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Abstract: We study the standard Ho~ optimal control problem 
using state feedback for smooth nonlinear control systems. The 
main theorem obtained roughly states that the L2-induced 
norm (from disturbances to inputs and outputs) can be made 
smaller than a constant 3' > 0 if the corresponding Hoo norm 
for the system linearized at the equilibrium can be made 
smaller than y by linear state feedback. Necessary and suffi- 
cient conditions for the latter problem are by now well-known, 
e.g. from the state space approach to linear H~o optimal 
control. Our approach to the nonlinear Hoo optimal control 
problem generalizes the state space approach to the linear Hoo 
problem by replacing the Hamiltonian matrix and correspond- 
ing Riccati equation as used in the linear context by a Ham- 
iltonian vector field together with a Hamilton-Jacobi equation 
corresponding to its stable invariant manifold. 
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= 0, j = 1 . . . . .  p. For simplicity of notation we 
will throughout abbreviate (1) as 

~ = f ( x ) + g ( x ) u ,  U E R  m , y~RP,  x ~ M ,  
(2a) 

y=h(x ) ,  f(xo)=O, h(xo)=O, (28) 

with g(x) the n × m matrix with j- th column 
gj(x) .  Furthermore we consider the linearization 
of (2) around x0, denoted as 

x = F ~ + G f i ,  f i ~ R  m, X ' ~ R ' ,  (3a) 

= H ~ ,  y ~ R P ,  (3b) 

with 

~f 3h F=-~(Xo) ,  G=g(xo), H=~-~(Xo). (4) 

Also, we consider nonlinear systems affected by 
(unknown) disturbances d, 

.~ = / ( x )  + g(x)u + k(x)d,  

u ~ R  m, y ~ R  p, d ~ R  q, x ~ M ,  (5a) 

y=h(x ) ,  f(xo)=O, h(xo)=O, (5b) 

1. Introduction 

Consider a smooth (i.e. C °°) nonlinear system 
(see [10,12]) 

:~ = f ( x )  + ~ gj(x)uj, 
j= l  

" = (lg 1 . . . . .  Urn) ~ R ' ,  ( la)  

yj=hj(x),  j = l  . . . . .  p ,  

Y=(Yl ..... Yp) ~Rp,  ( lb )  

where x = (x 1 . . . . .  x , )  are local coordinates for 
the smooth state space manifold M. We assume 
that x 0 ~ M is an equilibrium, i.e. f(xo) = O, and 
without loss of generality we assume that hj(xo) 

where k(x) is an n × q matrix, with entries de- 
pending smoothly on x. The corresponding lin- 
earization around x 0 is denoted as 

x= F~ + GFt + Kd, f i ~ R " ,  d ~ R  q, Y ~ R " ,  

(6a) 

y = H f f ,  . ~ R  p, (6b) 

where F, G, H are defined in (4), while 

K= k(xo). (7) 

The purpose of this note is to show that there is 
a close connection between the Ho~ norm (L2-in- 
duced norm) of the linearized system (3) and some 
'H~ norm' of the nonlinear system (2). In fact we 
will prove that if (assuming F to be asymptoti- 
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cally stable and starting from the initial condit ion 
= O) 

It ~ I1~_~ <.12 II fi I1~ for all u ~ L2(O, oo ) (8) 

(i.e. the H~  norm of the transfer matrix H ( I s -  
F )  aG of the linear system (3) is less than some 
constant  "1 > 0), then also for the nonlinear system 
(2) we have (starting from the initial condit ion 
x(0) = x0) 

II y 112,. < "12 II u 1122 (9) 

for all u ~ L 2 "such  that x is not  driven too far 
from x0". Here 11 [I L~ denotes the usual L 2 norm,  
i.e. 

~ 3  

I1 z IIL22 = f0 zr( t)z( t )  dt, z ' a  +~ R'. (10) 

Furthermore  we will show that we have a similar 
relation between the s tandard state feedback Ho~ 
control  problem for the nonlinear system with 
disturbances (5) and its linearization (6). In fact 
we will prove that if we can find for (6) a stabiliz- 
ing feedback fi = L~ such that 

2 2 I1~11< + I I~ l l< 
sup - 2 < "12 (11) 
a . o  I l d l l<  

(i.e. the H a norm from disturbances to inputs and 
outputs  is less than "1), then also for the nonlinear  
system we can find, at least locally a round x 0, a 
nonlinear feedback u = l (x)  such that, if x is not  
driven too far f rom x 0, 

