthermore
by (51), L is tangent at z, = (x,, 0) to the gener-
alized stable eigenspace of Ham defined in (44).

If V is globally defined and satisfying the
above conditions then global asymptotic stability
follows from [13, Theorem 87] by consideration of
(47), and thus we can take W =R". O

Remark 1. Analogously to the Remark after Theo-
rem 6 we can replace the compact support condi-
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tion on the disturbance d by a global continuity
condition on the vector fields f, g, and & ,.

Remark 2. It follows from (47) that we cannot
decrease y in (42) by allowing for dynamic nonlin-
ear state feedback (just as in the linear case, see

[11)).

Remark 3. One observes from (49) that
1[av T

d= 75| e (DK ()]

is the ‘worst case’ disturbance.

Remark 4. Notice that for y » oo the Hamilton-
Jacobi equation (46) tends to the Hamilton-
Jacobi-Bellman equation of the optimal control
problem for the cost functional || y|IZ, + Flu||Z,
(compare with the linear case [6,15]).

Finally we remark that, like in the linear case
(see e.g. [5,6]), the infimal y such that (42) holds
to be computed by some iterative procedure.

5. Conclusions

It is clear that only a few first steps have been
taken towards a state space approach of ‘H_
control’ for nonlinear systems. In particular it
would be desirable to have some a priori estimate
of the size of the neighborhood W in Theorem 9.
Also, in this paper only the state feedback case
has been considered, without entering the much
more complicated dynamic output feedback case.
It should be also of interest to make comparisons
with recent advances in the operator and game
theoretic approach to nonlinear H_ control (see
e.g. [3,4]), and with older work on (input—output)
stability for nonlinear systems (see e.g. [9,13,14]).
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