I[ Y 1122 + II u 1122 
sup 
d.O Ildll~2 

< "12. (12) 

The main technical tool, which is of  some interest 
in itself, is a lemma given in the next section 
which states that the stable invariant manifold of  
a Hamil tonian vector field with no imaginary ei- 
genvalues is a Lagrangian submanifold,  and so has 
a natural  generating function at tached to it. This 
generalizes the well-known fact that  the gener- 
alized stable eigenspace of  a Hamil tonian matrix 
having no imaginary eigenvalues corresponds to a 
symmetric solution of its related Riccati equation. 
Indeed, the generating function will enable us to 
use a 'complet ion of  the squares'  argument,  which 
is very similar to the one used in the linear case 
(see e.g. [8]). For  a discussion of  the H a control  

problem for linear systems we refer to the lecture 
notes [7], while the recent state space approach to 
linear H a control  can be found in [6,8,1 l] and the 
references quoted therein. 

2. Stable manifolds of hyperbolic Hamiltonian vec- 
tor fields 

Consider  a Hamil tonian  vector field on a sym- 
plectic manifold  ( N  2n, w), with Hamil tonian 
H : N 2~ ~ R and equilibrium z 0 c N, 

2 = Xrz(Z), XH(zo) =0,  x ~ N. (13) 

By Darboux ' s  theorem (see e.g. [1]) there exist 
local coordinates  (x 1 . . . . .  xn, Pl . . . . .  p , )  for N 
such that 

n 

w = ~ dpi /x  dxi ,  
i=1  

and thus the equations take the well-known local 
form 

OH 
< = -g ;  (x ,  p ) ,  

i =  1 . . . . .  n. (14) 
OH (x ,  p )  

p ,  = _ , 

Such coordinates are called canonical. N o w  sup- 
pose that z 0 is a hyperbolic equilibrium for X/4, 
i.e. the Jacobian matrix DXu(zo),  given in canoni- 
cal coordinates  as 

D X H ( z 0 )  = 

02H 02H 
0x 0p 0p 2 

02H 02H 
0x 2 Dp 0x 

_ _  ](Zo), (15) 

has no imaginary eigenvalues. Then by the Stable 
Manifold Theorem (see e.g. [1,7.2.3]) there exists a 
global invariant stable manifold S through x 0 (S  
is an immersed submanifold  of  N2n), i.e. S is 
invariant for the vector field X , ,  and X H re- 
stricted to S is asymptotical ly stable. Further- 
more, S is tangent at z 0 to the generalized stable 
eigenspace of  D X u ( z 0 ) ,  i.e. 

TzoS = X - ( D X H ( Z o )  ) (16) 

where X - ( D X n ( z o )  ) is the n-dimensional  eigen- 
space of  the matrix DXH(z0)  corresponding to its 
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n eigenvalues in the open left half-plane C - .  (Re- 
call that DXH(Zo) is a Hamiltonian matrix, and 
thus its eigenvalues are symmetric with respect to 
the imaginary axis, see e.g. [1].) 

A submanifold L c ( N  2", to) is called a 
Lagrangian submanifold (e.g. [1]) if dim L = n 
and furthermore to restricted to L is zero, i.e. 

to I L = 0. (17) 

Lemma 1. Suppose z o is a hyperbolic equilibrium for 
X n on N 2n. Then the global stable invariant mani- 
fold S of X H through z o is a Lagrangian submani- 
fold of N 2". 

Proof. By hyperbolicity and symmetry of the ei- 
genvalues with respect to the imaginary axis, 
dim S = n, so we only have to prove that to re- 
stricted to S is zero. Since S is invariant for X H 
we can define -~H as the restriction of X H to S. 
Furthermore,  let ~ be the restriction of to to S. 
Since X H is Hamiltonian we have Lx,  ' = 0 ( Lx,  ' 
denoting the Lie derivative w.r.t. XH) and thus 
L y , ~  = 0, or equivalently ~*~ = ~, where_ we de- 
note by q)t the flow of the vector field X H on S. 
Hence for any z ~ S and Z 1, Z 2 ~ T z S, 

22) = , , ( z ) , Z : )  
(18) 

for all t > 0. Now, since X H is asymptotically 
stable, 

ept (z ) ,Z  i ---) 0 for t ---) ~ ,  i = 1, 2, (19) 

and  thus ~ ( z ) ( Z  1, Z2) = 0. [] 

Remark. Although the contents of the above 
lemma are plausible and its proof is simple I could 
not find any statement of it in the literature. 
Finally, we recall the following well-known fact 
from symplectic geometry (see e.g. [1]). 

Proposition 2. Let L c ( N  2n, to) be a Lagrangian 
submanifold, and suppose that in a neighborhood of 
some point z o ~ L there exist centered (i.e. zero in 
Zo) canonical coordinates (x 1 . . . . .  x , ,  Pl . . . . .  P~), 
such that L is parametrized by x 1 . . . . .  xn. Then 
there exists a function V(x  1 . . . . .  x , )  (possibly de- 

fined on a smaller neighbourhood of O) such that L 
is locally given as 

Xl Xn, Pl = u.~.l ( x )  

p, = ~ ( x ) around 0 ~ . 

V is called a generating function of L around z o. 

Combining Lemma 1 and Proposition 2 we 
obtain: 

Proposition 3. Take the assumptions of Lemma 1, 
and assume that there exist canonical coordinates 
(x  I ...... x , ,  Pl . . . . .  p , )  around z o such that S is 
parametrized by (x  1 . . . . .  x~). Then S is locally of 
the form (20) for some generating function V. Fur- 
thermore, V is a local solution of the Hamilton- 
Jacobi equation 

H ( x , ~ - ~ ( x ) ) = H ( z o ) ,  x a r o u n d O ~ R ' .  (21) 

Proof. We still we have to prove (21). Since 
X_n(H ) = 0, H is preserved by the flow o f  X H 
(XH being the restriction of XH to S). Since X ,  is 
asymptotically stable this means that for all z ~ S, 

H ( z )  = H(q , t ( z ) )  --) H ( z o )  for t---) 

(with (Pt again denoting the flow of XH), and thus 
(21) follows since every z ~ S is of the form as 
given in (20). [] 

Corollary 4. The symmetric matrix 

02V "0" Pv:= ( ) 

(i.e. the Hessian matrix of V in x = O )  is the 
stabilizing solution of the algebraic Riccati equation 
(see e.g. [161) 

ATp + PA + P R P  + O = 0, (22) 

where we have set 

02H (0, O) =: A ,  02H " 
0p (0, 0) =.. R, 

02H (0, 0) =: Q. (23) 
0x 2 
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Proof. By (16) and (20) it immediately follows that 

span[pIvJ 

is the generalized stable eigenspace of the Ham- 
iltonian matrix 

- O _ A  T , ( 2 4 )  

and thus Pv defines the stabilizing solution of 
(22). [] 

Remark. Note that (22) is the Hamil ton-Jacobi  
equation corresponding to the quadratic Hamilto- 
nian pVAx + ½pVRp + ½qXQq, i.e. the quadratic 
term in the Taylor expansion of H(x, p) around 
(0, 0). 

3. A nonlinear L2-induced norm 

Let us now consider the nonlinear system (2) 
and its linearization (3). We make the following 
assumption. 

Assumption 1. F is asymptotically stable. 

Then the H~ norm of the transfer matrix H(sI 
- F)-IG of (3) is defined, and we have the fol- 
lowing basic observation in the state space ap- 
proach to H~ control [6,5,2,16]. 

Lemma 5. Let 7 > 0 and let Assumption 1 be 
satisfied. Then 

II a ( s I  - F ) - l a  II n ~  < ~' 

if and only if there exists a symmetric solution P to 
the Riccati equation 

FTp + PF + ~ P G G T p  + HTH = 0 (25) 

satisfying 

( 1 ) 
o F+-~2GGTP c C -  (26) 

(i.e., P is the stabifizing solution to the Riccati 
equation (25)). 

We state our first main theorem. 

Theorem 6. Consider the nonlinear system (2) and 
its linearization (3) satisfying Assumption 1. Let 
y > 0 be a constant. 

Suppose that Ii H ( s I -  F)- IG Iln~ < ~' (i.e. (8) 
is satisfied, see [7,6]). Then there exists a neighbor- 
hood W of x o such that for all u ~ L2(O, ~ )  with 
compact support for which the solution x( t, 0, x0, u) 
of (2) remains in W we have 

2 ]/2 IlylIL < II u 1122. (27) 

(Here, of course, y ( t ) =  h(x(t ,  O, x o, u)) denotes 
the output of (1).) 

Proof. By Lemma 5 there exists a solution P to 
(25) satisfying (26). Equivalently, 

s p a n [ I J  

is the generalized stable eigenspace of the Ham- 
iltonian matrix 

I Ham = . (28) 

- H T H  - F  v J 

In particular, Ham has no imaginary eigenvahies. 
Now, Ham is precisely the Jacobian matrix 
DXn(x0)  of the Harniltonian vector field X H on 
the symplectic manifold N 2n := T * M  (endowed 
with its natural symplectic form, see [I]) corre- 
sponding to the Hamiltonian 

H(x ,  p) =pTf (x )  + ~ pVg(x)gT(x)p  

+½hV(x)h(x)  (29) 

(where (x, p)  are the natural (and thus canonical) 
coordinates for N =  T ' M ) .  Hence X H has an 
n-dimensional stable invariant manifold S passing 
through z 0=(x0 ,  0), which is Lagrangian by 
Lemma 1. Furthermore, by (16) and the fact that 
the generalized stable eigenspace of Ham is given 
in the form 

it follows that S is parametrized, locally around 
z 0, by the x-coordinates. Hence by Lemma 2, S is 
locally around z 0 of the form 

x O V  x (( , - ~ (  ) ) ] x ~ M ,  x a r o u n d x o )  (30) 
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for some generating function F. Let now W be a 
neighborhood of x 0 such that W is in the domain 
of attraction of x 0 for f ,  and V is defined on W. 
By Proposition 3 and the fact that H(x  o, O)= 0 
we have 

implies that there exists some ~7 < , such that 
II H(sI  - F ) - I G  II M~ < ~- Repeating the same 

story for ~ we obtain 

II Y 11~2 -< .~2 II u ILL:2 < , :  II u II L:2. [] 

1 1 0 V  T OV T 
~ ( x ) f ( x )  + 2 ,2-~(x)g(x)g ( x ) [ - ~ - ( / ) ]  

+ ½hT(x)h(x)  = O. (31) 

Remark 1. Note that the above 'completion of the 
squares' argument is essentially the same as in the 
linear case [8,16]. 

Denoting ( d / d t ) V  as the derivative of V along 
(2), we have by 'completing the squares' 

d OV OV 
d-t V =  -3--~-f + -~-gu 

= - ½,~ u -  ~L-~gj l  [ ov 1 11 

DV 1 1 OV wravf 
+ " ~ f +  2 ,2 ~-~gg LT}-J 

and thus by substituting (31), and 
hX(x)h(x)  = II Y II 2, 

d } , 2  2 
d-t V = II u II - ½ II Y II 2 

_½,2 u 1 [ OV IT 2, 

or  

= 2V(xo) - 2V(x(oo))  

,2 1 ray 1 11 
- u -  Vt g ] 

II Y 1122 - , 2  II u 1122 

+ ½,2 II u II 2 

(32) 

denoting 

(33) 

Since u( t )=O for t > T  for some T, and the 
trajectories x( t )  remain in the domain of attrac- 
tion of x 0 we have x(oo) = x0, and thus 

II y 1122 - ,2  II u 1122 ~ 0. 

Hence it follows that II Y 1122 < ,2  II u 1122. To ob- 
tain strict inequality we observe that 

II H(sI- F)-IG II n~ < , 

Remark 2. The condition on u to be of compact 
support is only to ensure that x( t )  ---, x o for t ---, oo, 
since this is not a priori clear as in the linear case. 
Another possibility would be to require that f and 
g are globally Lipschitz continuous on W (this is 
always true if W is bounded!), since by [14,9] this 
implies that (setting x 0 = O) x ~ L 2 and ~ ~ L2, 
and thus x ( t)  ~ O. 

Corollary 7. Let Assumption 1 be satisfied, and let 
, > O. Then (27) holds if (x  0, 0) is a hyperbolic 
equilibrium for the Hamiltonian vector fieM corre- 
sponding to the Hamiltonian (29). 

Proof. Hyperbolicity is equivalent to the property 
that the Hamiltonian matrix Ham defined in (28) 
has no imaginary eigenvalues. It is well-known in 
the theory of Riccati equations (see e.g. [6, Lemma 
4]) that, since (F,  G) is stabilizable by Assump- 
tion 1, this implies the existence of a symmetric 
solution P to (25) satisfying (26). Therefore by 
Lemma 5, 

II H ( s I  - F ) - 1 G  II Ha < ' .  

and the result follows from Theorem 6. [] 

4. The nonlinear state feedback Hoo control prob- 
lem 

Now we come to our main theorem on the 
standard Hoo control problem using state feed- 
back. For  the linearized system with disturbances 
(6) we consider the Hoo norm of the transfer 
matrix 
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of the closed-loop system 

x = r Y  + GFt + Kd, (34a) 

.~ = HY, (34b) 

fi = L~, (34c) 

for any stabilizing state feedback fi = L2, i.e. 

F + GL is asymptotically stable. (35) 

Thus for any L satisfying (35) we consider 

II g 112= + II 112= 
11TL 112 := sup (36) 

a ,0  IId1122 

We recall the following theorem from linear H a 
control (see [6,11,15]). 

Assumption 2. (F, G) is stabilizable, and (H, F )  
is detectable. 

Theorem 8. Let Assumption 2 be satisfied for the 
linearized system (6) and let y > O. Then 

inf II TL II .~  < ~ (37) 
L satisfying (35) 

if and only if there exists a symmetric solution P > 0 

of 

FTp + P F - P (  GGT-  ~ K K  T) p + H T H = O ,  

(38) 

satisfying 

o( F -  GGTp + ~ KKTp ) c c -. (39) 

Furthermore one possible L satisfying (35) and 
11 TL I[ H~ < V is given by 

L = -a e. (40) 

For the nonlinear system (5) we obtain our 
second main theorem: 

Theorem 9. Consider the nonlinear system (5). Let 
Assumption 2 be satisfied for its linearization (6). 
Let y > O. Suppose that (37) is satisfied for (6). 

Then there exists a neighborhood W of xo and a 
nonlinear feedback u = l( x ) such that 

.f = f ( x )  + g ( x ) l ( x )  is globally 

asymptotically stable on W, (41) 

2 y2  2 ][YllL2+ [[Ul[L2< [[d[[,.:, (42) 

for all disturbance functions d ~ L 2 with compact 
support such that the state space trajectories starting 
from x(O) = x o remain in W. 

Proof. Consider the Hamiltonian vector field X ,  
o n  N 2n= T*M corresponding to the Hamiltonian 

H(x ,  p ) = p X f ( x ) -  ½pT(g(x)gT(x) 

1 2 k ( x ) k T ( x ) ) p  + ½hT(x)h(x). 

(43) 
By Theorem 8 there exists a stabilizing solution P 
to (38), or equivalently 

spaniel 
is the generalized stable eigenspace of 

Ham = . (44) 

- H T H  - F  y 

Since Ham = DXH(Zo), z 0 = (x 0, 0), we conclude 
that X H has an n-dimensional stable invariant 
manifold S passing through z o, which is 
Lagrangian by Lemma 1 and which is parame- 
trized, locally around Zo, by the x-coordinates. 
Hence by Lemma 2, locally around z o, S is given 
a s  

S =  x,-~-~(x x ~ M ,  x around x 0 (45) 

for some generating function V. By Proposition 3 
and tt(xo, 0) = 0 we have 

~V 
3---~(x)f(x) 

1 ~ k ( x ) k T ( x )  ) 2 ~ ( x ) ( g ( x ) g T ( x ) - -  

F I ~ V  V 
• + ½h (x)h(x)=0. (46) 
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Denote ( d / d t ) V  as the derivative of V along (5). 
Then by 'completing the squares', and using (46), 

d aV OV OVkd 
-d-i V =  --~ f + -~-~ gu + a x 

1 + [ ~ V  ]TII 2 
= u 

1 ~ V  k T 2 ] 
- ½ 1 l u l l 2 +  ½T211dll 2 

~V 1 ~V T[ OV1T 
+ - -~- f -  ~ ' ~ g g  [-~1 

1 1 aV T r ~ v ]  T 
+ 2 ~,2 -~ . kk  [-~-~] 

1 [ a v  1TII 2 
u+[ gj 

1 aV k T 2 ] 
- ½11yll 2 -  ½11utl 2 + ½"/2 II d II 2. 

Choosing the state feedback 

u = -   x(X)g(x =,l(x) 

we thus obtain 

II Y I1~ + II u IIL:: - v 2 II d I1~ 

(47) 

(48) 

= 2 V ( x o ) - 2 V ( x ( ° ° ) ) - 7  2 d-L[~Vk] 2lax ] 2. 

(49) 

Since the solution P of (38), (39) equals the 
Hessian matrix (a2V/Ox2)(Xo) (compare with 
Corollary 4), while ( 3 V / a x ) ( x o ) =  0 by the fact 
that z 0 = (x o, 0), we observe from (48) that 

(x0) =/~ (50) 

with L defined in (40). Thus by Theorem 8 the 
vector field f ( x ) +  g ( x ) l ( x )  is locally exponen- 
tially stable around x 0. It is now clear how to 
choose W. Indeed W has to be contained in the 
domain of definition of V and in the domain of 
attraction of the vector field 2 = f ( x )  + g ( x ) l ( x ) .  

Then for d as in the formulation of the theorem, 
x(oo) = x0, and thus 

II yll~z + 11 ul12= < Y2 II d 112=. 

Similarly as in the end of the proof of Theorem 6 
we get strict inequality, and thus (42) follows. [] 

Corollary 10. Let Assumption 2 and (37) be satis- 
f ied for (6). Then locally around Xo there exists a 
unique solution V of the Hamilton-Jacobi equation 
(46), satisfying the boundary conditions 

OV ~2V . 
V ( x 0 ) = 0 ,  ~ ( x 0 ) = 0 ,  ~ U z ( x 0 ) = e ,  (51) 

where P > 0 is the unique solution of (25), (26). 
Furthermore, a feedback u = l ( x )  such that (41) 
and (42) hold for some neighborhood IV of x o is 
given as 

OV w 

Moreover if  (46), (51) has a global solution V 
on M = N ~ such that V is a positive definite func- 
tion on N ~ (in the sense of [13]), while the set 

OV {x l-aT(x)(f(x) + g(x)l(x)) =0} 
contains no non-trivial trajectories of 2 = f ( x ) +  
g ( x ) l ( x )  (with l ( x )  as above), then we can take 
W = R ~ (and thus we obtain a global solution to 
the nonlinear Hoo optimal control problem). 

Proof. The first part is just a restatement of Theo- 
rem 9. Indeed if V is a local solution of (46), (51) 
then 

x ~ V x  (( a oun  Xo} 
equals the stable invariant manifold S of X n. In 
fact, since H = 0 on L and L is Lagrangian, L is 
invariant for X n ([1, Prop. 5.3.32]). Furthermore 
by (51), L is tangent at z 0 = (x 0, 0) to the gener- 
alized stable eigenspace of Ham defined in (44). 

If V is globally defined and satisfying the 
above conditions then global asymptotic stability 
follows from [13, Theorem 87] by consideration of 
(47), and thus we can take W = R n. [] 

Remark 1. Analogously to the Remark after Theo- 
rem 6 we can replace the compact support condi- 
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t ion on the d i s tu rbance  d by  a g lobal  con t inu i ty  
condi t ion  on the vector  fields f ,  gj  and  k/. 

Remark  2. It follows f rom (47) that  we canno t  
decrease  "y in (42) by  al lowing for d y n a m i c  nonl in-  
ear  state feedback  (just  as in the l inear  case, see 
[11]). 

Remark  3. One observes f rom (49) that  

I [ ~ V  ]T 
d= 7x(X) (x) 

is the ' w o r s t  case '  d is turbance.  

Remark  4. Not ice  that  for y --, oo the H a m i l t o n -  
Jacobi  equat ion  (46) tends  to the H a m i l t o n -  
J a c o b i - B e l l m a n  equa t ion  of the op t ima l  cont ro l  
p r ob l em for the cost  funct ional  ½ II y 11~2 + ½ II u ll22 
(compare  with the l inear  case [6,15]). 

F ina l ly  we r emark  that,  like in the l inear  case 
(see e.g. [5,6]), the inf imal  ~, such that  (42) holds  
to be  compu ted  b y  some i terat ive procedure .  

5. Conclusions 

It  is clear  that  on ly  a few first s teps have been  
taken towards  a state space a p p r o a c h  of  ' H  a 
cont ro l '  for  non l inear  systems. In  pa r t i cu la r  it  
would  be des i rable  to have some a pr ior i  es t imate  
of  the size of  the ne ighborhood  W in Theo rem 9. 
Also,  in this p a p e r  only  the s ta te  feedback  case 
has been considered,  wi thout  en ter ing  the much  
more  compl ica ted  dynamic  ou tpu t  f eedback  case. 
I t  should be  also of  in teres t  to make  compar i sons  
with recent  advances  in the ope ra to r  and  game 
theoret ic  a p p r o a c h  to non l inear  Hoo cont ro l  (see 
e.g. [3,4]), and  with  o lder  work  on ( i n p u t - o u t p u t )  
s tabi l i ty  for non l inear  systems (see e.g. [9,13,14]). 
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